Isobarentrennung bei Teilchenenergien unterhalb 1 MeV/amu mit einem TOF Detektor Peter Steier,...

Preview:

Citation preview

Isobarentrennung bei Teilchenenergien unterhalb 1 MeV/amu mit einem TOF

Detektor

Peter Steier, Robin Golser, Walter Kutschera, Alfred Priller, Christof Vockenhuber, Katharina Vorderwinkler, Anton Wallner

Institut für Isotopenforschung und Kernphysik der Universität Wien, Währinger Straße 17, A-1090 Wien, Österreich

55. Jahrestagung der Österreichischen Physikalischen Gesellschaft, Wien, 27. September 2005

Tandem-AMS: Measurement principle

AMS Isotopes

AMS isotopes where stable isobar suppression is not needed (no stable isobar or stable isobar does not form negative ions)

14C26Al

129I

210Pb

236U

244Pu

AMS isotopes where stable isobar suppression is needed

10Be

36Cl

41Ca55Mn

60Fe

146Sm

182Hf

36Cl vs. 36S: stopping power

Stopping Power bei Ein = 18 MeV

Isobar identification with a particle detector

Energy required: 1 MeV/amu

Ionization Chamber

From: Finkel and Suter 1993. Advances in Analytical Geochemistry 1 (1993) 1-114

The TOF Detector

Res

idua

l Ene

rgy

[MeV

]S

epar

atio

n /

of s

trag

glin

g

Simulation using a Mathematica™ package from Robert A. Weller, “General purpose computational tools for simulation and analysis of medium-energy backscattering spectra”, AIP Conference Proceedings -- June 10, 1999 -- Volume 475/1, pp 596-599

5

10

15—

Thickness of silicon nitride layer [µg/cm2]

3617 Cl

3616 S

Energy loss in siliconnitride18 MeV initial energy

Measured at VERAMeasured at VERA

Calculated separationof

36Cl (radionuclide) – 36S (stable isobar)

Comparison to other methodsE with ionization chamber

• TOF has a better energy resolution• TOF can handle higher background count rates

• “Post stripping”, i.e. electrostatic or magnetic separation after energy-loss foil

• Post stripping can suppress the isobar, i.e. reduce background count rate in detector.• TOF can use all charge states: higher efficiency possible

• Gas filled magnet• Gas filled magnet suppresses isobars• Gas filled magnet can use all charge states• Charge state fluctuations and angular scattering deteriorate resolution.

• Full stripping • Extreme energies needed

• Inverse PIXE, i.e. characteristic X rays of projectile• Some tests, low efficiency, not yet fully explored

Why we use TOF for our measurements

•Energy resolution of TOF can be made arbitrarily high by longer flight path.

•Physical limitations (energy straggling) can be studied without interfering technical limitations (detector noise, etc.).

Advantages of higher energy

• Beam emittance smaller: E0.5

• Small angle scattering smaller: E1

• Relative energy straggling smaller: E ~ E0.5, however: (E/E) ~ E0.5

Facilities used for AMS

15 MV TandemTU and LMU München

Germany

3 MV TandemUniversität Wien

Austria

0.5 MV TandemETH ZürichSwitzerlandS

mal

l

Big

Calculated separation of 36Cl – 36Sfor different terminal voltages

Terminal voltage [MV]

Se

para

tion

/

of s

tra

ggl

ing

carbon foil —, gas - - -

36Cl: angular scatter for different energies

Disadvantages of large tandems

• More charge state ambiguities• Lower yield of the individual charge states• Large machines are more complex• About half of all AMS facilities are based on 2-3 MV tandems

TOF at VERA

Separation of 36Cl and 36S (28 MeV) after various SiN foil thicknesses

Silicon nitride foils for energy loss

To reduce compressive stress: not stochiometric Si3N4, but ~Si1.0N1.1

(density: 3.4 instead of 3.44)

Silson Ltd, Northampton, England:• 50 to 1000 nm, 55 mm• amorphous (i.e. no channeling)• Döbeli et al., NIM B 219-220(2004)415-419: Si3N3.1H0.06

D.R. Ciarlo, Biomedical Microdevices 4:1(2002)63-68

• More (physical) straggling and scattering than carbon foils.

• Much more homogenous.

Silicon nitride foils have no energy loss tails

Separation of 36Cl and 36S at 28 MeV

TOF at a big tandem

15 MV TandemTU and LMU München

Germany

Separation of 182Hf from 182Wat 200 MeV

Post stripping with Q3D

thick foil

Silicon nitride foils (6 µm) with Q3D

176Hf23+176Yb23+

176Hf22+

Position along focal plane [arb. units]

Energy/Chargehigher lower

176 H

f cou

nts

1001counts

76106counts

176Yb24+Hf suppression: 76

175 MeV

TOF - isobar separation at ~200 MeV13 MV tandem accelerator in Munich

TOF 3.5 m Ionization chamber

TOF - isobar separation at 200 MeV13 MV tandem accelerator in Munich

Long TOFLow energy

Short TOFHigh energy

No tails!

TOF - isobar separation at 175 MeV13 MV tandem accelerator in Munich

176Yb

176Hf

Conclusions

TOF allows to exploit the energy loss difference for isobars to the physical limit imposed by energy straggling (however on the cost of efficiency losses due to straggling).

Foils of sufficient homogeneity exist, produced from silicon nitride.

For AMS with 3-MV tandems, suppression of stable isobars is possible for 41Ca and 36Cl.

At large tandems, long-lived natural radioisotopes can be tackled which were not yet accessible by AMS at all.

Isobar suppression with energy loss foils

D.J. Treacy Jr. et al.,Nucl. Instr. and Meth. in Phys. Res. B 172(2000)321-327

Fig. 2. Overlay of ESA scans for silicon and sulfur ion beams after energy degradation through a 100 µg/cm2 carbon foil. The dotted lines represent the slit width allowing the silicon beam into the spectrograph.

• Separation of 32Si/32S (18 MeV) with carbon foils: ~105

• 2.9 MV terminal voltage

Standard methods use different energy loss whenions pass through matter (gas, foils):

• Active measurement of energy loss (ionization chamber)• Energy measurement after passive absorber

Physical limitations:• Energy straggling: (E/E) ~ E0.5

• Small angle scattering: E1

Technical limitations:• Inhomogeneities of foils produce additional energy

straggling and low energy tails.• Electronic noise, incomplete charge collection, etc.

Stable isobar suppression

Achievable energy with charge stateswith more than 5% yield

10Be carbon foil —, gas - - - 36Cl carbon foil —, gas - - - 182Hf carbon foil —, gas - - -

Terminal voltage U [MV]

Ene

rgy

achi

eved

E [M

V] E~U1.3

Using the formula of Sayer et al., 1977

3+

4+

10+

12+

11+

10+

9+

8+7+

8+

Recommended