37
Abbildende Massenspektrometrie an biologischen Proben Bernhard Lendl Institut für chemische Technologien und Analytik

Abbildende Massenspektrometrie an biologischen Proben€¦ · –CHCA (a-Cyano-4-hydroxy-Zimtsäure) • Geringe Löslichkeit in H 2 O, löslich in MeOH/ H 2 O sowie in polaren org

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Abbildende Massenspektrometrie an

    biologischen Proben

    Bernhard Lendl

    Institut für chemische Technologien und Analytik

  • – Motivation – Anwendungsbereiche

    – Gerätetechnik (MALDI, SIMS, DESI) • Probennahme, Probenvorbereitung

    • Messung

    • Auswertetechniken

    – Beispiele • Lipide

    • Peptide/Proteine

    – Zusammenfassung und Ausblick • Stärken/Schwächen

    • Zukünftige Entwicklungen

    Inhalt der Vorlesung

  • • Vermittlung eines grundlegenden Verständnisses über die Funktionsprinzipien moderner Techniken der abbildenden Massenspektrometrie

    • Kennenlernen der Stärken/Schwächen der vorgestellten Techniken

    • Beispiele sollen auch Interesse hervorrufen diese Techniken in der eigenen Forschung anwenden zu wollen

    Ziele der Vorlesung

  • Motivation – Anwendungsbereiche

    • Ortsaufgelöste Information bzgl. der chemischen Zusammensetzung einer biologischen Probe

    • Massenspektrometrie: – Identifizierung von Atomen, kleinen und

    großen Molekülen:

    • Medikamente , Lipide, Peptide, Proteine, Metabolite, Polymere, Kohlenhydrate,...

    – Markierungsfrei

    • Anwendungsbereiche – Verständins von biochemischen Vorgängen in

    biologischen Systemen

    – Wirkstoffentwicklung und Wirkstofflokalisierung

    – Medizinische Diagnostik

    100 kDa

  • Historische Entwicklung analytischer Messgeräte

    Protocols for Mass Microscopy, Ed. M. Setou, Springer 2010

  • S. Luxembourg, Anal. Chem. 2004, 76, 5339-5344

    Experimentelle Realisierung

  • • MALDI (matrix assisted laser desorption ionisation)

    • SIMS (secondary ion mass spectrometry)

    • DESI (desorption electrospray ionisation)

    Wichtigste MS Techniken für die bildgebende Analyse von biologischen Proben

    MALDI SIMS DESI

    Druck Vakuum Vakuum Atmospährendruck

    Massenbereich < 40 kDa < 1 kDa < 5 kDa

    Probenvorbereitung hoch mittel gering

    Ortsauflösung ~10-20 µm Sub-µm bis 50 nm ~200 µm

  • MALDI

    • Aufgabe der Matrix – Isolierung des Analyten durch Verdünnung, Verhinderung der Aggregatbildung

    – Stabilisierung des Matrix-Analyt Co-Kristalls im Vakuum

    – Absorption der Laserenergie

    – Schonender Zerfall des Co-Kristalls

    • Wichtige Matrixmaterialien – Sinapinsäure, SA (3,5-dimethoxy-4-hydroxy-Zimtsäure)

    • Geringe Löslichkeit in H2O, löslich in MeOH/ H2O sowie in polaren org. LM

    • Proteine (4-30 kDa), hohes S/N

    – CHCA (a-Cyano-4-hydroxy-Zimtsäure) • Geringe Löslichkeit in H2O, löslich in MeOH/ H2O sowie in polaren org. LM

    • Lipide und Peptide (~8 kDa)

    – DHB (2,5-dihydroxy-Benzoesäure) • löslich in H2O, sowie in MeOH/ H2O u. polaren org. LM

    • Qualität des Massenspektrums hängt von der „Qualität“ des Matrixkristalls ab

    • Lipide und Peptide (~5 kDa)

  • MALDI – Time of Flight Mass Spectrometry

    MALDI

    DESORPTION

    IONISIERUNG

    BESCHLEUNIGUNG

    TRENNUNG

    Laser

    Linear TOF

    Linearer Modus DETEKTION

    Reflectron Modus DETEKTION VERZÖGERTE EXTRAKTION (DELAYED EXTRACTION)

  • Unterschiede zu konventionellem MALDI

    • Analyten liegen nicht getrennt vor

    – Ionenunterdrückungseffekte

    – Probenvorbehandlung oftmals notwendig

    • Konzentrationsverhältnis Matrix/Analyt

    • Nicht konstante Oberflächeneigenschaften

    – Rauhigkeit

    – Permitivität der Probe

  • Orthogonale MALDI - MS

    • Apparative Trennung der Prozesse:

    – Generation von Analytionen

    – Massenanalyse

    • zB.:

  • Beispiel zum Ionenunterdrückungseffekt

    Probe jeweils 0.5 µl 100 nM ACTH Matrix: gesprayt 10 mg/ml a-CHCA in 50% ACN und 0.1% TFA

    Protocols for Mass Microscopy, Ed. M. Setou, Springer 2010

    ITO: Indium Tin Oxide (leitend)

  • Work flow für MALDI Imaging - Herausforderungen

    Schritt Herausforderung – Ziele - Kommentare

    Probennahme: dünne, gut erhaltenen (repräsentative) Probe

    Kompatibilität mit Referenzmethoden (histologischen Untersuchungen) Unterbindung von post-mortem Enzymaktivität

    Waschschritte Entfernung von Interferenten

    Zugabe von Reagentien Erhöhung der Selektivität

    MALDI Matrix Applikation Einlagerung des Analyten in den Kristall / Konzentrationsverhältnis Analyt/Matrix

    Diffusion des Analyten – laterale Auflösung

    Datenaufnahme Rasch, jedoch oft Minuten bis Stunden

    Von Daten zur Information GB bis TB Datenmenge muss reduziert werden, multivariate Methoden

    Abgleich mit Referenzinformation

  • Techniken zur Aufgabe der Matrix

    • Makrodroplets (Pipette)

    • Sprayen, manuell oder automatisch

    • Sublimation

    • Mikro/nanospotting (ChIP 1000)

  • Techniken zur Aufgabe der Matrix

    • Makrodroplets (Pipette)

    • Sprayen, manuell oder automatisch

    • Sublimation

    • Mikro/nanospotting (ChIP 1000)

  • Techniken zur Aufgabe der Matrix

    • Makrodroplets (Pipette)

    • Sprayen, manuell oder automatisch

    • Sublimation

    • Mikro/nanospotting (ChIP 1000)

    Spray Nano

    spotting Dried

    droplet

    defined

    volume & pitch size

    matrix droplet: 87pl

    Courtesy of M. Marchetti-Deschmann, S. Fröhlich

  • Messabläufe

    Extraktion des Gewebes

    Schneiden des Gewebes

    Waschen mit org. LM

    Trocknen im Vakuum

    Applikation der Matrix

    Messung

    Proteine, Peptide

    Extraktion des Gewebes

    Schneiden des Gewebes

    Applikation der Matrix

    Messung

    Kl. Moleküle • Endogene Moleküle ( zB Lipide) • Exogene Lipide (zB Medikamente)

    Applikation von Trypsin

  • Messung von Amyloid beta Peptiden in Mäsuehirnschnitten

    • Matrix: SA in 70:30 ACN/0.1% TFA und 500 fmol/µl insulin (interner Standard)

    Mech. Aging and Develop 126 (2005) 177

    Parietallappen

    Hinterhauptslappen

  • Proteine nach „enzymatischen Verdau“

    • „Molecular Scanner Approach“ – Kombination von Elektroblotting mit Enzymverdau an trypsinhältiger

    Membran

    • Applikation von Trypsinlösung vor Aufgabe der Matrix

  • Proteinidentifizierung und bildgebende Analyse von Geweben mittels MALDI TOF

    FFPE

  • Kombination von Ionenmobilitätsspektrometrie (IMS) und bildgebender Massenspektrometrie

  • Kombination von Ionenmobilitätsspektrometrie (IMS) und bildgebender Massenspektrometrie

    • IMS erlaubt das Auftrennen von Isobaren nach Substanzklassen sowie Konformeren

    • Funktionsweise

  • Kombination von Ionenmobilitätsspektrometrie (IMS) und bildgebender Massenspektrometrie

    • IMS erlaubt das Auftrennen von Isobaren nach Substanzklassen sowie Konformeren

  • Proteinidentifizierung und bildgebende Analyse von Geweben mittels MALDI - ion mobility - TOF - IMS

    „Driftscope“

  • Proteinidentifizierung und bildgebende Analyse von Geweben mittels MALDI - ion mobility - TOF - IMS

    740

    760

    m/z

    1040

    1000

    m/z

    Drift time

  • Proteinidentifizierung und bildgebende Analyse von Geweben mittels MALDI - ion mobility - TOF - IMS

    Rattenhirn (FFPE) Gefriergetrocknetes menschliches Kleinhirn

  • Proteinidentifizierung und bildgebende Analyse von Geweben mittels MALDI - ion mobility - TOF - IMS

  • Verteilung von Phosphatidylcholinen in Mäusehirn

    • Kein Waschschritt => Bildung von Na+, K+ Addukten

    • Matrix: DHB, 20 mM Kaliumazetat 70% MeOH

    J. Lipid Research 50 (2009) 1776

  • Verteilung von Phosphatidylcholinen (PCs) in Mäusehirn

    • Lokalisierung der unterschiedlichen PCs korreliert mit definierten Bereichen unterschiedlicher Funktion

    J. Lipid Research 50 (2009) 1776

  • Imaging mit TOF-SIMS

    • Ursprüngliche Hauptanwendungsgebiete: Halbleiterindustrie, Mikrolelektronik,..

    • Energetische Primärionen schlagen über Stosskaskade Material (Neutrale Moleküle, Cluster als auch Molekülionen) aus < 1 nm Probentiefe

    J. Phys. Chem. B, Vol. 104, No. 29, 2000 http://www.geobiologie.uni-goettingen.de/people/vthiel/tof_sims/index_e.shtml

  • Imaging mit TOF-SIMS

    • Emission von größeren, intakten Molekülen benötigt kollektive Bewegung der Probe (in MALDI der Matrix, in DESI der Flüssigkeit)

    • Durch den Einschlag eines Primärions wird dieser Bereich geschädigt „damage cross-section“, bei 1013 Ionen/cm2 ist ~ 1% der Oberfläche betroffen => stationäre SIMS (bei Verwendung von einatomigen Primärionen)

    • Neuerdings: Clusterionenquellen (Aun, Bin) oder polyatomige Primärionen (SF5/6), kürzlich auch C60

    • Geringere Beeinflussung unterer Schichten

  • Beispiel: Beobachtung der Verschmelzung von Membranen von Tetrahymena (Protozoon)

    50 µm 50 µm

    m/z 69 (C5H9+) m/z 184

    SEM Lichtmikroskop

    2 µm

    • Durch die hohe räumliche Auflösung (hier 200 nm) erlaubte SIMS imaging erstmals diesen Prozess beobachten zu können

    Science 305(2004)71

    Linescan

  • Beispiel: Beobachtung der Verschmelzung von Membranen von Tetrahymena (Protozoon)

    Repr. Spektrum aus Körper

    Repr. Spektrum aus Verbindungsbereich

  • 3-dimesionales Imaging mittels TOF-SIMS einer unreifen Eizelle (Xenopus laevis Oozyte)

    • Die Verwendung von C60 + Primärionen erlaubt schonendes Erodieren

    • Xenopus laevis als Modellsystem (d.: 0.8-1.3 mm), hier Untersuchung der ersten 75 µm

    • Trend zur kombinierten Verwednung von C60 + (nur zum Erodieren), und

    LMIG (liquid metal ion guns, zB Bi3+) zum imagen

    Current Opinion in Chemcial Biology 15 (2011) 733

  • Prinzip von Desorption Electrospray Ionization (DESI) Mass Spectrometry

    • kann bei Normaldruck betrieben werden

    • Je nach Analyt Wahl des LM Systems (MeOH:H2O, ACN:H2O)

    • Einsatz: Lipidanalyse, Screening

  • Beispiel: Aufnahme von „latenten“ Fingerabdrücken

    A Fingerabdruck von Kokain C „normaler“ Fingerabdruck

    Science 2008 (321) 805

    Die Autoren behaupten so auch überlagernde Fingerabdrücke noch lesen zu könnnen da man sich auf unterschiedliche m/z Werte konzentrieren kann.

  • Zusammenfassung

    MALDI SIMS DESI

    Druck Vakuum Vakuum Atmospährendruck

    Massenbereich < 40 kDa < 1 kDa < 5 kDa

    Probenvorbereitung hoch mittel gering

    Ortsauflösung ~10-20 µm Sub-µm bis 50 nm ~200 µm

    • Aufwendige, teure Gerätetechnik welche ortsaufgelöst die chemische Zusammensetzung einer biologischen Probe ermitteln kann

    • Es können je nach gerätetechnischem Aufwand fast beliebig viele Moleküle identifiziert werden -> Qualitative Information

    • Derzeit ist es jedoch noch schwer verläßliche quantitative Information zu erhalten

    • Aus Daten muss Information und dann noch Wissen gewonnen werden

    • Wichtige zukunftsweisende Techniken in der modernen (bio)chemischen und medizinischen Forschung

    • Sehr dynamische Entwicklungen neuer Messgeräte