39
24/03/2015 1 Innovation Intelligence ® Info-Tag Strukturmechanik Christian Alscher Kristian Holm Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved. 9:00 Registrierung und Kaffee 9:30 Begrüßung Überblick: Aufgabenstellungen in der Strukturmechanik Kaffeepause Thermisch-mechanische Analyse am Beispiel eines Motorblocks Materialmodellierung für unterschiedliche Werkstoffe Strukturberechnung mit MKS-Lastbestimmung 13:00 Mittagessen Composites: Modellaufbau, Berechnung und Auswertung Workflow für Schwingungs- und Akustikanalysen Möglichkeiten zur Strukturoptimierung Diskussion Agenda

ALTAIR Info-Tag Strukturmechanik 2015-3-24

Embed Size (px)

DESCRIPTION

composite, finite element, ALTAIR HyperMesh, ALTAIR HyperWorks, laminate optimization

Citation preview

Page 1: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

1

Innovation Intelligence®

Info-Tag Strukturmechanik

Christian Alscher

Kristian Holm

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

9:00 Registrierung und Kaffee

9:30 Begrüßung

Überblick: Aufgabenstellungen in der Strukturmechanik

Kaffeepause

Thermisch-mechanische Analyse am Beispiel eines Motorblocks

Materialmodellierung für unterschiedliche Werkstoffe

Strukturberechnung mit MKS-Lastbestimmung

13:00 Mittagessen

Composites: Modellaufbau, Berechnung und Auswertung

Workflow für Schwingungs- und Akustikanalysen

Möglichkeiten zur Strukturoptimierung

Diskussion

Agenda

Page 2: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

2

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• High stiffness to weight ratio!

• Tailored properties!

• Fibers can be aligned to provide directional stiffness

• Thermal expansion control• Vibrational damping

• Desirable Material Properties!

• Fatigue and corrosion resistance

• Design and manufacturing flexibility:

fewer parts!

Concrete Carbon

Design Challenge:• High Number of Variables• Orthotropic Material Properties• Orientation of the Ply Angles• Stacking Sequence

Why Composites?

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Each layer with at least one solid

• Large model, long CPU time

• High accuracy

• Mixed approach (middle layer thick)

• Shells for top and bottom layer

• Solid, thick shell or coehesive for middle layer

• Several solid layers to provide rotation

• Sandwich shell approach

• One shell element through the thickness

• Multiple layers, with different materials

solid

solid shell

shell

Modeling Techniques for Composites

Page 3: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

3

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• One property required for each ply drop/add (i.e. Zone)

• Properties are not linked across zones ���� Data duplication, No Direct Ply Shape

• No direction relationship to manufacturing process

• Example:

Plate requires three property tables

with repeating ply definitions

Delete P4 requires three updates

Zone 1 Zone 2 Zone 3 Zone 2 Zone 1

Zone 1 – Property Table

Ply Mat Thk Theta

P7 M1 0.01 45

P4 M1 0.01 0

P1 M1 0.01 45

Zone 2 – Property Table

Ply Mat Thk Theta

P7 M1 0.01 45

P5 M1 0.01 -45

P4 M1 0.01 0

P3 M1 0.01 -45

P1 M1 0.01 45

Zone 3 – Property Table

Ply Mat Thk Theta

P7 M1 0.01 45

P6 M1 0.01 90

P5 M1 0.01 -45

P4 M1 0.01 0

P3 M1 0.01 -45

P2 M1 0.01 90

P1 M1 0.01 45

P1 45P2 90

P3 -45

P4 0

P6 90P7 45

P5 -45

Composite Modeling Intro: Zone Based

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• One stack (property) required per part

• A stack defines zones via ply shape definitions ���� No Data Duplication

• Direction relationship to manufacturing process

• Example:

Plate requires seven ply definitions,

no repeating plies, each ply shape defined

Stacking plies automatically defines zones

Delete P4 requires only one update

P1 45P2 90

P3 -45

P4 0

Zone 1 Zone 2 Zone 3 Zone 2 Zone 1

P6 90P7 45

P5 -45

Stack Table

Ply Mat Thk Theta

P7 M1 0.01 45

P6 M1 0.01 90

P5 M1 0.01 -45

P4 M1 0.01 0

P3 M1 0.01 -45

P2 M1 0.01 90

P1 M1 0.01 45

Ply Based Composite Modeling

Page 4: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

4

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Integrated into HyperMesh via Model Browser Dialogs

Ply Based Composite Modeling

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Objective: Visually verify engineering data associated with math model

• “Live” 3D representation of 1D/2D elements w/ or w/o layers

• Color “by thickness”

• Element normal

• Material direction

• Ply orientations

• Ply expansion

Composite Visualization

Page 5: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

5

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Individual Ply Results

• Strain Tensor Components

• Stress Tensor Components

• Principal Strain/Stress

• Failure Theories (Maximum

Strain, Hoffman, Tsai-Hill, Tsai-

Wu)

• Envelope Ply Results

• Min/Max/Extreme

• Sum/Average/Range (12.0)

• Identify Min/Max/Extreme Layer

Ply-Based Post-Processing

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

HyperWorks Solvers

Thermal and CFD

Highly Nonlinear

CrashSafety

Forming

Multi-bodyDynamics

OptiStruct RADIOSS MotionSolve AcuSolve

Optimization

Smart Multiphysics

FEKO

Electro-Magnetics

Statics

NVH

Thermal

Nonlinear

Page 6: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

6

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Phase 1: Concept

Free-Size

Phase 2: Dimension

Size

Phase 3: Sequence

Shuffle

OptiStruct: Composite Optimization

• Objective: minimize mass (failure index, …)• Constraint: displacement (stress, …)• Manufacturing constraints:

• Min. and max. total laminate thickness• Min. and max. ply thickness• Min. and max. percentage of a fibre orientation• Linkage of thicknesses of plies• Constant thickness for a particular ply orientation

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Phase 1: ConceptQ: Which fibre angles do I need where?A: Free-Size-Optimization creates a thickness

distribution for each fibre angle.

Phase 2: DimensionQ: How many plies of each shape do I need?A: Discrete Size-Optimization calculates optimal

number of each ply shape of each fibre angle.

Phase 3: SequenceQ: I which order do I have to stack the plies?A: Shuffle-Optimization finds optimal stacking order

under consideration of ply book rules.

Phase 1: Concept

Free-Size

Phase 2: Dimension

Size

Phase 3: Sequence

Shuffle

OptiStruct: Composite Optimization

Page 7: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

7

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Initial Design

Final Design

Composite Free-Size OptimizationWhat are the most efficient ply shapes?

Composite Size OptimizationHow many plies of each ply shape to meet engineering targets?

Composite ShufflingWhat is the exact stacking sequence to meet

manufacturing requirements?

Ply SlicingDetermines ply shapes

OptiStruct: Composite Optimization

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Finite element model representation

Optimal shapes/patches: free size optimization

Optimal number and thickness of plies: sizing

optimization

Ply stacking sequence optimization

�Peak failure index reduction: 20%�Displacement constraint satisfied�Minimum reserve factor met

Optimization of a Composite Sports Car Wing

Page 8: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

8

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

HyperWorks Solvers

Thermal and CFD

Highly Nonlinear

CrashSafety

Forming

Multi-bodyDynamics

OptiStruct RADIOSS MotionSolve AcuSolve

Optimization

Smart Multiphysics

FEKO

Electro-Magnetics

Statics

NVH

Thermal

Nonlinear

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

RADIOSS - DALLARA Race cars design

Page 9: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

9

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

RADIOSS - DALLARA Race cars design

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Model: Helicopter floor structure

• Objective: Improve survivability of cabin crew under crash landing

• Loading: Crash landing Vi= 3-10 m/s

Helicopter Survivability

Page 10: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

10

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Helicopter Survivability

• Model: Helicopter floor structure

• Objective: Improve survivability of cabin crew under crash landing

• Loading: Crash landing Vi= 3-10 m/s

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Partner Caterham Composites

Lotus T127 Formel 1 Simulation dynamischer Seitencrash

Page 11: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

11

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Gegenstand der Untersuchung

Seitencrash-Absorber aus Kohlenstofffaser-Kunststoff-Verbund

Laminatmaterial

• 2x2 Twill Gewebe

Paul Schischkin

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Gegenstand der Untersuchung

Realversuch Seitencrash: Vorher-Nachher-Vergleich

Paul Schischkin

Page 12: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

12

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Modellaufbau

Solver: RADIOSS V12.0.210

Vernetzung der Geometrie:

• Grundlage: CAD-Model

• 5x5mm 4-Knoten-Schalenelemente (quads)

• eine Schale pro Laminatdicke

• Anzahl: insgesamt ca. 7500 Elemente

Paul Schischkin

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Modellaufbau

Elementeigenschaften (properties):

• Definition des Laminataufbaus durch den

Sandwich Schalen Ansatz

• Jede property erhält Informationen zu Anzahl

der Lagen, sowie ihre jeweilige Position, Dicke,

Orientierung und Material

Paul Schischkin

Page 13: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

13

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Modellaufbau

Materialmodell:

Elasto-plastisch-orthotrop (exemplarisch)

Zugrichtung

Druckrichtung

Paul Schischkin

Zugrichtung

Druckrichtung

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/COMPSH/10

Altair composite material

# Init. dens. Ref. dens.

1.5000E-6 0

# E11 E22 NU12 IFLAG E33

42 40 .05 1 0.50

# G12 G23 G31 EPSF1 EPSF2

3.4 3 3 0 0

# ESPT1 EPSM1 EPST2 EPSM2 Dmax

0 0 0 0 .9999

# Wpmax Wpref Ioff

0 0 5

# C EPS ALPHA Icc

0 0 0 0

# sig_trac_1 B_1T N_1T SIGMA_1MAXT C_1T

0.1 25 .10 0 0

# EPS_1T1 EPS_2T1 SIGMA_RST1 Wpmax_trac_1

0 0 0 0

# sig_trac_2 B_2T N_2T SIGMA_2MAXT C_2T

0.1 20 .10 0 0

# EPS_1T2 EPS_2T2 SIGMA_RST2 Wpmax_trac_2

0 0 0 0

# sig_comp_1 B_1C N_1C SIGMA_1MAXC C_1C

.0050 2000 .5 0 0

# EPS_1C1 EPS_2C1 SIGMA_RSC1 Wpmax_comp_1

0 0 0 0

# sig_comp_2 B_2C N_2C SIGMA_2MAXC C_2C

.0050 2000 .5 0 0

# EPS_1C2 EPS_2C2 SIGMA_RSC2 Wpmax_comp_2

0 0 0 0

# sig_12 B_12T N_12T SIGMA_12MAXT C_12T

.0040 83.0 .31 0 0

# EPS_1T12 EPS_2T12 SIGMA_RST12 Wpmax_trac_12

0.075 0.085 0.05 0

# GAMMA_INI GAMMA_MAX Dmax

1E31 1E31 .9999

# Fsmooth Fcut

0 0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Radioss Composite Material Model

Linear

Nonlinear

Page 14: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

14

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/COMPSH/10

Altair composite material

# Init. dens. Ref. dens.

1.5000E-6 0

# E11 E22 NU12 IFLAG E33

42 40 .05 1 0.50

# G12 G23 G31 EPSF1 EPSF2

3.4 3 3 0 0

# ESPT1 EPSM1 EPST2 EPSM2 Dmax

0 0 0 0 .9999

# Wpmax Wpref Ioff

0 0 5

# C EPS ALPHA Icc

0 0 0 0

# sig_trac_1 B_1T N_1T SIGMA_1MAXT C_1T

1e+30 0 0 0 0

# EPS_1T1 EPS_2T1 SIGMA_RST1 Wpmax_trac_1

0 0 0 0

# sig_trac_2 B_2T N_2T SIGMA_2MAXT C_2T

1e+30 0 0 0 0

# EPS_1T2 EPS_2T2 SIGMA_RST2 Wpmax_trac_2

0 0 0 0

# sig_comp_1 B_1C N_1C SIGMA_1MAXC C_1C

1e+30 0 0 0 0

# EPS_1C1 EPS_2C1 SIGMA_RSC1 Wpmax_comp_1

0 0 0 0

# sig_comp_2 B_2C N_2C SIGMA_2MAXC C_2C

1e+30 0 0 0 0

# EPS_1C2 EPS_2C2 SIGMA_RSC2 Wpmax_comp_2

0 0 0 0

# sig_12 B_12T N_12T SIGMA_12MAXT C_12T

.0040 67.0 .29 0 0

# EPS_1T12 EPS_2T12 SIGMA_RST12 Wpmax_trac_12

0.00 0.00 0.00 0

# GAMMA_INI GAMMA_MAX Dmax

1E31 1E31 .9999

# Fsmooth Fcut

0 0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Composite Material Model: Yield Stress

Yield Stress

(((( )))) 1====σσσσF

1σσσσ

2σσσσ

t

1σσσσc

1σσσσ

c

2σσσσ

t

2σσσσ

t

12σσσσ

c

12σσσσ

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/COMPSH/10

Altair composite material

# Init. dens. Ref. dens.

1.5000E-6 0

# E11 E22 NU12 IFLAG E33

42 40 .05 1 0.50

# G12 G23 G31 EPSF1 EPSF2

3.4 3 3 0 0

# ESPT1 EPSM1 EPST2 EPSM2 Dmax

0 0 0 0 .9999

# Wpmax Wpref Ioff

0 0 5

# C EPS ALPHA Icc

0 0 0 0

# sig_trac_1 B_1T N_1T SIGMA_1MAXT C_1T

1e+30 0 0 0 0

# EPS_1T1 EPS_2T1 SIGMA_RST1 Wpmax_trac_1

0 0 0 0

# sig_trac_2 B_2T N_2T SIGMA_2MAXT C_2T

1e+30 0 0 0 0

# EPS_1T2 EPS_2T2 SIGMA_RST2 Wpmax_trac_2

0 0 0 0

# sig_comp_1 B_1C N_1C SIGMA_1MAXC C_1C

1e+30 0 0 0 0

# EPS_1C1 EPS_2C1 SIGMA_RSC1 Wpmax_comp_1

0 0 0 0

# sig_comp_2 B_2C N_2C SIGMA_2MAXC C_2C

1e+30 0 0 0 0

# EPS_1C2 EPS_2C2 SIGMA_RSC2 Wpmax_comp_2

0 0 0 0

# sig_12 B_12T N_12T SIGMA_12MAXT C_12T

.0040 67.0 .29 0 0

# EPS_1T12 EPS_2T12 SIGMA_RST12 Wpmax_trac_12

0.00 0.00 0.00 0

# GAMMA_INI GAMMA_MAX Dmax

1E31 1E31 .9999

# Fsmooth Fcut

0 0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Composite Material Model: Plasticity

Plasticity, Strain Rates

Page 15: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

15

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

/MAT/COMPSH/10

Altair composite material

# Init. dens. Ref. dens.

1.5000E-6 0

# E11 E22 NU12 IFLAG E33

42 40 .05 1 0.50

# G12 G23 G31 EPSF1 EPSF2

3.4 3 3 0 0

# ESPT1 EPSM1 EPST2 EPSM2 Dmax

0 0 0 0 .9999

# Wpmax Wpref Ioff

0 0 5

# C EPS ALPHA Icc

0 0 0 0

# sig_trac_1 B_1T N_1T SIGMA_1MAXT C_1T

1e+30 0 0 0 0

# EPS_1T1 EPS_2T1 SIGMA_RST1 Wpmax_trac_1

0 0 0 0

# sig_trac_2 B_2T N_2T SIGMA_2MAXT C_2T

1e+30 0 0 0 0

# EPS_1T2 EPS_2T2 SIGMA_RST2 Wpmax_trac_2

0 0 0 0

# sig_comp_1 B_1C N_1C SIGMA_1MAXC C_1C

1e+30 0 0 0 0

# EPS_1C1 EPS_2C1 SIGMA_RSC1 Wpmax_comp_1

0 0 0 0

# sig_comp_2 B_2C N_2C SIGMA_2MAXC C_2C

1e+30 0 0 0 0

# EPS_1C2 EPS_2C2 SIGMA_RSC2 Wpmax_comp_2

0 0 0 0

# sig_12 B_12T N_12T SIGMA_12MAXT C_12T

.0040 67.0 .29 0 0

# EPS_1T12 EPS_2T12 SIGMA_RST12 Wpmax_trac_12

0.00 0.00 0.00 0

# GAMMA_INI GAMMA_MAX Dmax

1E31 1E31 .9999

# Fsmooth Fcut

0 0

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Composite Material Model: Damage and Failure

Damage & Failure

plastic work

Wp

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Failure models can be coupled with compatible material laws

Composite Material Model: Advanced Failure Models

Page 16: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

16

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Puck failure criteria

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Ergebnisse Paul Schischkin

Page 17: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

17

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Ergebnisse Paul Schischkin

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Ergebnisse Paul Schischkin

Page 18: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

18

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

CAE Process Chain

Phase 1:Free-Size

Optimisation

Phase 2:Sizing

Optimisation

Phase 3:Shuffle

Optimisation

Manufacturing and Design

ManufacturingSimulation

What is known ?

• Manufacturing process• Design idea• Available material (fabric, UD-layers, fiber/matrix)• Possible fiber orientations

In addition, we can answer:

• Is it possible to manufacture my design at all?• What is the influence of the manufacturing on the fiber orientation?• Do I have local thickenning or thinning?

What is not known ?

• Distribution of material and fiber orientation • Final lay-up of the laminate

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

HyperMesh: Drape Estimator for Composite Fibers

• Calculate draping angles and thickness variation

• Geometry based, very fast (seconds)

• Good estimation for deviation of the fiber oriention,

but feedback on manufacturability only indirect

material/fiberdirection

Page 19: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

19

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Radioss: Draping Simulation

Sandwich method

1 Component1 Material1 Property

Sandwich material law

• All plies defined in the same property

Independant layers method

1 Component for each Ply1 Material for each Ply1 Property for each Ply

Fabric material law

• All layers definedindependently

• Contact interface betweenthe layers

Setup in HyperFormuser process

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Sliding

• Sliding effect between layers can be modeled by contact interface

• Each layer is free to slide over other layers

• In this example, fiber orientaions are 0, +45, 90 and -45°regarding X axis

• The behavior during stamping is different for each layer

Radioss: Independent Layers Simulation

Page 20: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

20

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Fiber orientation

• The rotation of fibers for each layer can be displayed in HV

Sandwich Method

Composite Forming

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Radioss: Independent Layers with Resin

Independant layers + resin method

Connect material is used to model resin :

• A plasticity domain is reached after a small yield stress value• Strain rate dependancy available for user defined curves

Independent FiberLayers

Shell elements

Warm ResinSolid elements

Fibers + ResinShell + solid withcoincident nodes

Page 21: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

21

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Altair Partner Alliance: Composites Offering

The composite offering from the Altair Partner Alliance reaches across many applications.

Working in tandem with OptiStruct and RADIOSS, material modeling, failure modeling,

optimization with failure constraints, composite panel analysis and composite panel detail

stress analysis can all be performed effectively.

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

9:00 Registrierung und Kaffee

9:30 Begrüßung

Überblick: Aufgabenstellungen in der Strukturmechanik

Kaffeepause

Thermisch-mechanische Analyse am Beispiel eines Motorblocks

Materialmodellierung für unterschiedliche Werkstoffe

Strukturberechnung mit MKS-Lastbestimmung

13:00 Mittagessen

Composites: Modellaufbau, Berechnung und Auswertung

Workflow für Schwingungs- und Akustikanalysen

Möglichkeiten zur Strukturoptimierung

Diskussion

Agenda

Page 22: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

22

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Workflow für Schwingungs-und Akustikanalysen

HyperWorks Solver Technology

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Noise and Vibration - workflow

Thermal and CFD

Highly Nonlinear

CrashSafety

Forming

Multi-bodyDynamics

OptiStruct RADIOSS MotionSolve AcuSolve

Optimization

Smart Multiphysics

FEKO

Electro-Magnetics

Statics

NVH

Thermal

Nonlinear

Page 23: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

23

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Model Build

Analysis Root Cause Analysis

SensitivityFocused

Optimisation

MDO

ValidationDelivery

- Modular Construction

- Flexible Assembly

- Parametric

- Reporting- Targets / Metrics- Model reduction- Rating /

Appraisal

- TPA- Participation- Force vs TFs- Test forcing

- What if- Sensitivity- Robustness- DOE

- Correlation- Performance- Issue Resolution- Mass / Cost

- Size- Gauge- Shape- Topography- ERP

- Common Model Parameters

- Design Constraints

Noise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Efficiency gains through integration

61

Page 24: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

24

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Improve simulation efficiency

CMS super element method

� Reduction of degrees of freedom

� Structural/Fluid or Combined Fluid-Structural SE

� Both Craig-Chang and Craig-Bampton methods

� General Method (combined free and fixed

attachment points)

� Participation factors (PFCMS)

FRF based super element

� Compliments CMS based approach

� Faster residual run solution in the medium

frequency range (up to 500 Hz)

� component dynamic stiffness (CDS) - OptiStruct

AMSES (Automatic Multilevel Substructuring

Eigen Solver) - OptiStruct

Noise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• CDS superelement technology in OptiStruct

• Reduces runtimes for variants to seconds

NVH parametric study (e.g. bushings)

overnight

Noise and Vibration - workflow

Page 25: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

25

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Model Build

Analysis Root Cause Analysis

SensitivityFocused

Optimisation

MDO

ValidationDelivery

- Modular Construction

- Flexible Assembly

- Parametric

- Reporting- Targets / Metrics- Model reduction- Rating /

Appraisal

- TPA- Participation- Force vs TFs- Test forcing

- What if- Sensitivity- Robustness- DOE

- Correlation- Performance- Issue Resolution- Mass / Cost

- Size- Gauge- Shape- Topography- ERP

- Common Model Parameters

- Design Constraints

Noise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Problem Response

What’s Moving?

What If…?

Which Mode?

Which Panel?

Which Paths?

What Power Flow?

What DSA?What

Energy?

Noise and Vibration - workflow

Page 26: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

26

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Diagnostic tools

Vib

ratio

nN

oise

Low Frequency Mid Frequency

Transfer Path AnalysisGrid participation

Energy consideration

Power Flow

Design Sensitivity Analysis

Modal participation

N&

VNoise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Noise and Vibration - workflow

Sensitivity filtering

� Optimization on all possible parameters in full vehicle model is to large

� Detection of sensitive components or parameters (use normalized variables)

� Size variables; gauge, stiffness, damping, materials

Page 27: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

27

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Model Build

Analysis Root Cause Analysis

SensitivityFocused

Optimisation

MDO

ValidationDelivery

- Modular Construction

- Flexible Assembly

- Parametric

- Reporting- Targets / Metrics- Model reduction- Rating /

Appraisal

- TPA- Participation- Force vs TFs- Test forcing

- What if- Sensitivity- Robustness- DOE

- Correlation- Performance- Issue Resolution- Mass / Cost

- Size- Gauge- Shape- Topography- ERP

- Common Model Parameters

- Design Constraints

Noise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Frequencies

• FRF

• Forces, Stress, von-Mises Stress

• Functions: max, average, sum, …

• Normal displacement, velocity, acceleration,

• Frequency sub-ranges

• Mode shape

• PSD and RMS of displacement, velocity, acceleration, pressure, stress, strain

• Acoustic pressure

• ERP (Equivalent Radiated Power)

• Equations

• External routines (DRESP3 -> Fortran, C, HyperMath)

Noise and Vibration - workflow

Page 28: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

28

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

� Min(max)

� Min (max) with frequency sub ranges

� System identification

mjg

T

Txfwwith

or

mjg

T

Txfw

j

i

iii

j

n

i i

iii

,,10)(: Subject to

)( : Minimize

,,10)(: Subject to

)(: Minimize

1

2

K

K

=≤

≤−

=≤

−∑

=

x

x

ββ

[ ]mjg

ffixd

j

ni

,,10)(: Subject to

,...,)(max: Minimize 0

K=≤

=

x

[ ]mjg

ffixd

j

subsubi

,,10)(: Subject to

,...,)(max: Minimize 21

K=≤

=

x

Curve Fitting

Noise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

� Trimmed body optimisation using screening techniques

TPA Result (Vehicle Model)

+

Full FE Tbdy Model

Panel Participation Plot at peak frequencyModal Participation

Identify peaks

Component Gauge + Topography optimisation

Panel Set as design Variables

Noise and Vibration - workflow

Page 29: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

29

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

� Trimmed body optimisation using screening techniques

Response Curves

� Minimise Mass with constraint on Response (157Hz)

� 3dB improvement at peak of interest

� 40% reduction in mass of panel set

� Topography result to lead bead pattern design loop

� 35hr Run time for 30 iterations (12 cpus, AMSES)

Gauge Results

Topography Results

Noise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Use topology optimisation to design an efficient

engine cover

• Minimise radiated noise for a given volume of

material:

• Equivalent radiated power

• Σ area * normal velocity2 * constant

• Use CMS superelement of non-designable

structure

Designable Material

12400 nodes included in ERP response

Noise and Vibration - workflow

Page 30: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

30

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

• Concept design for internal reinforcement

structure

• Optimised structure reduces ERP by 30%

• Run time 2.5hrs (laptop)

• Memory 8Gb

Noise and Vibration - workflow

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Fast and Accurate Analysis

Model Quality – Flexibility – Time Reduction

Root Cause Understanding

Problem Diagnostics – Transfer Path – Sensitivity

Robust Optimization Algorithms and Processes

Problem Definition – Method selection – Reduction Techniques –

Multi Disciplinary

Analysis Root Cause Analysis

SensitivityFocused

Optimisation

MDO

ValidationDeliveryModel

Build

OptiStructHyperStudy

Noise and Vibration - workflow

Page 31: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

31

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

9:00 Registrierung und Kaffee

9:30 Begrüßung

Überblick: Aufgabenstellungen in der Strukturmechanik

Kaffeepause

Thermisch-mechanische Analyse am Beispiel eines Motorblocks

Materialmodellierung für unterschiedliche Werkstoffe

Strukturberechnung mit MKS-Lastbestimmung

13:00 Mittagessen

Composites: Modellaufbau, Berechnung und Auswertung

Workflow für Schwingungs- und Akustikanalysen

Möglichkeiten zur Strukturoptimierung

Diskussion

Agenda

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Möglichkeiten zur Strukturoptimierung

HyperWorks Solver Technology

Page 32: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

32

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Cost

Weight

Performance

Performance / Weight / Cost Balancing

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Optimization enhances the comprehensible Design Space

New Weight Target

PhysicalDesign Limit

Compreh.Design Limit

Current DesignPoint

Weight

Perf

orm

an

ce

Effort / Cost

Weight

Optimization

Page 33: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

33

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Structural Optimization

Thermal and CFD

Highly Nonlinear

CrashSafety

Forming

Multi-bodyDynamics

OptiStruct RADIOSS MotionSolve AcuSolve

Optimization

Smart Multiphysics

FEKO

Electro-Magnetics

Statics

NVH

Thermal

Nonlinear

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Structural Optimization

OptiStruct

HyperStudy

Syst

em

Le

ve

l

C

om

po

ne

nt

Leve

l

Concept Design Detailed Design

INSPIRE

Page 34: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

34

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

NVH Optimisation Methodology C

once

pt P

hase

Det

aile

d D

esig

n

System Level Subsystem/Component Level

TopologyHigh number of DV

Global stiffness responsesDesign Space

SizeMedium number of DV

NVH responsesConcept Model

Topology/TopographyHigh number of DV

NVH responsesReduced Model

Size/ShapeLow number of DV

NVH responsesReduced ModelSize/Shape

Medium number of DV NVH responsesDetailed Model

Body Gauge Reduce mass

Topography Panel Acoustic Response

Size/Shape Mount LocationsMode Tracking

Topology Concept Structure and

loadpath definition

FreeSizeHighlight reinforcement

patterns

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Optimization – State of the Art Technology Today

..... ..... .....

15% 20%.....

23%

Calculating weight saving Calculating weight savingCalculating weight saving

FE-Based optimization technology

topology, topography, sizing, shape,

staking, free-shape, multi-disciplinary...

Page 35: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

35

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Moving in Direction of Strategic Optimization

What is strategic optimization?

1. Simultaneous consideration of all important functional

requirements

2. Application on subsystems, systems and global level

3. Deployment of optimization early in development

(Optimization drives Design)

4. Direct connection to development program

(and mass)

(management)

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Optimization of Assemblies – getting Strategic!

.....Calculating weight saving .....Calculating weight saving

20% 45%

FE-Based optimization technology

topology, topography, sizing, shape,

staking, free-shape, multi-disciplinary...

Page 36: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

36

86

Optimization of Assemblies

• Multi-model optimization (MMO) aims to simultaneously optimize

multiple parts or configurations with common design variables

• Simplify the iterative design process associated with optimizing multiple

parts, especially when conflicting requirements exist

• Models may be entirely different or share identical parts

• Models may be assigned individual objectives and constraints, while

global responses may also be defined

• Performance and scalability are taken into consideration

87

Optimization of Assemblies

• Similar models with different meshes

(e.g. coarse and fine)

• Similar models with subcase-dependent

configurations or characteristics (e.g.

damping)

• Different models sharing identical

designable parts

• Different models connected at

designable locations

• Different models with combined

objectives or constraints

• Any combination of the above

W1 W2

min (W1+W2)

Page 37: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

37

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Single Model Optimization Multi-Model OptimizationOptimization Problem

OptiStruct: Multi-Model Optimization

Optimization of Assemblies

Copyright © 2013 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

95%

100%

105%

110%

115%

120%

125%

130%

135%

140%

93% 94% 95% 96% 97% 98% 99% 100% 101% 102%

Tors

ion

Mo

de

(H

z)

BIW Weight (Kg)

Modal Performance v BIW Weight

Target

Optimum Modal

Performance versus

Weight

Optimization of Assemblies

Require Major Architectural

Changes

Risk

• Modal Performance versus Weight Study

• Study creates visibility on relations between performance and weight

• Example is showing a design limit not known to customer

Page 38: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

38

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Optimization - Fundamentals

Robust and Repeatable Analysis

Predict the Trend

Fast and Accurate Analysis

Performance and Scalability

Robust Optimization Algorithms and Processes

Convergence and Efficiency

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Altair Solver Technology

Multiphysics Analysis and Optimization

Structural Analysis

Manufacturing Simulation

Systems Simulation

Fluid Dynamics

ThermalAnalysis

Crash, Safety, Impact & Blast

Electro-Magnetics

Page 39: ALTAIR Info-Tag Strukturmechanik 2015-3-24

24/03/2015

39

Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Altair HyperWorks: Performance Enhancing Software