4
This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz. Differential Thermal Analysis under Pressure on Cyanocyclohexane, 1,2,3,4-Tetrahydro-5,6-dimethyl-1,4-methanonaphthalene, and 2-Methyl-2-propanol J. Reuter, T. Brückert, and A. Würflinger Lehrstuhl für Physikalische Chemie II, University of Bochum, D-4630 Bochum 1, Germany Z. Naturforsch. 48a, 705-708 (1993); received March 10, 1993 Differential thermal analysis has been performed on cyanocyclohexane (CCH), 1,2,3,4-tetrahydro- 5,6-dimethyl-1,4-methanonaphthalene (TDMN), and 2-methyl-2-propanol (t-butanol) up to 300 MPa. The latter compound was also investigated dielectrically. CCH displays an ODIC phase that transforms only reluctantly to the low-temperature stable phase II. Annealing under pressure can appreciably accelerate this transformation. For all three compounds the phase diagrams were established. For CCH and TDMN also the pressure dependence of the glass transition has been determined. Key words: High pressure; DTA; Phase transitions; Glass transition; Dielectric constant. 1. Introduction Globular molecules are well-known candidates for "plastic crystals" [1]. Due to the ease of rotational motions in the solid state they form orientationally disordered phases (ODIC). These crystals exhibit low values for the entropy of fusion, whereas large en- thalpy and volume changes are observed at an order disorder transition. Cyanocyclohexane (CCH) is a typical representative that has attracted much atten- tion in the past [2]. This compound can be readily undercooled to the glassy state, but it crystallizes to the low-temperature stable phase II only reluctantly. Also 2-methyl-2-propanol (t-butanol) is of approxi- mately globular shape, and in fact it displays several solid state transitions [3]. However, its phase situation is not yet clear. l,2,3,4-tetrahydro-5,6-dimethyl-l,4- methanonaphthalene (TDMN) is a new compound that was recently synthesized and characterized by 13 C-NMR [4, 5]. In order to get more insight in the phase behaviours of these three compounds we per- formed a detailed DTA study. 2. Experimental For details of the high pressure equipment used for the DTA [6, 7] and the dielectric measurements [8, 9] Reprint requests to Prof. Dr. A. Würflinger, Physikalische Chemie II, Universität Bochum, W-4630 Bochum 1, FRG. cf. the citations. CCH (97.0%) was obtained from Merck, Germany, and purified with preparative gas chromatography. Tertiary butanol was obtained from Aldrich, dried with molecular sieve and distilled under a high reflex ratio, after which the purity was 99.8%. TDMN was synthesized by Andreas Dölle [4] and analysed by gas chromatography. 3. Results 3.1. Cyanocyclohexane The phase diagram is presented in the Fig. 1, show- ing also the pressure dependence of the glass transition (T g ). The DTA signal due to the glass transition was very small and therefore detectable only in a limited pressure range, just sufficient to determine the initial slope dT g /dp. As mentioned in the Introduction, it is extremely difficult to crystallize CCH in the low-tem- perature phase II. In a previous DSC study the crys- tallization was not achieved at all [2]. Using adiabatic calorimetry the same group succeeded in getting the phase II after a tedious annealing procedure [10]. The formation of the phase II can be significantly acceler- ated by the application of pressure [11]. It is advan- tageous to employ the following procedure: first to pressurize at room temperature, then to cool down and anneal under pressure, to decompress and to heat up at ambient pressure. Such a "detour" reduces the annealing time to a few hours, as opposed to thermal treatment of several days in atmospheric pressure 0932-0784 / 93 / 0500-717 $ 01.30/0. - Please order a reprint rather than making your own copy.

Differential Thermal Analysis under Pressure on ...zfn.mpdl.mpg.de/data/Reihe_A/48/ZNA-1993-48a-0705.pdf · J. Reuter et al. Differential Thermal Analysis under Pressure on Cyanocyclohexane

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution4.0 International License.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschungin Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung derWissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:Creative Commons Namensnennung 4.0 Lizenz.

Differential Thermal Analysis under Pressure on Cyanocyclohexane, 1,2,3,4-Tetrahydro-5,6-dimethyl-1,4-methanonaphthalene, and 2-Methyl-2-propanol J. Reu t e r , T. Brücke r t , a n d A . W ü r f l i n g e r Lehrstuhl für Physikalische Chemie II, University of Bochum, D-4630 Bochum 1, Germany

Z. Naturforsch. 48a, 705-708 (1993); received March 10, 1993

Differential thermal analysis has been performed on cyanocyclohexane (CCH), 1,2,3,4-tetrahydro-5,6-dimethyl-1,4-methanonaphthalene (TDMN), and 2-methyl-2-propanol (t-butanol) up to 300 MPa. The latter compound was also investigated dielectrically. CCH displays an O D I C phase that transforms only reluctantly to the low-temperature stable phase II. Annealing under pressure can appreciably accelerate this transformation. For all three compounds the phase diagrams were established. For CCH and T D M N also the pressure dependence of the glass transition has been determined.

Key words: High pressure; DTA; Phase transitions; Glass transition; Dielectric constant.

1. Introduction

G l o b u l a r molecu le s a r e w e l l - k n o w n c a n d i d a t e s fo r "p las t ic c rys ta l s" [1]. D u e to the ease of r o t a t i o n a l m o t i o n s in the sol id s t a t e they f o r m o r i e n t a t i o n a l l y d i so rde red p h a s e s ( O D I C ) . These c rys ta l s exhib i t l o w va lues for the e n t r o p y of fus ion , w h e r e a s la rge en -t h a l p y a n d v o l u m e c h a n g e s a re o b s e r v e d a t a n o r d e r d i so rde r t r ans i t ion . C y a n o c y c l o h e x a n e ( C C H ) is a typical r epresen ta t ive t h a t has a t t r a c t e d m u c h a t t e n -t ion in the pas t [2]. T h i s c o m p o u n d c a n be read i ly u n d e r c o o l e d to t he glassy state, b u t it crysta l l izes t o t he l o w - t e m p e r a t u r e s tab le p h a s e I I on ly r e luc tan t ly . Also 2 - m e t h y l - 2 - p r o p a n o l ( t - bu t ano l ) is of a p p r o x i -m a t e l y g lobu la r shape , a n d in fact it d i sp lays severa l sol id s ta te t r a n s i t i o n s [3]. H o w e v e r , i ts p h a s e s i t u a t i o n is n o t yet clear . l , 2 , 3 ,4 - t e t r ahydro -5 ,6 -d ime thy l - l , 4 -m e t h a n o n a p h t h a l e n e ( T D M N ) is a n e w c o m p o u n d t h a t was recent ly synthes ized a n d c h a r a c t e r i z e d by 1 3 C - N M R [4, 5]. I n o r d e r to get m o r e ins ight in t h e p h a s e b e h a v i o u r s of these th ree c o m p o u n d s we pe r -f o r m e d a de ta i led D T A s tudy.

2. Experimental

F o r detai ls of t he h igh p ressure e q u i p m e n t used fo r t he D T A [6, 7] a n d t he dielectr ic m e a s u r e m e n t s [8, 9]

Reprint requests to Prof. Dr. A. Würflinger, Physikalische Chemie II, Universität Bochum, W-4630 Bochum 1, FRG.

cf. the c i ta t ions . C C H (97.0%) w a s o b t a i n e d f r o m M e r c k , G e r m a n y , a n d pur i f ied wi th p r e p a r a t i v e gas c h r o m a t o g r a p h y . Ter t ia ry b u t a n o l w a s o b t a i n e d f r o m Aldr ich , d r i ed wi th m o l e c u l a r sieve a n d dist i l led u n d e r a h igh reflex ra t io , a f te r wh ich the p u r i t y w a s 9 9 . 8 % . T D M N w a s synthes ized by A n d r e a s Dö l l e [4] a n d a n a l y s e d by gas c h r o m a t o g r a p h y .

3. Results

3.1. Cyanocyclohexane

T h e p h a s e d i a g r a m is p re sen ted in t he Fig. 1, s h o w -ing a lso the pressure dependence of the glass t rans i t ion (Tg). T h e D T A signal d u e t o the glass t r a n s i t i o n w a s very smal l a n d the re fo re de tec tab le on ly in a l imi ted p re s su re r ange , j u s t sufficient to d e t e r m i n e the ini t ia l s lope d T g / d p . As m e n t i o n e d in the I n t r o d u c t i o n , it is ex t r eme ly diff icult t o crystal l ize C C H in the l o w - t e m -p e r a t u r e p h a s e II. In a p r ev ious D S C s tudy t he crys-ta l l i za t ion w a s n o t ach ieved a t all [2]. U s i n g a d i a b a t i c c a l o r i m e t r y t he s a m e g r o u p succeeded in ge t t ing t he p h a s e I I a f t e r a t ed ious a n n e a l i n g p r o c e d u r e [10]. T h e f o r m a t i o n of the p h a s e II c an be s ignif icant ly acceler -a t e d by the a p p l i c a t i o n of p res su re [11]. I t is a d v a n -t a g e o u s t o e m p l o y the fo l lowing p r o c e d u r e : first t o p ressur ize a t r o o m t e m p e r a t u r e , t h e n to coo l d o w n a n d a n n e a l u n d e r pressure , t o d e c o m p r e s s a n d t o h e a t u p a t a m b i e n t pressure . Such a " d e t o u r " r educes t he a n n e a l i n g t ime to a few h o u r s , as o p p o s e d to t h e r m a l t r e a t m e n t of several d a y s in a t m o s p h e r i c p r e s su re

0932-0784 / 93 / 0500-717 $ 01.30/0. - Please order a reprint rather than making your own copy.

J. Reuter et al. • Differential Thermal Analysis under Pressure on Cyanocyclohexane 718

a)

Transition — A H kJ mol"

dT/dp

K MPa~ AV

cm3 mol 1 Ref.

Solid I -liquid

285.4 285.1 281.9

3.635 3.88

0.368 4.7 [7] [10]

[2] Solid I I - I 220.4

215.0 7.425 0.195 6.6 [7]

[10] Glass transition

134.0 133.5 134.7

0.14 [7] [10]

[2]

s tudies . E v e n then , the sol id I I - I t r ans i t i on a p p e a r s on ly s luggishly at a t m o s p h e r i c pressure . In Fig. 2 s o m e D T A t races a re p resen ted , s h o w i n g the t r ans i -t ions a t a m b i e n t a n d e leva ted pressures . W h e n the s a m p l e w a s coo led u n d e r p res su re a n d r ehea t ed , a n e x o t h e r m i c a n o m a l y o c c u r r e d d u e to the solid I - I I conve r s ion , immed ia t e ly be fo re the solid I I - I t r ans i -

0,1 MPa 219.7K

* r l

0,1 MPa 285,0 K

50 100 150 200 250 300

p/MPa Fig. 1. Phase diagram for cyanocyclohexane. The glass tran-sition (71) was only detectable in a limited pressure range.

Table 1. Thermodynamic properties connected with the phase transitions of cyanocylohexane at 1 atm.

159,2 MPa 219,9 K

n i 165,0 MPa 250,6 K

182,4 MPa 344,2 K

Fig. 2. DTA traces for cyanocyclohexane, showing the solid I I - I transition and melting at normal (a) and higher pres-sures (b).

t i o n t a k e s place. At a t m o s p h e r i c p r e s su re such an e x o t h e r m i c p e a k is n o t de tec tab le b e c a u s e the solid I - I I c o n v e r s i o n needs m u c h m o r e t ime.

S o m e t h e r m o d y n a m i c quan t i t i e s a re g a t h e r e d in Tab le 1 a n d c o m p a r e d w i t h l i t e ra ture d a t a . T h e vol-u m e c h a n g e s h a v e been e s t ima ted wi th the a id of the C l a u s i u s - C l a p e y r o n e q u a t i o n , us ing the en tha lp ies f r o m P i n v i d i c [10]. A s ignif icant lower t e m p e r a t u r e w a s f o u n d for the sol id I I - I t r ans i t ion . T h i s discre-p a n c y is p r o b a b l y c o n n e c t e d with the pecu l i a r ob-s t r u c t i o n s of t he p h a s e t r ans i t i on . T h e r e is g o o d agree-m e n t fo r t he me l t ing a n d the glass t r a n s i t i o n tem-p e r a t u r e s .

T h e D T A t r a n s i t i o n t e m p e r a t u r e s h a v e been s m o o t h e d by p o l y n o m i a l s , yielding

m e l t i n g :

T/K = 284.8 + 0.368 ( p / M P a ) - 2.15 • 1 0 4 ( p / M P a ) 2 ,

J. Reuter et al. • Differential Thermal Analysis under Pressure on Cyanocyclohexane 707

Sr--1 A

177.3MPa /

345.3K /

Shi—SI /

175.2MPa /

336.6K -

Fig. 3. DTA traces for 2-methyl-2-propanol, showing the melting peak and the preceding solid I I I - I transition.

solid I I - I :

T/K = 219.2 + 0.195 ( p / M P a ) - 0.6 • 1 0 " 4 ( p / M P a ) 2 ,

3.2. 1,2,3,4- Tetrahydro-5,6-dimethyl-1,4-methanonaphthalene

T h e m o l e c u l a r s t r u c t u r e of T D M N is r igid a n d a s y m m e t r i c [4]. T h e s h a p e dev ia te s m u c h f r o m g l o b u -lari ty, a n d the re fo re O D I C p h a s e s w i th l o w m e l t i n g e n t h a l p y a re n o t expected . Surpr i s ing ly , on ly o n e t r a n -sit ion, a c c o m p a n i e d by a ve ry smal l e n t h a l p y c h a n g e , h a s been f o u n d , a l t h o u g h v a r i o u s t h e r m a l t r e a t m e n t s have been employed . T h e s h a p e of t he D T A p e a k , however , l o o k s r a the r l ike a glass t r ans i t i on . T h e p res -sure d e p e n d e n c e of th is t r a n s i t i o n is g iven by

T/K = 1 8 8 . 3 + 0.20 ( p / M P a ) - 6.6 • 1 0 " 5 ( p / M P a ) 2 .

T h e s lope dT/dp (0.20) is c lose t o d T g / d p fo r C C H (0.14), wh ich in t u rn is s igni f icant ly l o w e r t h a n t h e s lope 0.37 fo r the me l t ing c u r v e of C C H . S imi la r re-sults for t he mel t ing [12] a n d the glass t r a n s i t i o n [13] h a v e been f o u n d for o t h e r p las t i c crystals . T h e u n i q u e D T A signal revealed in t h e m e a s u r e m e n t s fo r T D M N is s u p p o s e d to ind ica te t h e glass t r a n s i t i o n t e m p e r a -ture.

1 2 E

io

8 O . l M P a 4 0 M P a

6

4

2

280 2 9 0 3 0 0 3 1 0 3 2 0 T / K

Fig. 4. Static permittivity of 2-methyl-2-2-propanol as a func-tion of temperature at ambient pressure and 40 MPa.

1 5 0 2 0 0 p / M P a

Fig. 5. Phase diagram for 2-methyl-2-propanol. Solid line: melting (SI-1), dashed line: solid I I I - I transition.

3.3. 2-Methyl-2-propanol

F o r th is c o m p o u n d , t w o s tab le solid p h a s e s I a n d I I a n d o n e m e t a s t a b l e p h a s e I I I a re r e p o r t e d [3]. T h e sol id I p h a s e mel t s a t 299 K wi th a low e n t r o p y of fus ion a n d w a s the re fo re cons ide red t o b e a r o t a t o r phase . All t h ree phases c o u l d be ident i f ied b y i n f r a r ed spec t roscopy , a c c o r d i n g to wh ich p h a s e s I a n d I I I a r e d i s o r d e r e d crys ta ls bui l t o n cha in p o l y m e r s [14]. O n the o t h e r h a n d , the re is n o ev idence of a r o t a t o r p h a s e d u e to a p r ev ious dielectr ic inves t iga t ion [15].

In the p resen t D T A s t u d y on ly o n e sol id sol id t r ans i t ion , p re fe rab ly a t h ighe r p ressures c o u l d be o b -served, a p p e a r i n g as a smal l p e a k i m m e d i a t e l y be fo re the me l t ing (see F i g u r e 3). O n cool ing , h o w e v e r , t he D T A t races some t imes revea led t w o t r a n s i t i o n s t h a t a re a sc r ibed t o the f reezing to solid I a n d t he sol id I - I I t r ans i t ion . T h e solid t r a n s i t i o n obse rved o n hea t -ing is e x t r a p o l a t e d to a m b i e n t p ressure , y ie lding

708 J. Reuter et al. • Differential Thermal Analysis under Pressure on Cyanocyclohexane 708

294.3 K . T h i s va lue is close to 294.5 K r epo r t ed for the solid I I I - I t r ans i t i on , a l t h o u g h the re is no t a n y indi-c a t i o n of the sol id I I - I I I t r ans i t i on in the D T A traces. T h e r e f o r e die lectr ic m e a s u r e m e n t s were add i t i ona l ly p e r f o r m e d in o r d e r to clarify the p h a s e t rans i t ions .

Several r u n s h a v e been ca r r ied o u t at a m b i e n t pres-sure in the f reez ing region. L o w va lues of 2.5 a re f o u n d fo r the pe rmi t t iv i ty in the sol id s tate . I m m e d i a t e l y b e l o w the me l t i ng t e m p e r a t u r e £ g radua l ly increases , b u t the re is n o s t ep ind ica t ing a solid p h a s e t r ans i t i on (F igu re 4). A s imi la r b e h a v i o u r w a s obse rved by N e u at a t m o s p h e r i c p re s su re [15]. R u n s at h igher p ressures were h i n d e r e d by p re s su re g r ad i en t s in the br i t t le solid p h a s e t h a t l imi ted the r ep roduc ib i l i ty of the m e a s u r e -m e n t s in the p r e m e l t i n g region. A n y w a y , a p a r t f r o m

the m e l t i n g n o a d d i t i o n a l p h a s e t r ans i t i ons cou ld be de tec ted . T h e p h a s e d i a g r a m is s h o w n in F igu re 5.

F r o m the s ta t ic pe rmi t t iv i ty of l iqu id t - b u t a n o l we m a y de r ive t he K i r k w o o d - g - f a c t o r [16]. At a t m o -spher ic p r e s s u r e a n d r o o m t e m p e r a t u r e 2, t h a t is a p p r e c i a b l y l ower t h a n g - f ac to r s fo r o the r a l coho l s [12, 17]. T h e smal le r va lue for t - b u t a n o l is obv ious ly c a u s e d by the s ter ic h i n d r a n c e of t h e te r t ia ry bu ty l g r o u p [18].

Acknowledgement

T h e a u t h o r s t h a n k Dr . D ö l l e (Rhein isch-West -fäl ische Techn i sche H o c h s c h u l e A a c h e n ) for p r o v i d i n g the T D M N sample .

[1] J. Timmermans, J. Phys. Chem. Solids 18, 1 (1961), and earlier papers.

[2] A. Gonthier-Vassal and H. Szwarc, Chem. Phys. Lett. 129, 5 (1986).

[3] F. L. Oetting, J. Phys. Chem. 67, 2757 (1963). [4] A. Dölle and T. Bluhm, J. Chem. Soc. Perkin Trans. II,

1785 (1985). [5] A. Dölle and T. Bluhm, Mol. Phys. 59, 721 (1986). [6] A. Würflinger, Ber. Bunsenges. Phys. Chem. 79, 1195

(1975). [7] J. Reuter, Diplom thesis, University of Bochum, 1992. [8] T. Brückert, Diplom thesis, University of Bochum, 1993. [9] A. Würflinger, Ber. Bunsenges. Phys. Chem. 95, 1040

(1991); 82, 1080 (1978). [10] J. J. Pinvidic, These de doctorat, Universite de Paris-

Sud, Orsay 1988.

[11] T. Woldbaek, A. Berkessel, A. Horn, and P. Klaeboe, Acta Chem. Scand. A 36, 719 (1982). - H. Horntvedt and P. Klaeboe, Acta Chem. Scand. A 29, 528 (1975).

[12] A. Würflinger, Int. Rev. Phys. Chem. 12, 89 (1993). [13] T. Atake and C. A. Angell, J. Phys. Chem. 83, 3218

(1979). [14] E. Sciesinska and J. Sciensinski, J. Mol. Structure 143, 63

(1986); Acta Phys. Pol. A 58, 361 (1980). [15] J. M. Neu, These de doctorat, Universite de Nancy,

1970. [16] A. Würflinger, Faraday Discuss. Chem. Soc. 69, 146

(1980). [17] H. G. Kreul, R. Waldinger, and A. Würflinger, Z. Natur-

forsch. 47 a, 1127 (1992). [18] T. Koshii, H. Takahashi, and K. Higasi, Bull. Chem. Soc.

Japan 48, 2225 (1975).