20
Far Infrared and Submillimeter Detectors Xu Huang Apr. 2011

Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Far Infrared and Submillimeter Detectors

Xu Huang Apr. 2011

Page 2: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Outline � Background

� Devices

�  Photoconductors

�  Bolometers

� Heterodyne Receivers

� Case study-Herschel

Page 3: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

25-450 microns

http://en.wikipedia.org/wiki/Optical_window

Page 4: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

A Short History �  1878 Langley- bolometer theory

�  After 1959, modern bolometers-carbon resistor

�  1970 The first molecular line CO 115GHz

GaAs Schottky-barrier diode mixer

�  1970th superconductor bolometers

�  1979 first SIS Mixer

�  1992 first Nb SIS Mixer, 492GHz

Page 5: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Devices �  Photoconductors

�  Bolometer

�  The distinguishing characteristic is that in a thermal detector the excitations generated by the photons relax to a thermal distribution at an elevated temperature (in the thermometer) before they are detected.

�  In the photon detector, the nonthermal distribution of excited electrons (e.g., in the conduction band) is detected before it relaxes (e.g., to the conduction band).

�  Heterodyne Receiver

Page 6: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Ge:Ga

Photoconductors

E. T. Young, 2000

Page 7: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

�  Table 1. Typical Parameters for Unstressed Ge:Ga Photoconductors

Acceptor Concentration 2 x 1014cm-3

Donor Concentration <1 x 1011cm-3

Typical Bias Field 50mV/mm

Responsivity 7A/W

Quantum Efficiency 20%

Dark Current <200e-/s

Operating Temperature 1.8K

E. T. Young, 2000

Page 8: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Bolometers �  Basic Operation

�  Responsivity

�  Noise

�  Examples

�  Superconductor TES Bolometers

Page 9: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Basic Operation

T0 T0+T1

Thermal link

Heat Sink Detector power

Pin = P0 +!Pv (t) =GT1 +CdT1dt

Heat capacity C Thermal conductance G Quantum efficiency η

T1 t( ) =

P0

G, t < 0

P0

G+!P1

G(1! e!t/(C/G ) ), t " 0

#

$

%%%%

! T =CG

Thermal time constant

Page 10: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Responsivity (Voltage)

))(/()()/()(/ 1PTGVTdPdTVTdPdVSA ααα −===

Pin = P0 +!Pv (t) =GT1 !dP1dT

T1 +CdT1dt

Does not depend on wavelength

! E =C

G !"(T )P1

α(T) temperature coefficient of resistance

Electrical time constant

Detection of Light, G.H. Rieke.

!(T ) = dP1P1dT

=1RdRdT

< 0

Responsivity

P1 = I2R(T ) Electrical power dissipated in the detector

Page 11: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Source of Noise

�  a) Johnson noise – randomly fluctuating potential energy on the capacitor

�  b) Thermal noise – fluctuations of entropy across the thermal link

�  c) Photon noise – Poisson statistics of the incoming photon stream

NEPJ !GT 2 (if!(T ) ! T "3/2 )GT 3/2 (if!(T ) ! T "1)

#$%

&%NEPT =

(4kT 2G)1/2

!NEPph =

hc!2"#

!

"#

$

%&

1/2

NEP = (NEPJ2 + NEPT

2 + NEPph2 +...)1/2

Noise Equivalent Power (NEP) (W Hz-1/2)

SN=

PsNEP(df )1/2

Page 12: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Superconducting Bolometers

�  TES (Transition Edge Sensor) bolometers

�  SQUID (Superconducting Quantum Interface Device) amplifiers

Detection of Light, G.H. Rieke.

P1 =V 2

R

Page 13: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Heterodyne Receivers �  a) High quality, fast photon detectors are not

available at wavelengths longer than the infrared.

�  b) Efficient absorption of the energy of the photons by a device require the device to have dimensions at least comparable to the photon wavelength.

�  c) Coherent receiver- measure and preserve phase information directly, easily adapted for spectroscopy, make interferometry between different receivers possible.

Page 14: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Primary antenna

detector output

mixer

Local oscillator

diplexer secondary antenna

IF amplifier

input

I !V 2 !P = (Esig cos(!sigt +! )+ELO cos(!LOt))2

=Esig

2 +ELO2

2constant component! "# $#

+Esig

2

2cos(2!sigt + 2! )+ ELO

2

2cos(2!LOt)+EsigELO cos((!sig +!LO )t +! )

high frequency component! "############# $#############

+EsigELO cos((!sig "!LO )t +! )beat component

! "##### $#####

IF signal Time response ~ 1/fIF nanoseconds

http://en.wikipedia.org/wiki/Heterodyne_detection

Page 15: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

SIS Mixers Superconductor-Insulator-Superconductor

Photon-assisted tunneling of single electron quasiparticles

eV0 > !1 +!2 " n!!

Up frequency limit- Josephson tunneling

fu = 2! / h

Magnetic field to suppress tunneling current, 2fu

Nb 12×1011Hz

J. R. Tucker & M. J. Feldman, 1985

Page 16: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Noise Temperature

Quantum limit

Thermal limit

TN !hvk

TN ! TB

Mixer noise temperature TM =e4k

1!

! =d 2I / dV 2

2dI / dVFigure of merit

A matched blackbody at the receiver input at a temperature TN produces: S/N=1

Detection of Light, G.H. Rieke.

Page 17: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Performance Comparison �  a) Bolometer at background limit & Heterodyne receiver in the

thermal limit (hv<<kTB)

�  b) Bolometer at detector noise limit & Heterodyne receiver at quantum limit

(S / N )coh(S / N )inc

=NEP(!fIF )

1/2

2h!!!

(S / N )coh(S / N )inc

=1!!fIF!"

h"kTB

"

#$

%

&'

1/2

�  c) Bolometer at background noise limit & Heterodyne receiver at quantum limit

(S / N )coh(S / N )inc

!2.6"1011Hz

! Detection of Light, G.H. Rieke.

Page 18: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Herschel PACS: (60-85, 85-130, 130-210 µm) Bolometer Array for photometry Ge:Ga photoconductor array for spectroscopy SPIRE: (above 200 µm) “Spider-web” bolometer arrays for long wavelength Camera and low to medium resolution spectrometer HIFI: SIS mixer (480-1250GHz) HEB mixer(1410-1910GHz) Very high resolution heterodyne spectrometer

http://en.wikipedia.org/wiki/Herschel_Space_Observatory

Page 19: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Conclusion �  Exciting new area, fast developing

�  Detector of choice:

�  Photoconductors (λ<160micron)

�  Bolometers (continuum detection)

�  Heterodyne mixers (high resolution spectrum)

�  Expectation: new superconducting material with better performance

Page 20: Far Infrared and Submillimeter Detectorsgk/AST542/chelsea.pdf · Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona. ! Submillimeter

Reference �  D. P. Neikirk, D. B. Rutledge, & W. Lam, International Journal

of Infrared and Millimeter Waves, vol. 5, pp.245-277, 1984.

�  E.T. Young, Space Astrophysics Detectors and Detector Technologies: Proceedings: Germanium Detectors for the Far Infrared, June 27, 2000

�  P. L. Richards, J. Appl. Phys. 76(1), 1 July 1994

�  J. R. Tucker & M. J. Feldman Rev. Mod. Phys, Vol. 57, No. 4, October 1985

�  Detection of Light: From the Ultraviolet to the Submillimeter/ G.H. Rieke. – 2nd ed. University of Arizona.

�  Submillimeter Astrophysics and Technology: A Symposium Honoring Thomas G. Phillips, Astronomical Society of the Pacific Conference Series, Volume 417