8
This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz. Field Desorption Mass Spectra of Gastrine Peptides and Glutathione Derivatives Michael Przybylski* and Ingo Lüderwald Institut für Organische Chemie, Universität Mainz, Johann-Joachim-Becher-Weg 18-20, D-6500 Mainz Ekkehard Kraas and Wolfgang Voelter Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen Sidney D. Nelson Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, U.S.A. Z. Naturforsch. 34b, 736-743 (1979); received December 28, 1978 Field Desorption Mass Spectrometry, Oligopeptides, Gastrine Peptides, Glutathione Conjugates, Molecular Ions Oligopeptides comprising the sequence of the C-terminal tetrapeptide of gastrine, Trp-Met-Asp-Phe-NH2, and several derivatives of glutathione, y-Glu-Cys(SR)-Gly, were characterized by field desorption mass spectrometry. The field desorption mass spectra obtained at various field ion emitter temperatures reveal abundant molecular ions and fragmentation reactions that yield partial sequence information. In the series of gluta- thione derivatives investigated, characteristic ions formed by cleavage of the y-Glu-Cys peptide bond determine the substituent at the Cys residue and can therefore be used to identify corresponding conjugation products of drug metabolites with glutathione. Introduction A variety of mass spectrometric methods for the structure analysis of oligopeptides has been devel- oped and tested in the last years [1-3]. Particularly, derivatization reactions to enhance the notoriously low volatility of peptides for mass spectral analysis have been studied extensively [4]. The most ad- vanced approach developed by Biemann et al. [5] involves multiple derivatization steps that enable the analysis of complex mixtures of di- to tetra/penta- peptides by gas chromatography- mass spectro- metry (g. c.-m.s.) using electron impact (e.i.) ioniza- tion. The value of this approach to the sequence elucidation of polypeptides containing up to 50 amino acid residues has been demonstrated [5, 6]. However, major limitations of derivatization proce- dures for the mass spectral analysis of peptides are that they require relatively large amounts of sample and present difficulties with certain polar amino acid residues. Moreover, information about chain- terminal or side chain substituents that frequently Abbreviations: g.c.-m.s., gas chromatography-mass spectrometry; e.i., electron impact; c.i., chemical ionisation; f.i., field ionization; f.d., field desorption; GSH, glutathione; BAT, best anode temperature. * Reprint requests to Dr. M. Przybylski. 0340-5087/79/0500-0736/$ 01.00/0 determine the biological activity of peptides will be lost during the necessary hydrolysis steps. More recently, studies by McLafferty et al. have shown that useful spectra and partial sequence information of larger oligopeptides can be obtained by chemical ionization (c.i.) mass spectrometry [7], but still some degree of (N-, C-terminal) derivatization is required for attaining vaporization of the peptide. Since its introduction by Beckey and Schulten several years ago, field desorption (f.d.) mass spectrometry has become an established tool for the molecular weight determination of large, polar and/or thermally unstable molecules [8, 9]. Abun- dant molecular ions were obtained in f.d. mass spectra of underivatized oligopeptides with up to nine amino acid residues [10, 11]. However, little systematic work h a s y e t been done to investigate the question whether the fragmentation observed in f.d. spectra of oligopeptides can be used to obtain, beyond the molecular ion of the peptide, additional structural information that might be complementary to other ionization techniques. A previously pub- lished paper on oligopeptides [11] and f.d. mass spectral work on tripeptides in our laboratory [12] indicated the presence of some sequence-specific fragment ions upon f.d. ionization, at appropriate field ion emitter temperatures. Such additional information would be especially useful in the case of

Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution4.0 International License.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschungin Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung derWissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:Creative Commons Namensnennung 4.0 Lizenz.

Field Desorption Mass Spectra of Gastrine Peptides and Glutathione Derivatives

M i c h a e l P r z y b y l s k i * a n d I n g o L ü d e r w a l d

Institut für Organische Chemie, Universität Mainz, Johann-Joach im-Becher -Weg 18-20, D-6500 Mainz

E k k e h a r d K r a a s a n d W o l f g a n g V o e l t e r

Institut für Organische Chemie, Universität Tübingen, A u f der Morgenstelle 18, D -7400 Tübingen

S i d n e y D . N e l s o n

Department o f Medicinal Chemistry, University o f Washington, Seattle, Washington 98195, U . S . A .

Z . Naturforsch. 34b, 736-743 (1979) ; received December 28, 1978 Field Desorpt ion Mass Spectrometry , Oligopeptides, Gastrine Peptides, Glutathione Conjugates, Molecular Ions

Oligopeptides comprising the sequence of the C-terminal tetrapeptide o f gastrine, Trp-Met -Asp-Phe-NH2, and several derivatives o f glutathione, y -Glu-Cys (SR) -Gly , were characterized b y field desorption mass spectrometry. The field desorption mass spectra obtained at various field ion emitter temperatures reveal abundant molecular ions and fragmentation reactions that yield partial sequence information. I n the series o f g luta-thione derivatives investigated, characteristic ions formed b y cleavage o f the y-Glu-Cys peptide b o n d determine the substituent at the Cys residue and can therefore be used t o identi fy corresponding conjugat ion products o f drug metabolites with glutathione.

Introduction

A v a r i e t y o f m a s s s p e c t r o m e t r i c m e t h o d s f o r t h e

s t r u c t u r e a n a l y s i s o f o l i g o p e p t i d e s h a s b e e n d e v e l -

o p e d a n d t e s t e d i n t h e l a s t y e a r s [ 1 - 3 ] . P a r t i c u l a r l y ,

d e r i v a t i z a t i o n r e a c t i o n s t o e n h a n c e t h e n o t o r i o u s l y

l o w v o l a t i l i t y o f p e p t i d e s f o r m a s s s p e c t r a l a n a l y s i s

h a v e b e e n s t u d i e d e x t e n s i v e l y [4]. T h e m o s t a d -

v a n c e d a p p r o a c h d e v e l o p e d b y B i e m a n n et al. [5]

i n v o l v e s m u l t i p l e d e r i v a t i z a t i o n s t e p s t h a t e n a b l e

t h e a n a l y s i s o f c o m p l e x m i x t u r e s o f di- t o t e t r a / p e n t a -

p e p t i d e s b y g a s c h r o m a t o g r a p h y - m a s s s p e c t r o -

m e t r y (g. c . - m . s . ) u s i n g e l e c t r o n i m p a c t (e . i . ) i o n i z a -

t i o n . T h e v a l u e o f t h i s a p p r o a c h t o t h e s e q u e n c e

e l u c i d a t i o n o f p o l y p e p t i d e s c o n t a i n i n g u p t o 50

a m i n o a c i d r e s i d u e s h a s b e e n d e m o n s t r a t e d [5, 6].

H o w e v e r , m a j o r l i m i t a t i o n s o f d e r i v a t i z a t i o n p r o c e -

d u r e s f o r t h e m a s s s p e c t r a l a n a l y s i s o f p e p t i d e s a r e

t h a t t h e y r e q u i r e r e l a t i v e l y l a r g e a m o u n t s o f s a m p l e

a n d p r e s e n t d i f f i c u l t i e s w i t h c e r t a i n p o l a r a m i n o

a c i d r e s i d u e s . M o r e o v e r , i n f o r m a t i o n a b o u t c h a i n -

t e r m i n a l o r s i d e c h a i n s u b s t i t u e n t s t h a t f r e q u e n t l y

Abbreviations: g.c.-m.s., gas chromatography-mass spec t rometry ; e . i . , electron i m p a c t ; c . i . , chemical ionisation; f . i . , field ionizat ion; f .d . , field desorpt ion; G S H , g lutathione; B A T , best anode temperature.

* Reprint requests to Dr . M. Przybylski . 0340-5087/79/0500-0736/$ 01.00/0

d e t e r m i n e t h e b i o l o g i c a l a c t i v i t y o f p e p t i d e s w i l l b e

l o s t d u r i n g t h e n e c e s s a r y h y d r o l y s i s s t e p s . M o r e

r e c e n t l y , s t u d i e s b y M c L a f f e r t y et al. h a v e s h o w n

t h a t u s e f u l s p e c t r a a n d p a r t i a l s e q u e n c e i n f o r m a t i o n

o f l a r g e r o l i g o p e p t i d e s c a n b e o b t a i n e d b y c h e m i c a l

i o n i z a t i o n (c . i . ) m a s s s p e c t r o m e t r y [7], b u t s t i l l

s o m e d e g r e e o f ( N - , C - t e r m i n a l ) d e r i v a t i z a t i o n is

r e q u i r e d f o r a t t a i n i n g v a p o r i z a t i o n o f t h e p e p t i d e .

S i n c e i t s i n t r o d u c t i o n b y B e c k e y a n d S c h u l t e n

s e v e r a l y e a r s a g o , field d e s o r p t i o n ( f . d . ) m a s s

s p e c t r o m e t r y h a s b e c o m e a n e s t a b l i s h e d t o o l f o r t h e

m o l e c u l a r w e i g h t d e t e r m i n a t i o n o f l a r g e , p o l a r

a n d / o r t h e r m a l l y u n s t a b l e m o l e c u l e s [8, 9]. A b u n -

d a n t m o l e c u l a r i o n s w e r e o b t a i n e d i n f . d . m a s s

s p e c t r a o f underivatized o l i g o p e p t i d e s w i t h u p t o

n i n e a m i n o a c i d r e s i d u e s [10, 1 1 ] . H o w e v e r , l i t t l e

s y s t e m a t i c w o r k h a s y e t b e e n d o n e t o i n v e s t i g a t e

t h e q u e s t i o n w h e t h e r t h e fragmentation o b s e r v e d i n

f . d . s p e c t r a o f o l i g o p e p t i d e s c a n b e u s e d t o o b t a i n ,

b e y o n d t h e m o l e c u l a r i o n o f t h e p e p t i d e , a d d i t i o n a l

s t r u c t u r a l i n f o r m a t i o n t h a t m i g h t b e c o m p l e m e n t a r y

t o o t h e r i o n i z a t i o n t e c h n i q u e s . A p r e v i o u s l y p u b -

l i s h e d p a p e r o n o l i g o p e p t i d e s [ 1 1 ] a n d f . d . m a s s

s p e c t r a l w o r k o n t r i p e p t i d e s i n o u r l a b o r a t o r y [ 12]

i n d i c a t e d t h e p r e s e n c e o f s o m e s e q u e n c e - s p e c i f i c

f r a g m e n t i o n s u p o n f . d . i o n i z a t i o n , a t a p p r o p r i a t e

field i o n e m i t t e r t e m p e r a t u r e s . S u c h a d d i t i o n a l

i n f o r m a t i o n w o u l d b e e s p e c i a l l y u s e f u l i n t h e c a s e o f

Page 2: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

M. Przybylski et al. • Field Desorption Mass Spectra of Oligopeptides 737

s u b s t i t u t e d or " b l o c k e d " p h y s i o l o g i c a l p e p t i d e s

(such as m a n y p e p t i d e h o r m o n e s ) t h a t c a n n o t b e

i so la ted in a m o u n t s s u f f i c i e n t f o r d e r i v a t i z a t i o n a n d

a l t e r n a t e m a s s s p e c t r a l t e c h n i q u e s . A s p a r t o f a

s y s t e m a t i c s t u d y of b i o l o g i c a l p e p t i d e s b y f . d . m a s s

s p e c t r o m e t r y , w e h a v e i n v e s t i g a t e d t h e f . d . m a s s

s p e c t r a o f t w o such e x a m p l e s : a) t h e t e t r a p e p t i d e -

a m i d e , T r p - M e t - A s p - P h e - N H 2 , w h i c h r e p r e s e n t s t h e

b i o l o g i c a l l y essent ia l C - t e r m i n a l s e q u e n c e o f h u m a n

g a s t r i n e I [13], u s i n g di- a n d t r i p e p t i d e s o f t h i s

s e q u e n c e as m o d e l s t o e v a l u a t e p o s s i b l e f r a g m e n t

ions u n d e r f . d . i o n i z a t i o n ; b) s e v e r a l d e r i v a t i v e s

( c o n j u g a t e s ) o f g l u t a t h i o n e ( y - G l u - C y s - G l y , G S H ) ,

a n i m p o r t a n t ce l lu lar " t r a p p i n g " a g e n t in m a n y

m e t a b o l i c d e t o x i c a t i o n p a t h w a y s o f drugs . T h e

p o t e n t i a l u t i l i t y of f . d . m a s s s p e c t r o m e t r y f o r t h e

d irect s t r u c t u r a l c h a r a c t e r i z a t i o n o f G S H d e r i v a -

t i v e s w a s o f p a r t i c u l a r i n t e r e s t , s ince s e l e c t i v e

h y d r o l y s i s r e a c t i o n s f o r t h e s e p a r a t e a n a l y s i s o f t h e

s u b s t r a t e m e t a b o l i t e a r e u s u a l l y n o t poss ib le f o r

t h i s t y p e o f c o n j u g a t e . C . i . m a s s s p e c t r o m e t r y o f

t h e G S H d e r i v a t i v e s i n v e s t i g a t e d in t h i s s t u d y d i d

n o t r e s u l t in t h e i r p o s i t i v e s t r u c t u r a l c h a r a c t e r i z a -

t i o n [14]. F . d . m a s s s p e c t r a o f s o m e G S H c o n j u g a t e s

w i t h r e a c t i v e m e t a b o l i t e s w e r e a l r e a d y b r i e f l y re-

p o r t e d [14].

Experimental T h e s y n t h e s i s o f t h e g a s t r i n e p e p t i d e s h a s b e e n de-

s c r i b e d p r e v i o u s l y [15]. T h e d i p e p t i d e M e t - A s p - O H w a s a c o m m e r c i a l p r o d u c t ( S e r v a , H e i d e l b e r g , W . -G e r m a n y ) . I t w a s h o m o g e n o u s o n t h i n - l a y e r c h r o m a t o g r a p h y in m e t h a n o l / w a t e r / a c e t i c a c i d , 4/4/1. G l u t a t h i o n e w a s p u r c h a s e d f r o m M e r c k , D a r m s t a d t , W . - G e r m a n y . T h e G S H d e r i v a t i v e s w e r e i s o l a t e d as c o n j u g a t i o n p r o d u c t s w i t h r e a c t i v e m e t a b o l i t e s o f t h e d r u g s a c e t y l h y d r a z i n e , i s o p r o p y l -h y d r a z i n e a n d o t h e r c o m p o u n d s a f t e r i n c u b a t i o n w i t h r a t l i v e r m i c r o s o m e s as d e s c r i b e d p r e v i o u s l y [16]. D e t a i l s o f t h e i s o l a t i o n p r o c e d u r e s , c h a r a c -t e r i z a t i o n a n d b i o l o g i c a l p r o p e r t i e s o f t h e s e c o m -p o u n d s h a v e b e e n r e p o r t e d [17] .

T h e f. d . m a s s s p e c t r a w e r e r e c o r d e d w i t h a V a r i a n M A T C H 7 1 1 d o u b l e f o c u s i n g s p e c t r o m e t e r e q u i p p e d w i t h a n e.i ./f . i ./f .d. c o m b i n a t i o n i o n source . A c t i -v a t e d 10 jum t u n g s t e n f ie ld i o n e m i t t e r s w e r e u n i f o r m l y p r e p a r e d b y a h i g h t e m p e r a t u r e a c t i -v a t i o n p r o c e d u r e d e v e l o p e d b y B e c k e y a n d S c h u l -t e n [9] a n d w e r e u s e d o n c e f o r e a c h p e p t i d e . T h e p e p t i d e s w e r e d i s s o l v e d in D M S O a t c o n c e n t r a t i o n s o f 5 0 - 1 0 0 jug/20 ju\ a n d l o a d e d o n t h e e m i t t e r b y t h e d i p p i n g t e c h n i q u e [8]. T h e e m i t t e r w a s t h e n i n t r o -d u c e d in t h e ion s o u r c e b y a d i r e c t i n s e r t i o n l o c k a n d h e a t e d g r a d u a l l y ( 2 - 3 m i n ) f r o m a m b i e n t t o a

m a x i m u m h e a t i n g c u r r e n t o f a p p r o x i m a t e l y 20 m A . D u r i n g t h i s t i m e r e p e t i t i v e s p e c t r a w e r e r e c o r d e d o n a m a g n e t i c t a p e o f a c o m p u t e r ( V a r i a n S S 100). T h e e m i t t e r h e a t i n g c u r r e n t a t w h i c h t h e h i g h e s t r e l a t i v e a b u n d a n c e o f m o l e c u l a r ions o c c u r r e d is r e f e r r e d t o as " b e s t a n o d e t e m p e r a t u r e " ( B A T ) [8]. B o t h s p e c t r a r e c o r d e d a t B A T a n d f u r t h e r s p e c t r a a t g r e a t e r e m i t t e r t e m p e r a t u r e s w e r e e v a l u a t e d f o r f r a g m e n t ions . I n s t r u m e n t a l c o n d i t i o n s w e r e : 1000 ( 1 0 % ) r e s o l u t i o n , 11 k V p o t e n t i a l b e t w e e n field e m i t t e r a n o d e a n d c a t h o d e , 220 °C s o u r c e filament t e m p e r a t u r e , 2.8 k V v o l t a g e o f t h e e l e c t r o n m u l t i -pl ier u s e d f o r ion d e t e c t i o n . E . i . s p e c t r a o f h i g h boi l ing p e r f l u o r o k e r c s i n e (Merck, D a r m s t a d t , W . -G e r m a n y ) w e r e u s e d f o r m a s s c a l i b r a t i o n .

Results

Gastrine peptides A b u n d a n t m o l e c u l a r ions o f t h e C - t e r m i n a l t e t r a -

p e p t i d e o f g a s t r i n e I , T r p - M e t - A s p - P h e - N H 2 , w e r e

o b t a i n e d in s e v e r a l f . d . s p e c t r a a t e m i t t e r a n o d e

c u r r e n t s o f 10 m A or g r e a t e r . T h e s p e c t r u m a t

14 m A ( F i g . 1) t h a t c o n t a i n e d t h e m o s t u s e f u l

f r a g m e n t a t i o n p a t t e r n st i l l s h o w s t h e M+-ion

(m/e 596) as w e l l as t h e M H + - i o n (m/e 597) w i t h

r e l a t i v e intens i t ies o f m o r e t h a n 3 0 % . T h e a p p e a r -

a n c e o f " c l u s t e r " m o l e c u l a r ions ( m a i n l y M H + ) is

b e l i e v e d t o arise f r o m field e m i t t e r s u r f a c e r e a c t i o n s

a n d h a s b e e n c o n s i s t e n t l y o b s e r v e d in f . d . m a s s

s p e c t r o m e t r y [8]. A s a c o n s e q u e n c e , f . d . f r a g m e n t

ions f r e q u e n t l y a lso o c c u r as c l u s t e r ions, w i t h f o r m a l

a b s t r a c t i o n a n d a d d i t i o n o f h y d r o g e n . W i t h t h i s

c o n s i d e r a t i o n , a series o f f r a g m e n t a t i o n p r o d u c t s

l e a d i n g t o p a r t l y o v e r l a p p i n g s e q u e n c e i n f o r m a t i o n

c a n be i d e n t i f i e d f r o m t h e s p e c t r u m o f T r p - M e t - A s p -

P h e - N H 2 . I f ions ar i s ing b y d i r e c t c l e a v a g e o f

p e p t i d e b o n d s f r o m t h e m o l e c u l a r i o n a r e a s s i g n e d

C i , C2 etc., (C-terminus) a n d N i , N2 etc. ( N - t e r m i n u s ) ,

a l l poss ib le C - t e r m i n a l " s e q u e n c e " i o n s (m/e 164,

165, C i ; m/e 279, 280, C 2 ; m/e 4 1 1 , C 3 ) are f o u n d . O f

t h e t h r e e poss ib le N - t e r m i n a l ions, N3 (m/e 432, 433)

a n d N2 (m/e 3 1 7 , 318) are o b s e r v e d , w h i l e a f r a g m e n t

c o r r e s p o n d i n g t o N i (m/e 187) is m i s s i n g a n d w a s n o t

o b s e r v e d i n r e p e t i t i v e s c a n s a t e m i t t e r h e a t i n g

c u r r e n t s f r o m 12 t o a b o u t 18 m A . W h i l e t h e C-

t e r m i n a l ions c a n be r a t i o n a l i z e d w i t h a m i n e end-

g r o u p s , b o t h a c y l i u m (as k n o w n f r o m e.i. f r a g m e n -

t a t i o n p a t h w a y s ) a n d k e t e n are poss ib le e n d g r o u p s

f o r t h e N - t e r m i n a l ions b u t c a n n o t be d e t e r m i n e d

e x a c t l y d u e t o t h e u n c e r t a i n t y in t h e m a s s assign-

m e n t o f f . d . f r a g m e n t ions. H o w e v e r , a f a i r l y g o o d

c o n s i s t e n c e in t h e f o r m a t i o n o f t h e s e i o n s w a s f o u n d

Page 3: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

738 M. Przybylski et al. • Field Desorption Mass Spectra of Oligopeptides 738

Table I . Fragment ions formed b y direct cleavage o f peptide bonds in the f .d . mass spectra of Trp-Met-Asp-Phe-N H 2 (I), Met -Asp -Phe -NH 2 (II) , A s p - P h e - N H 2 ( I I I ) and M e t - A s p - O H (IV) .

m/e Partial sequence

N- , C-terminal sequence ion a

( % relative intensity )b

I I I I I I I V

433 Trp-Met -Asp N 3 (8) 411 Met - A s p -Phe - N H 2 C3 (6) MH+ (100) 318 Trp-Met N 2 (35) 280 A s p - P h e - N H 2 C2 (6) C2 (13) MH+ (100) 247 Met -Asp N 2 (11) MH+ (100) c

187 T r p N i ( - ) 164 P h e - N H 2 Ci (20) Ci (15) Ci (16) 132 Met Ni ( — ) Ni (8)d 117 A s p Ni (20)

a Partial sequences starting f rom the N-terminus are assigned N i , N 2 , . . ., sequences starting f r o m the C-terminus Ci, C2 etc.

b See Table I I for emitter heating currents at which spectra were obtained, c MH+-ion, m/e 265 of Met -Asp -OH. d Same m/e-value as Ci-ion of Met -Asp-OH.

b y c o m p a r i s o n w i t h t h e f . d . m a s s s p e c t r a o f t h e

m o d e l p e p t i d e s , M e t - A s p - P h e - N H 2 , A s p - P h e - N H 2

( F i g . 2), a n d M e t - A s p - O H ( s p e c t r u m n o t s h o w n ) .

T h u s , a C 2 - i o n is a l s o o b s e r v e d i n t h e s p e c t r u m o f

M e t - A s p - P h e - N H 2 ( m o l e c u l a r i o n o f A s p - P h e - N H 2 ) ,

a n d t h e C i - i o n , P h e - N H 2 a p p e a r s i n t h e s p e c t r a o f

al l t h r e e h o m o l o g u e s p e p t i d e s . E x c e p t f o r t h e N i - i o n

t h a t is m i s s i n g i n t h e s p e c t r u m o f M e t - A s p - P h e - N H 2 ,

N - t e r m i n a l i o n s w e r e a l s o o b s e r v e d f o r t h e di- a n d

t r i p e p t i d e s ( T a b l e I ) .

L e s s c o n s i s t e n t l y , o t h e r f r a g m e n t a t i o n p r o d u c t s

w e r e o b s e r v e d . I n t h e s p e c t r a o f a l l p e p t i d e s ,

e l i m i n a t i o n o f w a t e r and/or N H 3 , a n d C 0 2 or C O O H

l e a d s t o a b u n d a n t i o n s a t e m i t t e r t e m p e r a t u r e s

a b o v e B A T , b u t c a n n o t be d i f f e r e n t i a t e d c l e a r l y

w i t h i n t h e c o r r e s p o n d i n g c l u s t e r i o n s . T h e s e f r a g -

m e n t s s e e m t o o c c u r u n s p e c i f i c a l l y i n f . d . m a s s

s p e c t r a o f p e p t i d e s [ 1 1 , 12], A m o n g o t h e r d i r e c t

f r a g m e n t a t i o n r e a c t i o n s o f t h e p e p t i d e b a c k -

b o n e , s e v e r a l i o n s o r i g i n a t e b y N - a l k y l c l e a v a g e ,

s u c h a s m/e 449 a n d 263 i n t h e s p e c t r u m o f

T r p - M e t - A s p - P h e - N H 2 a n d m/e 262/263 a n d 1 4 9 i n

t h e s p e c t r u m o f M e t - A s p - P h e - N H 2 ( T a b l e I I ) .

I n t h e f . d . s p e c t r a o f M e t - A s p - P h e - N H 2 a n d

A s p - P h e - N H 2 , s o m e f r a g m e n t s c o u l d a l s o b e as-

s i g n e d t o d i r e c t C - C c l e a v a g e r e a c t i o n s , f o r e x a m p l e

i o n s a t m/e 307/308 a n d m/e 1 9 1 / 1 9 2 (cf. F i g . 2). T h e

f o r m a t i o n o f t h e s e i o n s w a s q u i t e i n c o n s i s t e n t a t

- 100—1

CI 164,165

K9

HJN-CH-CO

CJ 409

CJ r27»

-263

NH-CH-CO+NH- -CH-COfNH

SCH,

311-Ni

COOH 433-1

Nj

M.W. 596

Nj 317,31«

Cl 263 219,790 J _ J

371 C, 411 433 449

~I 400

578,579

M*\ MH' 596,597

543

550

562

1 150 200

I 250

I— 300

~I— 350 600

Fig. 1. F . d . Mass spectrum of Trp-Met-Asp-Pl ie -NH 2 at 14 raA emitter heating current.

Page 4: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

M. Przybylski et al. • Field Desorption Mass Spectra of Oligopeptides 739

1 0 0 - .

7 5 -

5 0 -

2 5 -

-191 C '

I T 1 6 3

H ^ c J c C N H j c H - C O - H H ,

/ 131 y COOH ( Q ) 117—' N,

N, 117

C, 88 " 7 1 3 1 1 9 1 1 9 2

L . Ii i 1 . h li

M4 ',MH* 279,280

262,263

-kiL

M.W. 279

( a )

UJ ar 100-,

7 5 -

5 0 -

2 5 -

k .1 L T 100

r-306 C2 C1 r278 r163

p263 j-148

H2N—CH-pCO- NHTCH—C0--NH-J-CH-C0-NH2 147 ^

COOH SCHj 2A7-'

N2

228

C, 164

N 2 246,247

C2

280

M.W. 410

( b )

M - , M H *

410,411

395

148 149 . 1 9 1 . 2 6 3 |

i r _ i 1 1 1I1 S t _ J ii i , l

307,308

366,367

I 381

150 200 250 r

300

1 1 I L 1

350

1 1 r~ 400

Fig. 2. F.d. mass spectra of Asp-Phe-NH2 (a) and Met-Asp-Phe-NH2 (b), both at 10 mA emitter heating current.

Table II. F.d. fragment ions of peptides I, II, III and IV formed by N-Alkyl cleavage or other direct frag-mentation of the peptide backbone.

Fragment ion, mje Peptidea mA" (% relative intensity)

I 14 449(8), 263(7), 149(8) II 10 308(17), 307(15), 263(8),

262(5), 149(10), 148(9) III 10 192(15), 191(18), 131(15),

88(19) IV 9 160(10), 148(8), 104(15)

a Cf. Table I. b Emitter heating current at which spectrum was

recorded.

d i f f e r e n t f ie ld e m i t t e r t e m p e r a t u r e s , a n d t h e y m a y

be o f l i t t l e v a l u e f o r o b t a i n i n g a d d i t i o n a l i n f o r m a -

t i o n o f t h e p e p t i d e s e q u e n c e . H o w e v e r , w i t h t h e

e x c e p t i o n o f t h e f r a g m e n t mje 228 i n t h e s p e c t r u m

o f M e t - A s p - P h e - N H a t h a t m i g h t a r i s e b y e l i m i n a t i o n

o f w a t e r f r o m m/e 246, t h e r e w a s a n o t a b l e l a c k o f

m o r e a b u n d a n t i o n s c o r r e s p o n d i n g t o m u l t i p l e

f r a g m e n t a t i o n o r f r a g m e n t a t i o n o f t h e p e p t i d e s ide

c h a i n .

Derivatives of glutathione G l u t a t h i o n e ( G S H ) a s w e l l a s s e v e r a l o f i t s

d e r i v a t i v e s i s o l a t e d a s c o n j u g a t e s w i t h v a r i o u s d r u g

Page 5: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

740 M. Przybylski et al. • Field Desorpt ion Mass Spectra o f Oligopeptides

SR

COOH

1 O

S \ 130 0

1 " '

SR

h 2 N / - C H \ c o / - n h - ^ c o o h

c l e a v a g e o f t h e y - G l u - C y s p e p t i d e b o n d w a s f o u n d ,

w h e r e a s i n n o c a s e c l e a v a g e o f t h e C y s - G l y b o n d

w a s o b s e r v e d ( F i g . 3 a n d 4). T h e s p e c t r a o f a l l G S H

d e r i v a t i v e s i n v e s t i g a t e d s h o w e d c h a r a c t e r i s t i c f r a g -

m e n t s a t m/e 130 a n d m/e 84 o f h i g h a b u n d a n c e ,

w h i c h a r e l i k e l y t o e x p l a i n b y t h e f o r m a t i o n o f a

p y r o g l u t a m y l i o n . T h e t e n d e n c y f o r a p r e f e r e n t i a l

f o r m a t i o n o f p y r o g l u t a m y l h a s b e e n p r e v i o u s l y

o b s e r v e d i n f . d . m a s s s p e c t r a o f o l i g o p e p t i d e s

c o n t a i n i n g a - G l u a t t h e N - t e r m i n u s [ 1 8 ] :

C o n s i s t e n t w i t h t h e f o r m a t i o n o f t h e p y r o g l u t a m y l

i o n , t h e c o m p l e m e n t a r y f r a g m e n t i o n s o f t h e

C y s - G l y r e s i d u e w e r e f o u n d t h r o u g h o u t t h e s e r i e s o f

HN

M / T 84

/CHv^

II 0

m e t a b o l i t e s [ 1 7 ] g a v e m o l e c u l a r p e a k s o f h i g h

i n t e n s i t i e s i n t h e i r f . d . s p e c t r a , a t a r a n g e o f e m i t t e r

h e a t i n g c u r r e n t s f r o m 10 t o 1 5 m A . M o r e c o n s i s t e n t l y

t h a n i n t h e c a s e o f t h e g a s t r i n e p e p t i d e s , t h e M H + -

i o n w a s t h e p r e d o m i n a n t m o l e c u l a r i o n s p e c i e s

(m/e 308 f o r G S H , F i g . 3 , a ) . A t e m i t t e r t e m p e r a -

t u r e s w h i c h p r o d u c e d f r a g m e n t i o n s ( a b o u t 1 2 m A

h e a t i n g c u r r e n t ) , a l l G S H d e r i v a t i v e s s h o w e d

e l i m i n a t i o n o f H 2 0 a n d / o r CO2 {e.g., m/e 290 a n d

2 6 3 f o r G S H , m/e 3 3 2 a n d 305 f o r S - A c e t y l g l u t a -

t h i o n e ) , p r e s u m a b l y b y s i m p l e p y r o l y t i c p r o c e s s e s .

H o w e v e r , a s m a j o r f r a g m e n t a t i o n p a t h w a y , t h e

100-

7 5 -

^ 5 0 ->

TR 2 5 -10 z UJ I— z uj 100-, >

^ 7 5 -

130

,84

H 2 N - C H - ( C H 2 ) 2 -

COOH

r c o p

Table I I I . Fragment ions f o rmed b y cleavage of y-Glu-Cys peptide bonds in the f . d . mass spectra o f glutathione derivatives.

H 2 N - C H - C O - N H - C H 2 - C O O H © -

CH 2

S R R m A a m/e ( % relative intensity)

H 13 178 (11) CH 3 14 192 (22) C2H5 12 206(100) CO-CH3 14 220 (42) CH(CH 3 ) 2 15 220 (25) CH2-C6H5 14 268 (14) l - (2 -hydroxy ) -estradiol 18 446 (18)b

a Emitter heating current at which spectrum was recorded.

* Fragment ion (464-H 2 0)®- .

130

177

N H - C H - C O - N H - C H 2 - C O O H

CH2 1 SH

290 161

J J J L 178

50 -

2 5 -

130

78

84

T 100

308 , MH M.W. 307

( a )

19 H 2 N - C H - C H 2 - C H 2 - C O 4 - N H 4 C H - C O - N H - C H 2 - C O O H

COOH 130 146 9 H 2 M.W

220.221

M.W. 349

( b )

350, MH 332

146

I 150

T

200

"I r 250 300

m/.

305

L i _ 4 _

350

Fig. 3. F . d . mass spectra o f y -Glu-Cys-Gly at 13 m A (a) and y -Glu -Cys (CO-CH 3 ) -G ly at 14 m A (b) emitter heating current.

Page 6: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

M. Przybylski et al. • Field Desorption Mass Spectra of Oligopeptides 741

G S H d e r i v a t i v e s . A l t h o u g h f o r G S H i t s e l f , t h e a p p e a r e d p a r t i a l l y w i t h h i g h a b u n d a n c e s ( T a b l e I I I ) ,

f r a g m e n t C y s - G l y (m/e 1 7 8 ) w a s r a t h e r w e a k , t h e T h e r e f o r e , t h e s e c h a r a c t e r i s t i c i o n s p r o v i d e a p o s -

c o r r e s p o n d i n g i o n s o f t h e S - s u b s t i t u t e d d e r i v a t i v e s s i b i l i t y f o r t h e d i r e c t s u b s t r a t e i d e n t i f i c a t i o n o f

100-,

75-

50-

25-

100 - 1

> 75-

50-

25-

50

84

78

78

84

191

K^N-CH-CH2-CH2-COINH-CH-CO- NH-CH2-C00H 130 COOH

co-pt

130 CH2 i s I CH3

M.W. 321

(a )

192 277

1__L

322 J MH *

i

100

T 205

H2N-CH-CH2-CH2-CO{NH-CH-CO-NH-CH2-COOH

COOH

206 130

130

CH2

S

C2H5

M.W. 335

336 ,MH*

(b)

317

150 ~T

200 - r ~ 250

- r ~ 300

—1 350

Fig. 4. F.d. mass spectra of y-Glu-Cys(CH3)-Gly at 14 mA (a) and y-Glu-Cys(C2H5)-Gly at 12 mA (b) emitter heating current.

100-

80-

- 6 0 -

> 40-

z 20 UJ z

UJ

% ioon < —i Ui 80 K

60-

40-

20-

110

H2N-CH-CH2-CH2-COTNH-CH-CO-NH-CH2-COOH

130

I COOH

288

• N r

LUj

130 I CH2

iCZ F - H O

2 8 7 HO

320

M.W. 593

OH

" I — 300

370 445,

I . .1 'l •• i

445,446

T 350 400 *50

(a)

(b)

501

550

500 —I— 550

MH 594

579 1

Fig. 5. F.d. mass spectra of y-Glu-Cys-(1 - (2 -hydroxyestra-diol))-Gly at 14 mA (a)

r and 18 mA (b) emitter 600 heating current.

Page 7: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

742 M. Przybylski et al. • Field Desorption Mass Spectra of Oligopeptides 742

c o r r e s p o n d i n g c o n j u g a t i o n p r o d u c t s o f d r u g s a n d

t h e i r m e t a b o l i t e s b y f . d . m a s s s p e c t r o m e t r y , i n

a d d i t i o n t o t h e m o l e c u l a r i o n . A s a n e x a m p l e f o r t h e

u t i l i t y o f f . d . m a s s s p e c t r o m e t r y t o i d e n t i f y cor-

r e s p o n d i n g m e t a b o l i t e c o n j u g a t e s w i t h G S H , w e

i n v e s t i g a t e d a G S H c o n j u g a t i o n p r o d u c t o f 2 - h y d r o -

x y e s t r a d i o l w h i c h w a s i s o l a t e d a s a m e t a b o l i t e

d u r i n g s t u d i e s o f t h e h e p a t i c m i c r o s o m a l m e t a b o l i s m

o f e s t r a d i o l [14] . T h e f . d . s p e c t r u m o f t h i s c o m p o u n d

( F i g . 5) s h o w e d a t 1 4 m A e m i t t e r h e a t i n g c u r r e n t

a l m o s t e x c l u s i v e l y t h e m o l e c u l a r i o n M H + (m/e 594)

c o n s i s t e n t w i t h a G S H c o n j u g a t e o f h y d r o x v l a t e d

e s t r a d i o l . I n t h e s p e c t r u m r e c o r d e d a t 18 m A

h e a t i n g c u r r e n t , n o m o l e c u l a r i o n b u t s e v e r a l

f r a g m e n t a t i o n p r o d u c t s p r o v i d i n g s t r u c t u r a l in-

f o r m a t i o n a r e o b t a i n e d ( F i g . 5 , b ) . B e s i d e s t h e i n t e n -

s i v e i o n o f t h e p y r o g l u t a m y l r e s i d u e (m/e 130), a

c o m p l e m e n t a r y i o n a t m/e 4 6 4 is n o t f o u n d , b u t a

c l u s t e r o f p e a k s c e n t e r e d a t m/e 4 4 6 i n s t e a d , w h i c h

i s l i k e l y t o b e f o r m e d b y c l e a v a g e o f t h e G l y - C y s

b o n d a n d a d d i t i o n a l e l i m i n a t i o n o f w a t e r f r o m t h e

s t e r o i d s k e l e t o n . I n a d d i t i o n , t h e t w o a b u n d a n t

f r a g m e n t i o n s a t m/e 320 a n d m/e 288 p r o v i d e d i r e c t

e v i d e n c e t o i d e n t i f y t h e c o n j u g a t i o n p o s i t i o n o f t h e

m e t a b o l i t e a t t h e C y s r e s i d u e (see f r a g m e n t a t i o n

s c h e m e d e p i c t e d i n F i g . 5) .

Discussion C o n s i s t e n t w i t h t h e p r e v i o u s s t u d i e s o f o l i g o -

p e p t i d e s b y f . d . m a s s s p e c t r o m e t r y , a b u n d a n t

m o l e c u l a r i o n s w e r e r e a d i l y o b t a i n e d i n t h e f . d .

s p e c t r a o f t h e g a s t r i n e p e p t i d e s a n d g l u t a t h i o n e

d e r i v a t i v e s w h i c h , w i t h o u t a n y d e r i v a t i z a t i o n , d i d

n o t g i v e u s e f u l s t r u c t u r e i n f o r m a t i o n b y e . i . o r e . i .

m a s s s p e c t r o m e t r y [14] . T h u s , t h e e . i . m a s s s p e c t r a

o f G S H a n d i t s d e r i v a t i v e s w e r e d o m i n a t e d b y a

m u l t i p l i c i t y o f p y r o l y t i c f r a g m e n t s i n t h e l o w m a s s

r e g i o n (M. P r z y b y l s k i , u n p u b l i s h e d o b s e r v a t i o n ) .

D e r i v a t i z a t i o n p r o c e d u r e s o f p e p t i d e s c o n t a i n i n g

a m i n o a c i d s w i t h m u l t i p l e f u n c t i o n a l g r o u p s a s

t h o s e s t u d i e d h e r e w o u l d l e a d t o a d r a s t i c a l i n c r e a s e

i n m o l e c u l a r w e i g h t a l r e a d y f o r s m a l l e r o l igo-

p e p t i d e s , i n t o a m a s s r a n g e t h a t m i g h t b e d i f f i c u l t

t o d e t e r m i n e e v e n i f s u f f i c i e n t v o l a t i l i t y f o r e . i . o r

e . i . m a s s s p e c t r a l a n a l y s i s is o b t a i n e d . T h u s , t h e f . d .

m a s s s p e c t r o m e t r i c m o l e c u l a r w e i g h t d e t e r m i n a t i o n

m i g h t b e a v a l u a b l e i n i t i a l s t e p i n t h e p r o b l e m o f

e l u c i d a t i n g t h e s t r u c t u r e o f o l i g o p e p t i d e s i s o l a t e d i n

s m a l l a m o u n t s f r o m b i o l o g i c a l m a t e r i a l . M o l e c u l a r

i o n s h a v e b e e n o b t a i n e d i n f . d . m a s s s p e c t r a o f

p e p t i d e s c o n t a i n i n g a m i n o a c i d s s u c h a s A r g [10]

a n d H i s [18] t h a t a r e k n o w n t o p r e s e n t d i f f i c u l t i e s

w i t h o t h e r m a s s s p e c t r o m e t r i c m e t h o d s . H o w e v e r ,

m o r e s y s t e m a t i c w o r k is n e e d e d t o s h o w w h e t h e r a

m o l e c u l a r i o n d e t e r m i n a t i o n o f o l i g o p e p t i d e s c a n b e

o b t a i n e d w i t h c e r t a i n t y b y f . d . m a s s s p e c t r o m e t r y .

A c r i t i c a l e x a m p l e h a s b e e n o b s e r v e d p r e v i o u s l y i n

f . d . m a s s s p e c t r a o f t r i p e p t i d e s w i t h a - G l u a t t h e

N - t e r m i n u s b e c a u s e o f t h e t e n d e n c y t o f o r m p y r o -

g l u t a m y l [12], y i e l d i n g a b u n d a n t ( M - H 2 0 ) ® - i o n s .

I n t h e ser ies o f G S H d e r i v a t i v e s ( N - t e r m i n a l y - G l u ) ,

p y r o g l u t a m y l f o r m a t i o n d i d n o t a f f e c t m o l e c u l a r

w e i g h t d e t e r m i n a t i o n b u t e v e n l e a d s t o f r a g m e n t

i o n s t h a t a l l o w t o d i f f e r e n t i a t e s p e c i f i c a l l y t h e

b i n d i n g s i te o f c o r r e s p o n d i n g d r u g m e t a b o l i t e - G S H

c o n j u g a t e s [14] (c . f . T a b l e I I I ) . A p r o b l e m i n t h e

d e f i n i t e m o l e c u l a r w e i g h t d e t e r m i n a t i o n o f p e p t i d e s

b y f . d . m a s s s p e c t r o m e t r y c o u l d b e t h e f o r m a t i o n

o f c l u s t e r i o n s [8, 19, 20]. B e s i d e s t h e a d d i t i o n o f a

p r o t o n (MH®-ion), p e a k s d u e t o t h e a d d i t i o n o f H 2 O

or o t h e r s m a l l m o l e c u l e s s u c h a s e t h a n o l p r e s e n t in

t h e s a m p l e s o l u t e h a v e b e e n o b s e r v e d [ 1 1 ] , a l t h o u g h

t h e s e i o n s a r e g e n e r a l l y o f l o w e r i n t e n s i t y t h a n t h e

m o l e c u l a r i o n . I n t h e c a s e o f a c o m p l e t e l y u n k n o w n

s a m p l e , a c e r t a i n m o l e c u l a r w e i g h t d e t e r m i n a t i o n

m i g h t t h e r e f o r e b e s t b e o b t a i n e d i n c o n n e c t i o n w i t h

a n i n d e p e n d a n t a m i n o a c i d a n a l y s i s w h i c h , l i k e w i s e ,

w i l l b e v e r y u s e f u l f o r t h e i n t e r p r e t a t i o n o f f r a g m e n t

i o n s i n f . d . m a s s s p e c t r a .

I n a d d i t i o n t o t h e m o l e c u l a r i o n i n f o r m a t i o n

a v a i l a b l e , t h e p r e s e n t f . d . m a s s s p e c t r a l d a t a o f

p e p t i d e s s e e m t o i n d i c a t e t h a t a t l e a s t s o m e d e g r e e

o f u s e f u l s t r u c t u r e i n f o r m a t i o n c a n b e o b t a i n e d

f r o m f r a g m e n t i o n s a r i s i n g a b o v e B A T . I n t h e

ser ies o f t h e g a s t r i n e p e p t i d e s , a n a l m o s t c o m p l e t e

s e q u e n c e o f p e p t i d e b o n d c l e a v a g e p r o d u c t s

( " s e q u e n c e i o n s " [21]) w a s f o u n d . A l t h o u g h t h e

m e c h a n i s m s o f f . d . f r a g m e n t a t i o n p a t h w a y s a r e

l a r g e l y u n k n o w n , f r a g m e n t i o n f o r m a t i o n s e e m s t o

o r i g i n a t e m a i n l y f r o m t h e m o l e c u l a r i o n d i r e c t l y

w h i c h , i n t h e c a s e o f p e p t i d e s , f a c i l i t a t e s g r e a t l y

t h e i r a s s i g n m e n t t o p a r t s o f t h e m o l e c u l a r s t r u c t u r e .

T h e o b s e r v a t i o n f r o m t h i s a n d p r e v i o u s i n v e s t i g a -

t i o n s t h a t f . d . f r a g m e n t a t i o n o f t e n y i e l d s c o m p l e -

m e n t a r y b r e a k d o w n p r o d u c t s [22] m i g h t b e a

f u r t h e r a d v a n t a g e t h a t f a c i l i t a t e s t h e a n a l y s i s o f

s e q u e n c e i o n s . T h e q u e s t i o n o f d i f f e r e n t i a t i n g

t h e r m a l a n d f i e l d - i n d u c e d f r a g m e n t a t i o n r e a c t i o n s

h a s r e c e n t l y b e e n i n v e s t i g a t e d i n a d e t a i l e d m o d e l

s t u d y o n t h e f . d . f r a g m e n t a t i o n o f m e t h i o n i n e [23],

Page 8: Field Desorption Mass Spectra of Gastrine Peptides and ...zfn.mpdl.mpg.de/data/Reihe_B/34/ZNB-1979-34b-0736.pdfM. Przybylski et al. Field Desorption Mass Spectra of Oligopeptides 737

M. Przybylski et al. • Field Desorption Mass Spectra of Oligopeptides 743

u s i n g t e c h n i q u e s s u c h a s i s o t o p e l a b e l l i n g a n d h i g h

r e s o l u t i o n d a t a . F o r o l i g o p e p t i d e s , a n i m p o r t a n t

f a c t o r m i g h t b e t h e d r a s t i c a l c h a n g e s i n v o l a t i l i t y

a n d c o r r e s p o n d i n g d e s o r p t i o n r a t e s w i t h i n t h e

m o l e c u l a r s i ze r a n g e t h a t s e e m s p r a c t i c a b l e a t

p r e s e n t f o r f . d . a n a l y s i s ( p e p t i d e s w i t h u p t o 1 5 t o

20 a m i n o a c i d r e s i d u e s a s s u g g e s t e d b y W i n k l e r et al. f r o m a f . d . m a s s s p e c t r o m e t r i c s t u d y o f g l u c a g o n

[24]). T o b e t t e r u n d e r s t a n d t h e s e k e y q u e s t i o n s , f . d .

m a s s s p e c t r o m e t r i c s t u d i e s w i t h m o d e l p e p t i d e s o f

v a r i o u s s izes a r e p r e s e n t l y s u b j e c t o f f u r t h e r w o r k

i n o u r l a b o r a t o r y .

[1] K. Biemann, in G. R. Waller (ed.): Biochemical Applications of Mass Spectrometry, p. 405, Wiley -Interscience, New York 1972.

[2] P. J. Arpino and F. W. McLafferty, in F. C. Nachod, J. J. Zuekerman, and E. W. Randall (ed.): Determination of Organic Structures by Physical Methods, Vol. 6, pp. 1-89, Academic Press, New York 1976.

[3] H. R. Morris, in R. H. Pain and B. J. Smith (ed.): New Techniques in Biophysics and Cell Biology, p. 149, Wiley-Interscience, New York 1973.

[4] B. C. Das and E. Lederer, in A. Niederwieser and E. Pataki (eds.): New Techniques in Amino Acids, Peptide, and Protein Analysis, p. 175, Ann Arbor Sei. Publ., Ann Arbor 1971.

[5] H. Nau, H. J. Förster, J. A. Kelley, and K. Bie-mann, Biomed. Mass Spectrom. 2, 326 (1975).

[6] H. Nau, Angew. Chem. 88, 74 (1976); and refer-ences therein.

[7] B. G. Dawkins, P. J. Arpino, and F. W. McLaf-ferty, Biomed. Mass Spectrom. 5, 1 (1978).

[8] H. D. Beckey and H. R. Schulten, Angew. Chem. 87, 425 (1975).

[9] H. R. Schulten and H. D. Beckey, Org. Mass Spectrom. 6, 885 (1972).

[10] H. U. Winkler and H. D. Beckey, Biochem. Biophys. Res. Commun. 46, 391 (1972).

[11] S. Asante-Poku, G. W. Wood, and D. E. Schmidt (Jr.), Biomed. Mass Spectrom. 2, 121 (1975).

[12] I. Lüderwald, M. Przybylski, H. Ringsdorf, D.

Silberhorn, K. Zech, and W. Voelter, Adv. Mass Spectrom. 7 B, 1513 (1978).

[13] J. Beacham, P. H. Bentley, R. A. Gregory, G. W. Kenner, J. K. Macleod, and R. C. Sheppard, Nature (London) 209, 586 (1969).

[14] S. D. Nelson, Y. Vaishuav, M. Przybylski, 25th Int. Conference on "Mass Spectrometry and Allied Topics", Abstr. p. 509, Washington, U.S. A., 1977.

[15] W. Voelter, E. Kraas, and S. Fuchs, J. Pak. Chem. Soc., in press.

[16] S. D. Nelson, J. Hinson, and J. R. Mitchell, Biochem. Biophys. Res. Commun. 69, 900 (1976).

[17] S. D. Nelson, J. R. Mitchell, J. A. Timbrell, W. R. Snodgrass, and G. B. Corcoran, Science 193, 901 (1976).

[18] I. Lüderwald, M. Przybylski, H. Ringsdorf, D. Silberhorn, H. Kalbacher, and W. Voelter, Z. Naturforsch. 33b, 805, 809 (1978).

[19] F. W. Röllgen and H. R. Schulten, Org. Mass Spectrom. 10, 660 (1975).

[20] H. J. Veith, Angew. Chem. 88, 762 (1976). [21] M. Senn, R. Venkataraghavan, and F. W. McLaf-

ferty, J. Am. Chem. Soc. 88, 5593 (1966). [22] H. R. Schulten, in D. Glick (ed.): Methods of

Biochemical Analysis, Vol. 24, 313, D. Glick, Wiley-Interscience, New York 1977.

[23] J. van der Greef, N. M. M. Nibbering, H. R. Schulten, and W. D. Lehmann, Z. Naturforsch. 33b, 770 (1978).

[24] H. U. Winkler, R. J. Beuhler, and L. Friedman, Biomed. Mass Spectrom. 3, 201 (1976).