64
© Fraunhofer IZM Dr. Rafael Jordan, SIIT Forschungsschwerpunkt Technologien der Mikroperipherik Fraunhofer IZM Berlin Advanced Packaging for High Power LEDs Dr. Rafael Jordan SIIT

Fraunhofer IZM Berlineps.ieee.org › images › files › webinars › webniar 2 mar...© Fraunhofer IZM Dr. Rafael Jordan, SIIT Forschungsschwerpunkt Technologien der Mikroperipherik

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Fraunhofer IZM Berlin

    Advanced Packaging for High Power LEDs

    Dr. Rafael Jordan

    SIIT

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Agenda

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Thermo Compression

    • Junction Temperature Measurements

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Optics

    Cooling

    Board

    Phosphor

    Submount

    Underfill

    Filling

    Wire Bond

    1st & 2nd Level

    Interconnect

    Chip

    Power

    LED Packaging Taks

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Agenda

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Thermo Compression

    • Junction Temperature Measurements

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Avago Excelitas

    Glued Moduls

    ~ 1-2

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Rth,int1

    Rth,int2

    Rth,TIM dA

    RRbulk

    theffth

    10,,

    2int,,1int,, thTIMththeffthRRRR

    0 200 400 600 800 10000,0

    0,5

    1,0

    1,5

    2,0

    2,5

    Rth0

    Rth

    ,eff [

    K/W

    ]

    BLT [µm]

    TIM ~ 1/slop

    Linear function

    Q

    TR

    effth ,

    Characterization of Thermal Interface Materials

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Nanotechnologies to improve heat transfer

    Multi modal

    particles

    Polymer fibres &

    metallic alloy Surface micro-

    structuring

    Nano sponge

    interfaces

    Vertically aligned

    CNT

    Nano-scale optimization

    Increase thermal

    conductivity

    Increase thermal

    conductivity

    Reduce BLT Reduce

    interface resistance

    Improve phonon transfer

    Increase thermal

    conductivity

    TIM optimization Surface optimization Nano-scale optimization

    Challenges for Glued Interfaces

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    overview focus diebond

    Failure Analyses Glued Die Bond

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    0,0 0,5 1,0 1,5 2,0

    0

    5

    10

    15

    20

    A11

    F1

    F3

    F7

    F8

    F9

    F16

    I [m

    A]

    U [V]

    F9

    Failure Analyses by Diode Characteristic

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Agenda

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Thermo Compression

    • Junction Temperature Measurements

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    OSRAM

    Soldered Moduls

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Wireless GaN - Chips

    wire

    fo

    r p

    rod

    uct co

    mp

    atibili

    ty, b

    ut n

    ot e

    sse

    ntie

    ll

    Cree DA1000 OSRAM UX:3

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Supplier B 40 mil (LM) Supplier B 24 mil (LM)

    Wetability of LED Dice

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Supplier A old design Supplier A new design

    Wetability of LED Dice

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Supplier A new design Supplier A new design

    Wetability of LED Dice

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    217°C

    e1

    278°C

    e2

    252°C

    p: +L1 L1+Au

    Au-rich Sn-rich

    AuSn Phase Diagram

    ~ 60

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with AuSn no Activating Atmosphere

    x-ray

    x-ray LED-Module 1 x-ray LED-Module 2

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with AuSn no Activating Atmosphere

    cross section

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with AuSn no Activating Atmosphere

    cross section close up look

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    x-ray LED-Module 1 x-ray LED-Module 2

    Copper Based LED on Silicon Substrate Thermode Soldering with AuSn no Activating Atmosphere

    x-ray

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Thermode Soldering with AuSn no Activating Atmosphere

    cross section

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Thermode Soldering with AuSn no Activating Atmosphere

    cross section close up look

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    ~ 30

    SnAgCu Phase Diagram

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with SnAg with Activating Atmosphere

    x-ray

    x-ray LED-Module 1 x-ray LED-Module 2

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with SnAg with Activating Atmosphere

    cross section

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with SnAg with Activating Atmosphere

    cross section close up look

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    • AlN/Si test board

    for optical,

    electrical, and

    thermal LED

    characterisation

    Exsample (rigth):

    • 8 SemiLeds LEDs

    soldered on AlN

    with AuSn

    BMBF-Projekt

    Nanolux - White

    LEDs for General

    Lighting

    COB assembly LEDs on AlN

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    OSRAM LEDs on AlN MC-PCB Subassembly mit Drahtbonds

    Test Assembly with OSRAM LEDs

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler, 600 W

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler, 600 W

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler, x-ray

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Agenda

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Thermo Compression

    • Junction Temperature Measurements

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Chip to Chip

    Chip to copper

    Assembly with Ag Sintering

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    SEM Pictures

    Ag-Powder

    after drying

    Ag-Powder

    heat without force

    Ag-powder

    heat and force

    Ag Sintering

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Ag Sintered Interconnects comparing of two suppliers Cross Section with SEM

    Cu

    Ag Bond Ag Bond

    Ag Plated Layer Ag Plated Layer

    preparation effect AlN

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    well defined

    interface

    Ag plated

    Ag sintered

    Ag Sintered Interconnection, FIB Analysis

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Ag Sintered Interconnection, FIB Analysis

    small pores almost

    disoluted ~ 370

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler, 1200 W

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Shear Forces for Pressure Less Sintered LEDs

    Temperature Chip A

    on Ceramic

    Chip B

    on Ceramic

    Chip A

    on IMS

    Chip B

    on IMS

    225 °C (8,4 ± 2,1) N (8,8 ± 3,0) N (7,6 ± 3,1) N (7,5 ± 1,5) N

    275 °C < 0,5 N (8,3 ± 1,9) N < 2,0 N (12,7 ± 2,9) N

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Pressure Less Sintering pro/contra

    Standard Equipment (Screen printer + P&P + Reflow)

    No mechanical fixing of parts during sintering

    No special atmosphere during sintering

    Lower Shear forces than sintered/soldered dice

    Metallization of die bond pad must be suitable

    Smaller process windows (especially regarding drying)

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Agenda

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Thermo Compression

    • Junction Temperature Measurements

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    soldering

    annealing

    Cu

    Cu6Sn5

    Cu3Sn

    Si

    Cu3Sn

    TLPB using electroplated Cu/Sn

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    20 wt.-% Cu

    40 wt.-% Cu

    ( Cu6Sn5)

    Sn

    Cu Cu6Sn5

    Cu3Sn

    40 wt.-% Cu (Cu6Sn5)

    After soldering

    Pore

    40 wt.-% Cu

    TLPS – SAC-paste plus Cu spheres

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Si-Chip

    DAB

    Proprietary Process and Paste

    TLPS – SAC-paste plus 40 wt.-% Cu spheres

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Agenda

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Thermo Compression

    • Junction Temperature Measurements

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    LumiLEDs

    Modules Assembled by Themocompression

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Thermocompression Bonding with Stud Bumps

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Thermocompression Bonding with electroplated Bumps

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    densified

    zone

    bonding

    zone

    Flip Chip Sintering

    80% pore

    volume

    13 nm pore size

    Potential Application:

    - low pressure, low temperature bonding (MEMS,

    laser)

    - compressible bonding (acommodate topography)

    - containment for medical applications

    - large surface area (sensors, catalytics)

    - bio compatible (e.g. neuronal interface)

    - optical devices (plasmonics, SERS)

    H. Oppermann, M. Hutter, R. Jordan, et al. (Fraunhofer IZM)

    Nano - Sponge

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Agenda

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Thermo Compression

    • Junction Temperature Measurements

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Critical Value is the Junction Temperature

    TJ?

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Junction Temperature Measurement Principles

    1) Wavelength shift

    The recombination of the electron from the conducting band (n-type

    semiconductor) with the holes of the valence band (p-type) is a light emitting

    process. As the wavelength is directly correlated to the recombination energy and

    therefore depending on the forward voltage, the wavelength is increasing with

    decreasing forward voltage and increasing temperature.

    2) Forward Voltage

    The Forward voltage is depending on the electron band gap and the Boltzmann

    distribution. The Boltzmann distribution is temperature depending and therefore

    the voltage is decreasing with increasing temperature.

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Concept of measuring Tj with the forward voltage

    0 1 2 3 4

    0

    50

    U [V]0 1 2 3 4

    0

    50

    I [mA]

    U [V]

    Uv UvI

    II

    IdealRp

    Ri

    Real

    I [mA]

    An ideal light emitting diode is

    closed up to a certain voltage, the

    forward voltage, and afterwards

    open without any influence of the

    current.

    The real LED has a different behavior and

    can be described in an easy equivalent

    circuit diagram as shown above. It is

    influenced by resistors parallel and in

    serious to the junction.

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    The measurement current must be kept small, not to heat the die up, but out of the

    horizontal area of the UI characteristic, as otherwise the recalculation of the

    temperature will be imprecise. As Rp and Ri are different for every die, even within

    one lot, each LED must be calibrated.

    20 25 30 35 40 45 50 55 60 65 70 75 80 85

    2,47

    2,48

    2,49

    2,50

    2,51

    2,52

    2,53

    2,54

    2,55

    2,56

    2,57

    2,58

    2,59

    2,60

    2,61

    2,62

    2,63

    2,64

    T = -t1 * ln (U/A1)

    03B 2,637: T = -1152,913 ln(U/2,66220)

    16B 2,620: T = -1398,438 ln(U/2,64008)

    19B 2,640: T = -1220,828 ln(U/2,67310)

    08B 2,642: T = -1179,331 ln(U/2,66607)

    11B 2,634: T = -1423,025 ln(U/2,65662)

    Sp

    an

    nu

    ng

    [V

    ]

    Temperatur [°C]

    2,4 2,6 2,8

    0,000

    0,001

    0,002

    0,003

    0,004

    0,005

    Str

    om

    [A

    ]

    Spannung [V]

    testing range

    Measuring Tj with the forward voltage, calibration

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Measurement Setup

    The internal resistance of the LED is strongly current depending and due to further

    distortions of higher order it is not possible to recalculate the pure forward voltage

    under running conditions. The running current must be lowered immediately to the

    measuring current, to measure the calibrated forward voltage without cooling down

    the LED. A possible circuit can look like the following.

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Measurement Interpretation

    Even within the realized switching time below 10 µs, a cooling of the LED is visible.

    Therefore the record transient is fitted with a biexponential curve with offset. The first

    half-value period is related to the thermal equilibration of the junction with the LED

    die, the second for the equilibration of the die with the substrate. The offset is

    simplified sum for the equilibration with the ambient and the final forward voltage at

    ambient temperature.

    0 1000

    2,55

    2,56

    2,57

    Sp

    an

    nu

    ng

    [V

    ]

    Meßpunkt [Einheit]

    0400mA = 2,58783 V = 25,1 °C

    0 1000 2000

    2,6

    2,8

    3,0

    3,2

    Sp

    an

    nu

    ng

    [V

    ]

    T [µs]

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Example of a Flat Panel Light Source

    0 200 400 600 800 1000 1200

    2,505

    2,510

    2,515

    2,520

    2,525

    2,530

    2,535

    LED@010mA at secundary current = 010mA = 2,535113 V = 24,16 °C

    LED@050mA at secundary current = 050mA = 2,531410 V = 26,44 °C

    LED@080mA at secundary current = 080mA = 2,528052 V = 28,51 °C

    LED@120mA at secundary current = 120mA = 2,522847 V = 31,72 °C

    LED@120mA at secundary current = 080mA = 2,525506 V = 30,08 °C

    LED@150mA at secundary current = 150mA = 2,518709 V = 34,28 °C

    LED@175mA at secundary current = 175mA = 2,515761 V = 36,11 °C

    LED@200mA at secundary current = 200mA = 2,511649 V = 38,66 °C

    LED@225mA at secundary current = 225mA = 2,508028 V = 40,91 °C

    LED@250mA at secundary current = 250mA = 2,503836 V = 43,52 °C

    Vo

    lta

    ge

    [V

    ]

    Time [µs]

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Test Szenario:

    LED auf MC-PCB, MC-PCB auf Kühlkörper, T = 25,0

    C

    I1 = 100 mA, I2 = 350 mA, I3 = 700 mA

    Thermal comparative study gluing/soldering/sintering

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    0,000 0,002 0,0042,34

    2,36

    2,38

    2,40

    2,42

    2,44

    sample 1

    sample 2

    sample 3

    U [V

    ]

    t [s]

    Thermal comparative study gluing/soldering/sintering

    e.g. blue LED glued

    I1 = 100 mA

    I2 = 350 mA

    I3 = 700 mA

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Thermal comparative study: blue LED

    25.00

    30.00

    35.00

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    100.00 300.00 500.00 700.00 900.00 1100.00 1300.00 1500.00 1700.00 1900.00

    T [

    °C]

    thermal load (optical emission corrected) [mW]

    blue glued

    blue soldered

    blue sintered

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    25.00

    30.00

    35.00

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    100.00 300.00 500.00 700.00 900.00 1100.00 1300.00 1500.00 1700.00 1900.00

    T [

    °C]

    thermal load (optical emission corrected) [mW]

    'white' glued

    'white' soldered

    'white' sintered

    Thermal comparative study: „white“ LED

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    25.00

    30.00

    35.00

    40.00

    45.00

    50.00

    55.00

    60.00

    65.00

    70.00

    100.00 300.00 500.00 700.00 900.00 1100.00 1300.00 1500.00 1700.00 1900.00

    T [

    °C]

    thermal load (optical emission corrected) [mW]

    red glued

    red soldered

    red sintered

    Thermal comparative study: red LED

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    Air

    Silicon-oil

    Helium

    Heat sink LED Bulb Simulation

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt

    Technologien der Mikroperipherik

    LED Bulb Simulation