67
© Fraunhofer IZM Dr. Rafael Jordan, SIIT Forschungsschwerpunkt Technologien der Mikroperipherik Fraunhofer IZM Berlin Entwicklungstrends im LED Packaging Dr. Rafael Jordan SIIT

Fraunhofer IZM Berlin · 2013. 6. 7. · © Fraunhofer IZM Dr. Rafael Jordan, SIIT Forschungsschwerpunkt Technologien der Mikroperipherik Fraunhofer IZM Berlin Entwicklungstrends

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Fraunhofer IZM Berlin

    Entwicklungstrends im LED Packaging

    Dr. Rafael Jordan

    SIIT

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Agenda

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Optics

    Cooling

    Board

    Phosphor

    Submount

    Underfill

    Filling

    Wire Bond

    1st & 2nd Level

    Interconnect

    Chip

    Power

    LED Packaging Tasks

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

    Agenda

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Development trends in assembly technology

    Source: www.chipscalereview.com; “Waves of electronic packaging”; Amkor (new colors applied to graph, Fraunhofer IZM)

    1980 1985 1990 1995 2000 2005 2010 2015 2020

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Percent

    Bare Die (COB)

    Through Hole

    (TO & DIP)

    Surface Mount

    (SO, PLCC, QFP, TAB)

    Array

    (Flip Chip, BGA,

    CSP, Wafer CSP, PGA)

    3D

    (Stacked, MCM)

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Typical LED COB Modules

    Source: www.chipscalereview.com; “Waves of electronic packaging”; Amkor (new colors applied to graph, Fraunhofer IZM)

    lightinthebox.com

    pollin.de

    http://cloud6.lbox.me/images/v/201208/diy-20w-1600-1800lm-2800-3200k-warmweisses-licht-cob-led-strahler-mit-loch-30-34v_nufxyb1345794438856.jpg

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Challenges of COB applications compared to SMD

    Selection of appropriate surface metallization and materials compatible with COB and SMT process steps

    Selection of process sequence (COB prior SMT or vice versa)

    Small pad geometries (die bond pad size 200 x 120 µm and smaller)

    Handling of small dies (down to 200 x 200 µm²) on wafer tape

    Availability of bare dies

    Pad routing vs. pad size vs. minimum pitch

    Surface cleanliness (avoid any possible contamination on surfaces, e.g. fingerprints, cleaning residues, outgassings, flux residues,oxides)

    Surface topography (no scratches, no brush marks, low roughness Ra < 0.5 µm, no local defects on bonding pads)

    Lifetime and reliability of silicone encapsulated wire bonds (interaction of loop strength, loop shape, thermal load, vibration load, material selection)

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    GaAs Flip-Chip

    Reflector

    active area

    p-contact

    p-GaAlAs

    n-GaAlAs

    n-contact

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Wireless GaN - Chips

    wire

    fo

    r p

    rod

    uct co

    mp

    atibili

    ty, b

    ut n

    ot e

    sse

    ntie

    ll

    Cree DA1000 OSRAM UX:3

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

    Agenda

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Rth,int1

    Rth,int2

    Rth,TIM dA

    RRbulk

    theffth

    10,,

    2int,,1int,, thTIMththeffthRRRR

    0 200 400 600 800 10000,0

    0,5

    1,0

    1,5

    2,0

    2,5

    Rth0

    Rth

    ,eff [

    K/W

    ]

    BLT [µm]

    TIM

    ~ 1/slop

    Linear function

    Q

    TR

    effth

    ,

    Characterization of Thermal Interface Materials

    ~ 1-2 𝑾

    𝒎∙𝑲

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Nanotechnologies to improve heat transfer

    Multi modal

    particles

    Polymer fibres &

    metallic alloy Surface micro-

    structuring

    Nano sponge

    interfaces

    Vertically aligned

    CNT

    Nano-scale optimization

    Increase thermal

    conductivity

    Increase thermal

    conductivity

    Reduce BLT Reduce

    interface resistance

    Improve phonon transfer

    Increase thermal

    conductivity

    TIM optimization Surface optimization Nano-scale optimization

    Challenges for Glued Interfaces

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Cross Section LED on Leadframe Focus on Diebond

    Failure Analyses Glued Die Bond

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Failure Analyses by Diode Characteristic

    0,0 0,5 1,0 1,5 2,0

    0

    5

    10

    15

    20

    A11

    F1

    F3

    F7

    F8

    F9

    F16

    I [m

    A]

    U [V]

    F9

    Cross Section LED on Leadframe U/I - Characteristics

    pn-junction

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Agenda

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Supplier B 40 mil (LM) Supplier B 24 mil (LM)

    Wetability of LED Dice

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Supplier A old design Supplier A new design

    Wetability of LED Dice

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Supplier A new design Supplier A new design

    Wetability of LED Dice

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    217°C

    e1

    278°C

    e2

    252°C

    p: he+L1 L1+Aue

    Au-rich Sn-rich

    AuSn Phase Diagram

    ~ 60 𝑾

    𝒎∙𝑲

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with AuSn no Activating Atmosphere x-ray

    x-ray LED-Module 1 x-ray LED-Module 2

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with AuSn no Activating Atmosphere cross section

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    x-ray LED-Module 1 x-ray LED-Module 2

    Copper Based LED on Silicon Substrate Thermode Soldering with AuSn no Activating Atmosphere x-ray

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Thermode Soldering with AuSn no Activating Atmosphere cross section

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Thermode Soldering with AuSn no Activating Atmosphere cross section close up look

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    ~ 30 𝑾

    𝒎∙𝑲

    SnAgCu Phase Diagram

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with SnAg with Activating Atmosphere x-ray

    x-ray LED-Module 1 x-ray LED-Module 2

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Copper Based LED on Silicon Substrate Reflow Soldering with SnAg with Activating Atmosphere cross section

    Cross Section Chip on Silicon

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    • AlN/Si test board

    for optical,

    electrical, and

    thermal LED

    characterisation

    Exsample (rigth):

    • 8 SemiLeds LEDs

    soldered on AlN

    with AuSn

    BMBF-Projekt

    Nanolux - White

    LEDs for General

    Lighting

    COB assembly LEDs on AlN

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    OSRAM LEDs on AlN Subassembly with wire bonds

    Test Assembly with OSRAM LEDs

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler 600 W

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler, 600 W

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler x-ray

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Agenda

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Chip to Chip

    Chip to copper

    Assembly with Ag Sintering

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    SEM Pictures

    Ag-Powder

    after drying

    Ag-Powder

    heat without force

    Ag-powder

    heat and force

    Ag Sintering

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Ag Sintered Interconnects comparing of two suppliers Cross Section with SEM

    Cu

    Ag Bond Ag Bond

    Ag Plated Layer Ag Plated Layer

    preparation effect AlN

    supplier A supplier B

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Ag Sintered Interconnection, FIB Analys is

    well defined

    interface

    Ag plated

    Ag sintered

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Ag Sintered Interconnection, FIB Analys is

    small pores almost

    disoluted ~ 370 𝑾

    𝒎∙𝑲

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    OSRAM LED Dice on metallized AlN Watercooler, 1200 W

    pressure less sintering

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Shear Forces for Pressure Less S intered LEDs

    Temperature Chip A on Ceramic

    Chip B on Ceramic

    Chip A on IMS

    Chip B on IMS

    225 °C (8,4 ± 2,1) N (8,8 ± 3,0) N (7,6 ± 3,1) N (7,5 ± 1,5) N

    275 °C < 0,5 N (8,3 ± 1,9) N < 2,0 N (12,7 ± 2,9) N

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Pressure Less S intering pro/contra

    Standard Equipment (Screen printer + P&P + Reflow)

    No mechanical fixing of parts during sintering

    No special atmosphere during sintering

    Lower Shear forces than sintered/soldered dice

    Metallization of die bond pad must be suitable

    Smaller process windows (especially regarding drying)

    http://www.excelitas.com/Index.aspx

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Agenda

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    soldering

    annealing

    Cu

    Cu6Sn5

    Cu3Sn

    Si

    Cu3Sn

    TLPB us ing electroplated Cu/Sn

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    20 wt.-% Cu

    40 wt.-% Cu

    ( Cu6Sn5)

    Sn

    Cu h Cu6Sn5

    e Cu3Sn

    40 wt.-% Cu (Cu6Sn5)

    After soldering

    Pore

    40 wt.-% Cu

    TLPS – SAC-paste plus Cu spheres

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Si-Chip

    DAB

    Proprietary Process and Paste

    TLPS – SAC-paste plus 40 wt.-% Cu spheres

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Thermocompress ion Bonding with Stud Bumps

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Thermocompress ion Bonding with electroplated Bumps

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    densified

    zone

    bonding

    zone

    Flip Chip Sintering

    80% pore

    volume

    13 nm pore size

    Potential Application:

    - low pressure, low temperature bonding (MEMS,

    laser)

    - compressible bonding (acommodate topography)

    - containment for medical applications

    - large surface area (sensors, catalytics)

    - bio compatible (e.g. neuronal interface)

    - optical devices (plasmonics, SERS)

    H. Oppermann, M. Hutter, R. Jordan, et al. (Fraunhofer IZM)

    Nano - Sponge

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Agenda

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Critical Value is the Junction Temperature

    TJ?

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    The measurement current must be kept small, not to heat the die up, but out of the

    horizontal area of the UI characteristic, as otherwise the recalculation of the

    temperature will be imprecise. As Rp and Ri are different for every die, even within

    one lot, each LED must be calibrated.

    20 25 30 35 40 45 50 55 60 65 70 75 80 85

    2,47

    2,48

    2,49

    2,50

    2,51

    2,52

    2,53

    2,54

    2,55

    2,56

    2,57

    2,58

    2,59

    2,60

    2,61

    2,62

    2,63

    2,64

    T = -t1 * ln (U/A1)

    03B 2,637: T = -1152,913 ln(U/2,66220)

    16B 2,620: T = -1398,438 ln(U/2,64008)

    19B 2,640: T = -1220,828 ln(U/2,67310)

    08B 2,642: T = -1179,331 ln(U/2,66607)

    11B 2,634: T = -1423,025 ln(U/2,65662)

    Sp

    an

    nu

    ng

    [V

    ]

    Temperatur [°C]

    2,4 2,6 2,8

    0,000

    0,001

    0,002

    0,003

    0,004

    0,005

    Str

    om

    [A

    ]

    Spannung [V]

    testing range

    Measuring Tj with the forward voltage, calibration

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Measurement Interpretation

    Even within the realized switching time below 10 µs, a cooling of the LED is visible.

    Therefore the record transient is fitted with a biexponential curve with offset. The first

    half-value period is related to the thermal equilibration of the junction with the LED

    die, the second for the equilibration of the die with the substrate. The offset is

    simplified sum for the equilibration with the ambient and the final forward voltage at

    ambient temperature.

    0 1000

    2,55

    2,56

    2,57

    Sp

    an

    nu

    ng

    [V

    ]

    Meßpunkt [Einheit]

    0400mA = 2,58783 V = 25,1 °C

    0 1000 2000

    2,6

    2,8

    3,0

    3,2

    Sp

    an

    nu

    ng

    [V

    ]

    T [µs]

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Example of a Flat Panel Light Source

    0 200 400 600 800 1000 1200

    2,505

    2,510

    2,515

    2,520

    2,525

    2,530

    2,535

    LED@010mA at secundary current = 010mA = 2,535113 V = 24,16 °C

    LED@050mA at secundary current = 050mA = 2,531410 V = 26,44 °C

    LED@080mA at secundary current = 080mA = 2,528052 V = 28,51 °C

    LED@120mA at secundary current = 120mA = 2,522847 V = 31,72 °C

    LED@120mA at secundary current = 080mA = 2,525506 V = 30,08 °C

    LED@150mA at secundary current = 150mA = 2,518709 V = 34,28 °C

    LED@175mA at secundary current = 175mA = 2,515761 V = 36,11 °C

    LED@200mA at secundary current = 200mA = 2,511649 V = 38,66 °C

    LED@225mA at secundary current = 225mA = 2,508028 V = 40,91 °C

    LED@250mA at secundary current = 250mA = 2,503836 V = 43,52 °C

    Vo

    lta

    ge

    [V

    ]

    Time [µs]

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Test Szenario:

    LED auf MC-PCB, MC-PCB auf Kühlkörper, T = 25,0°C

    I1 = 100 mA, I2 = 350 mA, I3 = 700 mA

    Thermal comparative study of 1 st Level Interconnect (gluing/soldering/s intering)

    Water Cooler

    Board

    1st Level Interconnect

    Chip 2nd Level Interconnect

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    0,000 0,002 0,0042,34

    2,36

    2,38

    2,40

    2,42

    2,44

    sample 1

    sample 2

    sample 3

    U [V

    ]

    t [s]

    Thermal comparative study gluing/soldering/s intering e.g. blue LED glued

    I1 = 100 mA

    I2 = 350 mA

    I3 = 700 mA

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    25,00

    30,00

    35,00

    40,00

    45,00

    50,00

    55,00

    60,00

    65,00

    70,00

    100,00 300,00 500,00 700,00 900,00 1100,00 1300,00 1500,00 1700,00 1900,00

    T [

    °C]

    thermal load (optical emiss ion corrected) [mW]

    'white' glued

    'white' soldered

    'white' sintered

    Thermal comparative study: „white“ LED

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Agenda

    • Chip on Board

    • Gluing

    • Soldering

    • Sintering

    • Transient Liquid Phase Bonding/Soldering

    • Junction Temperature Measurements

    • Silicon Interposer

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Variety of S ilicon Approaches

    V1

    V2

    V3

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Thermomechanical Aspect of TSVs

    Scallops

    Pumping

    Through Silicon Via (TSV)

    TSV-Ø 6 µm

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Thermal Flow Simulation of TSVs

    Johannes Jaeschke

    silicon interposer with through silicon vias

    Cu - via Si substrate

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Thermal S imulation of Vias

    Silikon ausgeblendet Gesamtansicht

    Unterseite LED

    [°C]

    Johannes Jaeschke

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    4,5

    2 m

    m

    4,52 mm

    0,1

    0 m

    m

    0,16 mm

    1,00 mm

    Si-Board von 100 µm bis 200 µm variieren

    0,5

    0 m

    m

    3,5

    2 m

    m

    4,5

    2 m

    m

    Polymer oder Si-Rahmen hat eine Dicke von 300 µm

    Approach for 8 Die Module

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Mechanical Analys is for Production

    Modell 1 Modell 2

    Johannes Jaeschke

    Will the thin silicon bottom layer withstand the

    quick pick & place process during assambly?

    (force is only applied on the outside ring, no support in the center)

    Parameter Variations:

    thickness of bottom layer

    technique of solder paste application

    applied force

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Mechanical Modell (vertical deformation not to scale)

    Si-tickness: 100 µm Si-thickness: 200 µm

    (DPcurrent)

    Si-thhickness: 100 µm diameter: 50 µm

    Eq. stress

    Total deformation

    Eq. stress

    Total deformation

    (DP37)

    Si-thickness: 100 µm diameter: 3000 µm

    Johannes Jaeschke

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Adapted Design

    TOP

    1,00 mm

    0,10 mm 0,20 mm0,10 mm

    2,10 mm

    3,50 mm

    2,1

    0 m

    m

    0,2

    0 m

    m

    0,4

    0 m

    m

    2,9

    0 m

    m

    1,0

    0 m

    m

    Bottom

    0,2

    0 m

    m

    0,4

    0 m

    m

    0,1

    0 m

    m

    2,5

    0 m

    m

    2,9

    0 m

    m

    0,40 mm

    2,30 mm0,10 mm

    3,50 mm

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    Air

    Silicon-oil

    Helium

    Heat sink LED Bulb Simulation

  • © Fraunhofer IZM

    Dr. Rafael Jordan, SIIT

    Forschungsschwerpunkt Technologien der Mikroperipherik

    LED Bulb Simulation