15
GOLDEN RICE KONZEPT UND AUSBLICK

Golden Rice – konzept und ausblick

Embed Size (px)

DESCRIPTION

2-3 Millionen Menschen sterben jedes Jahr an Vitamin A-Mangel, 500.000 werden blind. Der Goldene Reis könnte viele dieser Menschen retten. Wie und warum erklärt diese Präsentation.

Citation preview

Page 1: Golden Rice – konzept und ausblick

GOLDEN RICE KONZEPT UND AUSBLICK

Presenter
Presentation Notes
Beyer and Pot
Page 2: Golden Rice – konzept und ausblick

792 Million en Menschen sind unterernährt

10 Millionen Kinder sterben jährlich an Mangelernährung

2-3 Millionen sterben jedes Jahr aufgrund von Vitamin-A-Mangel, 500.000 werden blind

400 Millionen Arme essen („nur“) Reis

Page 3: Golden Rice – konzept und ausblick

Vitamin A – ohne geht es nicht

Sehen Hautzellen-Wachstum, -

Reparatur Knochenwachstum Fortpflanzung und Embryo-

nalentwicklung Erhaltung der Augenstruktur Oberflächenzellen der

Atmung, des Urinal und Verdauungstraktes

Genregulierung beiErwachsenen

Immunsystem

Presenter
Presentation Notes
Deficiency effects: Night blindness, blindness Diminishes ability to fight infections increase children's risk of developing respiratory and diarrheal infections decrease growth rate mutations/reproductional effects
Page 4: Golden Rice – konzept und ausblick

Vitamin A biosyntheseIm Reis fehlt nur der mittlere Teil der Vit A-Synthese:- Phytoene Synthase,- Phytoene Desaturase- Zeta-Carotene Desaturase

Presenter
Presentation Notes
Es zeigte sich nach weiteren Untersuchungen, dass eine im Reisendosperm aktive β-Lycopinzyklase vorhanden ist, die das Lycopin in ausreichender Geschwindigkeit zu β-Carotin umsetzt.
Page 5: Golden Rice – konzept und ausblick

Einfügen in die Pflanzenzelle:Agrobakterium tumefaciens

Page 6: Golden Rice – konzept und ausblick

So sieht das aus...

Page 7: Golden Rice – konzept und ausblick

Das GR II-Konstrukt

Endosperm-spezifischer Promotor Gt1p

Transit-Peptid tp damit es in den Plastiden geht

Nos-Terminator beendet Synthese

carotene-desaturase von Erwinia uredovora crtI, die mehrere Schritte gleichzeitig katalysiert

Mais phytoene-Synthase

Mais ubiquitin-Promotor ubi1p

phosphomannose-isomerase marker-System „Positech“

RB and LB: RB, T-DNA rechte/linke Grenzsequenz

Presenter
Presentation Notes
NOS Terminator �A termination codon (sequence of DNA) that is frequently utilized in genetic engineering of plants to "terminate" expression of the inserted gene (i.e., to halt synthesis of desired protein in the plant, after the desired protein synthesis has occurred). The NOS acronym stands for nopaline synthase. The NOS terminator was originally extracted from the bacteria species Agrobacterium tumefaciens. Gt1p-promotor to avoid observed lutein underexpression Glutelins are soluble in dilute acids or bases, detergents, chaotropic or reducing agents. They are generally prolamin-like proteins in certain grass seeds. glutenin is the most common glutelin as it is found in wheat and is responsible from some of the refined baking properties in bread wheat. The glutelins of barley and rye[1] have also been identified. Ubi 1p maize ubiquitin-promotor crtI, carotene-desaturase from Erwinia uredovora; The bacterial crt1 gene was an important inclusion to complete the pathway, since it can catalyze multiple steps in the synthesis of carotenoids, while these steps require more than one enzyme in plants tp, transit peptide of the pea ribulose-bisphosphate carboxylase small subunit�The exogenous lyc gene has a transit peptide sequence attached so that it is targeted to the plastid, where geranylgeranyl diphosphate formation occurs
Page 8: Golden Rice – konzept und ausblick

Der neue „Golden Rice“

Golden Rice bis zu 37 µg/g Karotenoid von denen 31 µg/g β-Karoticarotine (in der erstenGeneration des Golden Rice 1.6 µg/g )

$3.00 - 19.40 daly (Kosten um ein Leben zu retten) – von $200 an ist das kosteneffektiv (World bank)

Indien: 5,000-40,000 Kinder könnten pro Jahr gerettet werden - alle 14 Minuten ein Leben

Page 9: Golden Rice – konzept und ausblick

Kritik

Golden Rice könntewilden Reis für immer“verunreinigen”

Bessere Lösungen gegenVitamin-A-Mangel

Fördert einseitige Ernährung Nur für die Einführung von GVO Unbekannte Nebeneffekte Bioverfügbarkeit, Lagerungseffekte

senken Vitamin-A-Gehalt

Page 10: Golden Rice – konzept und ausblick

Spurenelemente und Bioverfügbarkeit Spuren-

elemente verbessern die Bodenqualität

Verschiedenste Faktoren bestimmen ihre Bioverfügbar-keit

Viel Züchtungs.-potential

Page 11: Golden Rice – konzept und ausblick

Status und Ausblick

Einführung auf denPhilippinen 2012, danach Bangladesch

Ertrag: circa 5t – gering? Lagerung – abhängig von den ZuchtsortenUmwandlungseffizienz – erste Experimente erfolgreich

Goldener Reis mit zusätzlicherBiofortifizierung –Vtamin E, Eisen und Zink, qualitativhochwertige Proteine und essentielleAminosäuren

Page 12: Golden Rice – konzept und ausblick

Personalisierte Medizin

Zukunftstrend: personalisierteErnährung fürproblematischePunkt-mutationen

Nutrigenomics: Verbindung von Ernährungs-konzepten und genetischenVeranlagungen -persnalisierteErnährungs-empfehlungen

Presenter
Presentation Notes
Oxidative stress in apoptotic pathways in heart disease -> Carotinoids as antioxidants�2 SNPs in Methylene Tetrahydrofolate Reductase Gene – Risk for venous thromboembolic disease, ischemic arterial disease, neural tube defects folic acid supplements Antioxidant nutrients are believed to play a role in the prevention and treatment of a variety of chronic diseases, ranging from asthma to cardiovascular disease (CVD) and cancer. The proposed mechanism by which antioxidants protect cells from oxidative stress is by scavenging free radicals and halting lipid peroxidation chain reactions, which can cause DNA damage.[2]
Page 13: Golden Rice – konzept und ausblick

Was getan werden sollte Verbreiten von

biofortifiziertenNahrungsmitteln in Afrika

RegulatorischeProzesseadaptieren

Verschiebung deröffentlichenMeinung

Verminderung derProfitorientierungvon Forschung und Landwirtschaft

Nicht (nur) Bio sondern Qualitätetablieren

Page 14: Golden Rice – konzept und ausblick

Sources

All Slides: Salim Al-Babili and Peter Beyer, „Golden Rice – five years on the road – five years to go?“, Review: Trends in Plant Science, Vol. 10 No. 12 December 2005Roukayatou Zimmermann, Matin Qaim: „Potential health benefits of Golden Rice – a Philippine case study“ – Food policy 29 (2004)Ross M. Welch, Robin D. Graham: „Breeding for micronutrients in staple food crops from a human nutrition perspective“, Journal of Experimental Botany, Vol. 55, No. 396Peter Bayer et al.: „Golden Rice: Indroducing the β-Carotene Biosynthesis Pathway into Rice Endosperm by Genetic Engineering to Defeat Vitamin A Defiency“, Symposium The Journal of Nutrition, 2002 American Society for Nutritional Science

Slide 1: The Golden Rice project

Slide 2: Google Earth, Terrametrics, DigitalGlobeUndata, www.thematicmapping.org

Slide 3: http://www.cehjournal.org/extra/40_15_01.html , Photos: Simon Franken, Allen Foster, Donald McLaren & Gordon Johnson Alfred Sommer (ophthalmologist) http://www.jhsph.edu/publichealthnews/press_releases/sommer_vitA.html

Slide 7: DER SPIEGEL 48/2008 http://www.spiegel.de/media/0,4906,19439,00.pdf„Kampagne für gentechnisch veränderten Reis am Scheideweg“ Christoph Then, www.scouting-biotechnology.net, Januar 2009, im Auftrag von foodwatch e. V. http://www.foodwatch.de/e10/e1026/e19431/e23453/GoldenRice_deutsch_final_ger.pdf„All that glitters is not Gold: The false hope of Golden Rice“, Greenpeace, May 2005, http://www.greenpeace.org/raw/content/international/press/reports/all-that-glitters-is-not-gold.pdf

Slide 9: http://www.goldenrice.org/Content3-Why/why3_FAQ.html

Slide 10:

Page 15: Golden Rice – konzept und ausblick

The Positech-system

Certain simple sugars such as mannose cannot generally be utilised as an energy source by many plants like maize, potato or sugar beet, when grown in tissue culture. However, transformed plant cells containing the gene that encodes for the enzyme phosphomannose isomerase (PMI) are able to convert mannose-6-phosphate to fructose-6-phosphate and use it as an energy source. When grown on a medium containing mannose as a sole sugar source, only transformed cells that produce - or express - the PMI enzyme will grow.When the gene that encodes for the PMI enzyme, called ‘manA’, is used as a selectable marker, the end product is a common sugar.This system, called ‘Positech’, is currently being used in research on maize, wheat, barley, sugar beet and vegetables. Positech offers an effective alternative to antibiotic resistance or herbicide tolerance marker genes in many crops.

Safety of the Positech marker The manA gene is naturally present and expressed in mammals. Therefore, the metabolites

produced by the Positech system are already widely present. There have been no observed agronomic differences, such as yield, compared with equivalent

conventional maize varieties. As part of the ongoing safety assessment of the Positech system, the following results were found:

No measurable allergenic potential was found. Glycoprotein profiles remained the same in transformed plants. Transgenic maize using Positech was indistinguishable from conventional maize when analysed for moisture, ash, fibre, fat, protein, beta-carotene, xanthophylls and vitamin C. No adverse effects of the PMI enzyme were found during an acute oral mouse toxicity study.