56
Mundflora des Menschen Hintergrundinformation zum Präparationsabend in der MGW 2014 Präparate: Abstrich von Zahnplaque Ausstrich von Lactobazillus casei (aus Medikamentenkapsel)

Menschen Präparate: Mundflora des - mgw.or.at · tetracycline, chloramphenicol, and trimethoprim -sulfamethoxazole.[1] Variable or pleomorphic in shape and similar to Actinomyces

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Mundflora des

MenschenHintergrundinformation zum

Präparationsabend in der MGW 2014

Präparate:

• Abstrich von Zahnplaque

• Ausstrich von Lactobazillus casei (aus

Medikamentenkapsel)

Einleitung....

• GI tract: 1014 Mikroorganismen

• ca. 6x 1013 Zellen im menschl. Körper

Microbial ecosystem in the oral cavity: Metabolic diversity in an ecological niche and ist relationship with

oral diseases Nobuhiro Takahashi *

International Congress Series 1284 (2005) 103– 112

http://www.infection-research.de/de/perspectives/view/detail/23/shape_matters_why_bacteria_care_how_they_look/

Historischer Rückblick

Historischer Rückblick

• 1873: Mycobacterium leprae durch Gerhard Armauer Hansen

• 1876: Bacillus anthracis durch Robert Koch

• 1877: Clostridium septicum durch Louis Pasteur, Jules Joubert

• 1879: Neisseria gonorrhoeae durch Albert Neisser

• 1880: Salmonella typhi durch Karl Joseph Eberth, Erysipelothrix muriseptica durch Robert Koch

• 1882: Mycobacterium tuberculosis durch Robert Koch

• Streptococcus pyogenes durch Friedrich Fehleisen

• 1883: Vibrio cholerae durch Robert Koch, Corynebacterium xerosis durch Albert Neisser und S. Kuschbert

• 1884: Corynebacterium diphtheriae durch F. Loeffler und Clostridium tetani durch Arthur Nicolaier

• 1886: Streptococcus pneumoniae (Syn. Diplococcus p.) durch Albert Fraenkel (1848–1916) und Anton Weichselbaum, Erysipelothrix rhusiopathiae durch F. Loeffler

• 1887: Neisseria meningitidis durch Anton Weichselbaum, Corynebacterium pseudodiphthericum durch Franz Adolf Hofmann, Streptococcus agalactiae durch E. Nocard und H. Mollereau

• 1888: Salmonella enteritidis durch August Gärtner

• 1891: Salmonella typhimurium durch Friedrich Loeffler

• Clostridium botulinum durch Emile van Ermengem

• 1897: Propionibacterium acnes (Syn. Corynebacterium acnes) durch Raymond Sabouraud

• 1898: Shigella dysenteriae durch Kiyoshi Shiga, Mycoplasma durch E. Nocard, Émile Roux

• 1900: Salmonella paratyphi B durch Hugo Schottmüllr, Shigella flexneri (Syn. S. paradysenteriae B) durch Simon Flexner und Richard Pearson Strong Shigella boydii durch Boyd

• 1903: Enterococcus faecalis (Syn. Streptococcus f.) durch Theodor Escherich

• 1905: Treponema pallidum durch Fritz Schaudinn, Erich Hoffmann, Treponema pertenue durch Aldo Castellani

• 1907: Chlamydia trachomatis durch Ludwig Halberstaedter und Stanislaus von Prowazek

• 1983: Helicobacter pylori durch Barry Marshall und John Robin Warren

Gram Färbung

• Färben: Im ersten Schritt färbt man mit einer Lösung von Gentianaviolett mit Zusatz von 15 g/l Phenol, sogenanntem „Karbol-Gentianaviolett“. Hierbei werden alle Bakterien, grampositive wie gramnegative, gefärbt. Bei der nachfolgenden Behandlung mit Lugolscher Lösung werden größere Farbstoff-Komplexe gebildet, alle Bakterien erscheinen dunkelblau.

• Entfärben („Differenzieren“): Im zweiten Schritt erfolgt eine Behandlung mit 96 %igem Ethanol. Dabei verhalten sich grampositive und gramnegative Bakterien verschieden: gramnegative Bakterien werden wieder entfärbt, während die blauen Farbstoffkomplexe aus grampositiven Bakterien mit dem Alkohol nicht ausgewaschen werden können.

• Gegenfärben: Zur Darstellung der gramnegativen Bakterien können diese abschließend mit verdünnter Fuchsinlösung (eine Lösung von Fuchsin mit Phenol in etwa 1/10 der üblichen Konzentrationen von „Karbolfuchsin“) oder Safraninlösung gegengefärbt werden, worauf sie rot beziehungsweise rotorange erscheinen.

C. Gram: Über die isolirte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. In:

Fortschritte der Medicin. Vol. 2, 1884, S. 185–189.

1. grampositive Zellwand

2. 2. gramnegative Zellwand

3. Peptidoglycan (Murein)

4. Plasmamembran

5. Zytoplasma

6. Periplasmatischer Raum, bei grampos.

Bakterien die inner wall zone (IWZ)

3. 7. äußere Membran

JOURNAL OF CLINICAL MICROBIOLOGY,

Nov. 2005, p. 5721–5732 Vol. 43, No. 11

0095-1137/05/$08.000

doi:10.1128/JCM.43.11.5721–5732.2005

Copyright © 2005, American Society for

Microbiology. All Rights Reserved.

Defining the Normal Bacterial Flora of the

Oral Cavity

Jørn A. Aas,1,2* Bruce J. Paster,1,3 Lauren

N. Stokes,1 Ingar Olsen,2

and Floyd E. Dewhirst1,3

Department of Molecular Genetics, The

Forsyth Institute,1 and Faculty of Dentistry,2

University of Oslo, Oslo, Norway,

and Department of Oral and Developmental

Biology, Harvard School of Dental Medicine,

Boston, Massachusetts3

Received 10 June 2005/Returned for

modification 2 August 2005/Accepted 12

August 2005

Mundflora...

The Normal Bacterial

Flora of Humans

© Kenneth Todar, PhD

Pyrosequencing Analysis of the

Oral Microflora of Healthy AdultsB.J.F. Keijser1, E. Zaura2, S.M.

Huse3,

J.M.B.M. van der Vossen1, F.H.J. Schuren1,

R.C. Montijn1, J.M. ten Cate2,

and W. Crielaard2*

1TNO Quality of Life, Business Unit Food and

Biotechnology Innovations, Microbial Genomics Group,

Zeist, The Netherlands; 2Department of Cariology

Endodontology Pedodontology, Academic Centre for

Dentistry Amsterdam (ACTA), University of Amsterdam

and VU Amsterdam, Louwesweg 1, 1066 EA Amsterdam,

The Netherlands; and 3Josephine Bay Paul Center,

Marine Biological Laboratory, Woods Hole, MA, USA;

*corresponding author, [email protected]

Gram positiv Gram negativ

Staphylokokken Bacteroidaceae:

Fusobacterien, Prevotella,Porphyromonas, Bacteroides

Streptokokken Haemophilus

Actinomyceten Spirochäten

Lactobacillus Neisserien

Corynebacterium Veilonella

Anaeobier: Eubacterium,

Propionibacterium,

Bifidobacterium

Actinobacillus

Rothia Gemella

Capnocytophaga

Eikenella

Gram positiv

Staphylokokken

• 30 Spezies; 1μm DM

• Gram pos. unbewegliche Mikrokokken

• Fakultativ anaerob

• S. aureus

• S. epidermidis

• S. saprophyticus

http://www.atsu.edu/faculty/chamberlain/Website

Orale Streptokokken

Orale Streptokokken

• S. mutans

• S. sangius

• S. mitis

• S. salivarius

• S. anginosus

• Ketten oder Diplokokken, unbeweglich, sporenlos 1μm DM; fakultativ anaeron (aerotolerant)

• Bilden aus Kohlehydrate Milchsäure (Lactat)

• 50-70% der Endokarditiden

• Karies

• S. Pyogenes (A Streptokokken)

• S. agalactiae (B-Streptokokken)

• S. pneumoniae (Pneumokokken): meist

Diplokokken + Kapsel: wohnt in SH des oberen

Respirationstraktes: Pneumonie; Otitis media;

Sinusitis; Meningitis

Exkurs: Pyogene Streptokokken

PeptostreptokokkenAnaerob, gram pos. Kokken

Karies; Peridontitis

P. anaerobius

P. asaccharolyticus

P. harei

P. hydrogenalis

P. indoliticus

P. ivorii

P. lacrimalis

P. lactolyticus

P. magnus

P. micros

P. octavius

P. prevotii

P. tetradius

P. vaginalis

Actinomyces

Pleomorphe, verzweigte grampos. Stäbchen mit Knäuelbildung

Früher als Pilz aufgefasst; nicht sporenbildend

Fakultativer Anaerobier – flexibler Stoffwechsel

Produziert Säuren nach Kohlenhydrataufnahme

Bis 50 μm lang

A. israelii -> Zahnplaque; Abszesse in Mundhöhle

A. naeslundii -> Zahnplaque: Karies; Gingivitis

Infektionen als Mischinfektion möglich mit Anaerobier wie

Actinobacillus actinomycetemconcomitans oder mit fakultativ

anaerobier wie Staphylokokken, Streptokokken;

A. odontolyticus

A. georgiae

The Normal Bacterial Flora of Humans

© Kenneth Todar, PhD

Nach Kohlenbrander et al 2002

Actinomyzeten aus Gingiva-Plaque: 1000x

Lactobacillus

Lactobacillus casei ist ein stäbchenförmiges grampositives Bakterium. Es gehört zu den kleineren Lactobacillus-Arten und

wächst in Form kürzerer oder längerer Stäbchen mit meist abgerundeten Ecken und einer Größe von durchschnittlich 0,9 µm

Durchmesser und 2 µm Länge. Sie liegen meist einzeln oder in Paaren, seltener in kurzen Ketten vor.[1]

Das Wachstumsoptimum liegt bei etwa 30 °C, ob Wachstum bei 15 und 45 °C möglich ist, wird von verschiedenen Autoren

unterschiedlich angegeben. Das Wachstum in Milch ist sehr langsam, die proteolytische Aktivität hoch und durch

homofermentative Milchsäuregärung können bis zu 1,5 % Milchsäure gebildet werden. Hierbei wird ein Gemisch aus L- und D-

Milchsäure mit deutlich vorherrschendem Anteil der L-Form erzeugt.[2] Sie können viele Kohlenhydrate, darunter Melezitose, aber

nicht Melibiose und Xylose abbauen. Gluconat aber nicht Glukose kann unter Gasproduktion zu Milchsäure vergoren werden

Lactobacillus acidophilus ist ein mittellanges, fakultativ anaerobes, grampositives Stäbchen mit abgerundeten Enden, das einzeln,

in Paaren oder kurzen Ketten vorkommt. Es wächst auch in saurer Umgebung (pH 4–5 und tiefer) und bei Temperaturen bis 45

Grad Celsius. Durch Hitze und Sonneneinstrahlung wird das Bakterium abgetötet. Das Bakterium ist Katalase-negativ und

Oxidase-negativ.

L. acidophilus kommt in verschiedenen Lebensmitteln, wie Milch, Getreide, Fleisch und Fisch vor. Innerhalb des Menschen

besiedelt L. acidophilus den Mund, den Verdauungstrakt und die Vagina bzw. beim Mann das unverhornte Plattenepithel der

Fossa navicularis, den erweiterten Bereich kurz vor der Harnröhrenöffnung.

Im Allgemeinen vergärt das Bakterium homofermentativ Laktose zu Milchsäure. Einige heterofermentative Stämme können

Ethanol, Kohlendioxid und Essigsäure produzieren

Verschiedene Arten von Lactobacillus bilden die sogenannte Döderlein-Bakterien oder Döderleinsche Stäbchen. Die Döderlein-

Bakterien sind ein Teil der natürlichen Scheidenflora der Frau. Durch die Gärung erzeugen die Bakterien in der Scheide eine

saure Umgebung und schützen so die Scheide vor anderen, krankheitserregenden Bakterien, die einen niedrigen pH-Wert nicht

tolerieren. Zu den bei verschiedenen Untersuchungen am häufigsten bestimmten Arten[15][16] zählen Lactobacillus crispatus, L.

iners, L. gasseri und L. jensenii. Früher wurde Lactobacillus acidophilus als dominierende Art in der Scheidenflora von gesunden

Frauen bestimmt

wikipedia

Figure 5. A Lactobacillus species, possibly Doderlein's bacillus, in

association with a vaginal epithelial cell

The Normal Bacterial Flora of Humans

© Kenneth Todar, PhD

Lactobacillus casei

Lactobacillus casei

Corynebakterien

• Polymorphe, keulenförmige Stäbchen

• Grampositiv

• C. matruchotii

• C. durum• Bestandteil von Plaque

• Fraglich pathogen

http://www.medschool.lsuhsc.edu/microbiology/DMIP/dmex15.htm

Anarobe Gram-positive Stäbchen

Eubacterium

Pleomorphic rods or filaments, -> caries & periodontal

disease

50% of anaerobes of periodontal pockets

E. yurii; E. brachy; E. timidum; E. nodatum

Propionibacterium

Strict anaerobic bacilli (root surface caries & plaque)

P. acnes;

JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1987, p. 1540-1545

0095.1137/87/081540-06$02.00/0 Copyright © 1987, American Society for Microbiology Vol. 25, No. 8

Characteristics and Sites of Infection of Eubacterium nodatum, Eubacterium timidum, Eubacterium brachy, and OtherAsaccharolyt ic Eubacteria

GALE B. HILL,',2'3* OUIDA M. AYERS,l AND ALFREDA P. KOHAN3

Obstetric and Gynecologic Anaerobic Microbiology Research Laboratory,' Department of Obstetrics and Gynecology,2

and Anaerobe Section, Clinical Microbiology Laboratory,3 Duke University Medical Center, Durham,

North Carolina 27710

Received 17 December 1986/Accepted 14 May 1987

Eubacterium nodatum

bacterioweb.univ-fcomte.fr

„Propionibacterium acnes ist ein gram-positives kurzes, stäbchenförmiges Bakterium, auch ellipsoide

Zellformen kommen vor. Eine einzelne Zelle ist 0,4–0,5 µm (Mikrometer) breit und 0,8–0,9 µm lang.[1] Im

lichtmikroskopischen Bild finden sich meist paarweise angeordnete Zellen, die nicht direkt hintereinander

liegen, sondern in einem Winkel. Dies führt bei weiteren Zellteilungen zur Ausbildung von V- oder Y-förmigen

Ketten.[2] Das Bakterium besitzt keine Flagellen zur aktiven Bewegung und kann keine

Überdauerungsformen wie Endosporen bilden“ (wikipedia)

http://cienciahoje.uol.com.br/noticias/microbiologia/um-universo-em-seu-braco/

Propionibacterium acnes

Rothia

• R. mucilaginosa

• R. dentocariosa

• Gram pos. Kokken

“Rothia dentocariosa is a species of gram-positive, round- to rod-shaped bacteria that

is part of the normal community of microbes residing in the mouth and respiratory tract.

First isolated from dental caries, Rothia dentocariosa is largely benign, but does very rarely

cause disease. The most common Rothia infection is endocarditis, typically in people with

underlying heart valve disorders.[1] Literature case reports show other tissues that are rarely

infected include the peritoneum,[2] tonsils,[3] lung,[1] cornea,[4] inner layers of the eye

(Endophthalmitis)[5] and brain and intercranial tissues.[1] It has been implicated in

periodontal disease, and one hypothesis is that Rothia periodontal disease, or dental

procedures in turn, may be first steps in the infection of other tissues.[1] One case reports

on a fatal Rothia dentocariosa infection of a fetus in utero.[6] Another reports the bacterium

was responsible for septic arthritis in the knee of a person treated with etanercept for

rheumatoid arthritis.[7] Like other Rothia infections reported in the literature, once the cause

of infection was identified, this responded fully to treatment with antibiotics. Rothia infections

may be treated with penicillins, erythromycin, cefazolin, rifampin, aminoglycoside,

tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole.[1]

Variable or pleomorphic in shape and similar to Actinomyces and Nocardia, Rothia was only

defined as a genus in 1967.[1] Rothia dentocariosa, like several other species of oral

bacteria, is able to reduce nitrate to nitrite, and one study found it in 3% of isolates of nitrate-

reducing bacteria from the mouth “ (wikipedia)

Granulicatella

• G. elegans

• G. adiacens

• Pleomorphe gram pos. Kokken (früher

„Satelittenstreptokokken“ um Staphylokokken)

• Endokarditiserreger

synapse.koreamed.org

942 × 348 - Gram stain of Granulicatella adiacens isolated from the case

Abiotrophia defectiva

• Pleomorphe gram pos. Kokken

• „Satelittenstreptokokken“

J. Clin. Microbiol. May 1999 vol. 37 no. 5

1564-1566 Abiotrophia Species as a Cause

of Endophthalmitis Following Cataract

Extraction

Hassan Namdari1,2,3,*, Kathleen Kintner2,

Barbara A. Jackson3, Surena Namdari1,

Joan L. Hughes1, Randall R. Peairs3, and

Donald J. Savage

Gram negativ

Neisserien• Gramnegative, paarige, aerobe Kokken

• N. subflava

• N. polysaccharea

• N. baciliformis

• N. mucosa

• N. elongata

• Rolle in der Plaqueentstehung ?

This photomicrograph reveals the presence of the Gram-negative bacteria, Neisseria subflava.By:

CDC/ Dr. W. A. Clark, Courtesy: Public Health Image Library

Views: 308 | Downloads: 0

Neisseria meningitidis. Gram stain.

The Normal Bacterial Flora of Humans

© Kenneth Todar, PhD

Spirochäten• Treponema: gram neg: • T. denticola, T. macrodentium:

• Strict anaerobes

• -> Gingivitis, Perodontitis

Nach Kohlenbrander et al 2002

Bacteroidaceae

• Obligat, anaerobe, gram neg. pleomorphe

Stäbchen, nicht sporenbildend• Porphyromonas gingivalis

• Prevotella

• Fusobacterium

• Bacteroides

• Tanerella

Porphyromonas gingivalis

• Gram neg. Anaerobier mit Fimbrien

• Parodontitiskeim

• P. gingivalis, P. endodontalis; P. asacharolytica (pleomorphic Stäbchen)

• Adhärent an initilae Plaqueorganismen wie Streptokokken oder Actinomyceten

• Periodontitis, dentoalveolarer Abszess

Prevotella

• P. intermedia, P. melaninogenica (pleomorphic rods); P. nigrescens; P. oris

• Strikt anaerob, gram negativ

• Auch Bestandteil der Vaginalflora

• Zahnplaque,

• -> chronische periodontitis, dentoalveolar abszess

http://www.lookfordiagnosis.com

Prevotella melaninogenica, Gram stain: A gram negative coccobacillus

http://aapredbook.aappublications.org/site/week/iotw081108.xhtml

Fusobacterien

Fusobacterium nucleatum

Strikt anaerob; nicht sporenbildend, Gram neg.

-> akute ulcerative Gingivitis

-> dentoalveolar Abszess

Gram-negative stained culture of F. nucleatum. Image Courtesy of J. Michael Miller, Ph.D.,(D)ABMM of

National Center for Zoonotic, Vector-borne, and Enteric Diseases. Picture submitted by him to American

Society for Microbiology

http://microbewiki.kenyon.edu/index.php/File%3AFnuclea1.JPG

Long, pointy Gram-negative rods typical of Fusobacterium nucleatum

http://infectionnet.org/supporting-content/fusobacterium-nucleatum/

Infect Immun. 1989 October; 57(10): 3194–3203. PMCID: PMC260789Coaggregation of Fusobacterium nucleatum,

Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11

genera of oral bacteria.

P E Kolenbrander, R N Andersen, and L V Moore

Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892.

Author information ► Copyright and License information ►

Copyright notice

This article has been cited by other articles in PMC.

Abstract

Twenty-eight strains of Fusobacterium nucleatum and 41 Selenomonas strains, including S. sputigena (24 strains), S.

flueggei (10 strains), S. infelix (5 strains), and S. noxia (2 strains), were tested for their ability to coaggregate with

each other and with 49 other strains of oral bacteria representing Actinobacillus, Actinomyces, Bacteroides,

Capnocytophaga, Gemella, Peptostreptococcus, Porphyromonas, Propionibacterium, Rothia, Streptococcus, and

Veillonella species. Selenomonads coaggregated with fusobacteria and with Actinomyces naeslundii PK984 but not

with any of the other bacteria, including other selenomonads. In contrast, fusobacteria coaggregated with members of

all genera, although not with all strains of each species tested. Each fusobacterium strain appeared to have its own

set of partners and coaggregation properties, unlike their partners, whose coaggregation properties in earlier surveys

delineated distinct coaggregation groups. Coaggregations of fusobacteria with the 63 gram-negative strains were

usually inhibited by EDTA, whereas those with the 27 gram-positive strains were usually not inhibited. Likewise,

lactose-inhibitable coaggregations were common among some strains of fusobacteria and some strains from each of

the genera containing gram-negative partners but were rarely observed with gram-positive partners. Heating the

fusobacteria at 85 degrees C for 30 min completely prevented coaggregation with most partners, suggesting the

involvement of a protein on the fusobacteria. Heat treatment of many of the gram-negative partners not only enhanced

their coaggregation with the fusobacteria but also changed lactose-sensitive coaggregations to lactose-insensitive

coaggregations. Although fusobacteria coaggregated with a broader variety of oral partner strains than any other

group of oral bacteria tested to date, each fusobacterium exhibited coaggregation with only a certain set of partner

strains, and none of the fusobacteria adhered to other strains of fusobacteria, indicating that recognition of partner cell

surfaces is selective. The strains of F. nucleatum are heterogeneous and cannot be clustered into distinct

coaggregation groups. Collectively, these results indicate that coaggregation between fusobacteria and many gram-

negative partners is significantly different from their coaggregation with gram-positive partners. The contrasting variety

of partners for fusobacteria and selenomonads supports the concept of coaggregation partner specificity that has

been observed with every genus of oral bacteria so far examined

Eikenella• Eikenella corrodens: unbeweglich, kokkoides Kurzstäbchen

• E. corrodens (coccobacilli): plaque

• -> dentoalveolar Abszess, chronische Periodontitis,

• Endocarditis

Easow JM, Joseph NM, Tuladhar R, Shivananda P G. Empyema caused by Eikenella corrodens. J Global Infect Dis [serial online] 2011 [cited 2014

Oct 5];3:303-5. Available from: http://www.jgid.org/text.asp?2011/3/3/303/83546

Nach Kohlenbrander et al 2002

Veillonella

Gram neg.Anaerobe Kokken

Verwertet Lactat zu Acetat

V. atypica: lebt v.a. in Zungen SH

V. parvula

http://www.atsu.edu/faculty/chamberlain/Website

Haemophilus parainfluenzae: gram neg. coccobazilli

Facultative anaerobes (plaque, saliva & mucosal surfaces)

-> acute bacterial epiglottitis, pneumonia, sinusitis, meningitis

Haemophilus

http://www.pathinformatics.com/microbiology/saeVIII/saeVIII-1.htm

Actinobacillus (Aggregatibacter)

Gram neg, fakult. Anaerobier; nicht sporenbildend, unbeweglich

A. actinomycetemcomitans (coccobacilli)

subgingivale Plaque, Periodontitis

Begleitkeim von Aktinomykosen

Capnocytophagalange dünne fusiforme Stäbchen, gram neg.

CO2-abhängig, fakult. anaerob

C. gingivalis, C, sputigena; C. ochraceae

Peridontitis

http://www.scielo.cl/scielo.php?script=sci_artte

xt&pid=S0716-10182007000100009

Die Arten Capnocytophaga gingivalis, C. ochracea,

C. sputigena, C. granulosa und C. haemolytica

kommen in der Mundflora des Menschen vor,

Capnocytophaga canimorsus und C. cynodegmi in

der Mundflora von Hunden und Katzen.

Moraxellaceae

• Moraxella (Brabhamella) catharalis

• Kingella: K. dentificans

• Plumpe, kokkoide, gram neg. Kurzstäbchen, aerob

Kingella kingae

http://www.nature.com/eye/journal/v20/n9/fig_tab/6702119f2.html

Veillonellaceae: Selenomonas

• S. sputigena

• S. infelix

• S. flueggei

• Gram neg.

Infect Immun. 1989 October; 57(10): 3194–3203. PMCID: PMC260789Coaggregation of Fusobacterium nucleatum,

Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11

genera of oral bacteria.

P E Kolenbrander, R N Andersen, and L V Moore

Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892.

Author information ► Copyright and License information ►

Copyright notice

This article has been cited by other articles in PMC.

Abstract

Twenty-eight strains of Fusobacterium nucleatum and 41 Selenomonas strains, including S. sputigena (24 strains), S.

flueggei (10 strains), S. infelix (5 strains), and S. noxia (2 strains), were tested for their ability to coaggregate with

each other and with 49 other strains of oral bacteria representing Actinobacillus, Actinomyces, Bacteroides,

Capnocytophaga, Gemella, Peptostreptococcus, Porphyromonas, Propionibacterium, Rothia, Streptococcus, and

Veillonella species. Selenomonads coaggregated with fusobacteria and with Actinomyces naeslundii PK984 but not

with any of the other bacteria, including other selenomonads. In contrast, fusobacteria coaggregated with members of

all genera, although not with all strains of each species tested. Each fusobacterium strain appeared to have its own

set of partners and coaggregation properties, unlike their partners, whose coaggregation properties in earlier surveys

delineated distinct coaggregation groups. Coaggregations of fusobacteria with the 63 gram-negative strains were

usually inhibited by EDTA, whereas those with the 27 gram-positive strains were usually not inhibited. Likewise,

lactose-inhibitable coaggregations were common among some strains of fusobacteria and some strains from each of

the genera containing gram-negative partners but were rarely observed with gram-positive partners. Heating the

fusobacteria at 85 degrees C for 30 min completely prevented coaggregation with most partners, suggesting the

involvement of a protein on the fusobacteria. Heat treatment of many of the gram-negative partners not only enhanced

their coaggregation with the fusobacteria but also changed lactose-sensitive coaggregations to lactose-insensitive

coaggregations. Although fusobacteria coaggregated with a broader variety of oral partner strains than any other

group of oral bacteria tested to date, each fusobacterium exhibited coaggregation with only a certain set of partner

strains, and none of the fusobacteria adhered to other strains of fusobacteria, indicating that recognition of partner cell

surfaces is selective. The strains of F. nucleatum are heterogeneous and cannot be clustered into distinct

coaggregation groups. Collectively, these results indicate that coaggregation between fusobacteria and many gram-

negative partners is significantly different from their coaggregation with gram-positive partners. The contrasting variety

of partners for fusobacteria and selenomonads supports the concept of coaggregation partner specificity that has

been observed with every genus of oral bacteria so far examined

Campylobacter

• C. showae (1993)

• C. gracilis

• C. curvus

• C. concisus

• Oxidativer Energiestoffwechsel („Nitrat-Atmer“)• „Die Zellgröße liegt im Bereich von 0,2–0,8 × 0,5–5 Mikrometer. Sie sind

entweder mit jeweils einer einzelnen Geißel unipolar an einem Ende oder

bipolar an beiden Enden der Zelle begeißelt. Die Zellen können sich im

Laufe der Kultur von korkenzieherförmig zu kokkenförmig ändern. Die

meisten Arten von Campylobacter sind Katalase- und Oxidase-positiv, zu

den Katalase-negativen zählen beispielsweise C. sputorum, C. concisus, C.

mucosalis und C. helveticus. Die medizinisch wichtigen C. fetus subsp.

fetus, C. coli, C. jejun subsp. jejuni sind Katalase-positiv“ (wikipedia)

Int J Syst Bacteriol. 1993 Oct;43(4):631-9.

Campylobacter showae sp. nov., isolated from the human oral cavity.

Etoh Y, Dewhirst FE, Paster BJ, Yamamoto A, Goto N.

Author information Department of Oral Microbiology, Showa University School of Dentistry, Tokyo,

Japan.

Abstract

Nine Campylobacter-like strains were isolated from human gingival crevices and characterized. These

strains were gram-negative, straight rods that were motile by means of multiple unipolar flagella. They

were asaccharolytic and preferred an anaerobic atmosphere rather than a microaerophilic atmosphere

for growth, and their growth was stimulated by formate and fumarate. These strains were biochemically

similar to Campylobacter curvus and Campylobacter rectus, but were clearly distinguishable from these

organisms by the number of flagella (two to five flagella at one end of the cell), by being catalase

positive, by their whole-cell protein profiles, by their Western blot (immunoblot) patterns, and on the

basis of DNA-DNA homology data. They could also be differentiated from the other species of the genus

Campylobacter. The nine Campylobacter-like strains were compared with two strains (FDC 286 and VPI

10279) representing a previously described but unnamed Wolinella sp. The nine isolates and strains

FDC 286 and VPI 10279 were found to be members of a single species. The 16S rRNA sequences of

two strains of the newly identified species were compared with the rRNA sequences of 21 reference

Campylobacter, Wolinella, and Helicobacter species in order to generate a phylogenetic tree. We

propose the name Campylobacter showae for the newly identified strains; strain SU A4 (= ATCC 51146)

is the type strain of this new species.

Expand+Journal of Dental Researchjdr.sagepub.comdoi:

10.1177/00220345000790021301 JDR February 2000 vol. 79 no. 2 785-792

Campylobacter Species in Health, Gingivitis, and Periodontitis

P.J. Macuch

Altran Corporation, Boston, MA

A.C.R. Tanner

The Forsyth Institute, 140 Fenway, Boston, MA 02115, USA

Abstract

At least seven Campylobacter species have been identified from subgingival sites.

Campylobacter rectus has been implicated as a periodontal pathogen; however,

association with periodontal infections of other Campylobacter species, especially the

newly described Campylobacter showae, is unclear. This study examined which

Campylobacter species were associated with periodontal health and disease. Subgingival

Campylobacter species from initial and established periodontitis were compared with

species from periodontally healthy subjects, including subjects with gingivitis.

Campylobacter species were isolated on selective media and identified by whole-cell

protein profiles (SDS-PAGE). Except for C. rectus, Campylobacter levels were frequently

below the detection limit (2-5% of the microbiota) of non-selective culture methods. C.

rectus and C. showae, including Campylobacter X, were found more frequently and in

higher levels from diseased than from healthy periodontal sites. C. gracilis was the

dominant Campylobacter species found in relatively shallow pockets; however, its

presence was unrelated to periodontal health or disease. C. concisus was isolated in

higher proportions from relatively shallow and healthy sites, compared with deeper

pockets. C. curvus was unrelated to periodontal health or disease. Analysis of the study

data confirmed the relationship of C. rectus with diseased subgingival sites and indicated

that C. showae may also be associated with periodontal disease.

C. rectus

Curr Microbiol. 2012 Jul;65(1):22-7. doi: 10.1007/s00284-012-0121-8. Epub 2012 Apr 13.

Quantification of subgingival bacterial pathogens at different stages of periodontal diseases.

Lee HJ, Kim JK, Cho JY, Lee JM, Hong SH.

Author information Department of Oral Microbiology, School of Dentistry, Kyungpook National

University, 2-188-1 Samduk-dong, Jung-gu, Daegu, South Korea.

Abstract

Anaerobic gram-negative oral bacteria such as Treponema denticola, Aggregatibacter

actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Campylobacter rectus,

and Fusobacterium nucleatum are closely associated with periodontal diseases. We measured the

relative population (bacterial levels) of these oral pathogens in subgingival tissues of patients at

different stages of Korean chronic periodontal diseases. We divided the individuals into those with

chronic gingivitis (G), moderate periodontitis (P1), severe periodontitis (P2), and normal individuals

(N) (n = 20 for each group) and subgingival tissue samples were collected. We used real-time

PCR with TaqMan probes to evaluate the change of periodontal pathogens among different stages

of periodontitis. Bacterial levels of A. actinomycetemcomitans and C. rectus are significantly

increased in individuals with chronic gingivitis and moderate periodontitis, but unchanged in severe

periodontitis patients. These results suggest that analyzing certain bacterial levels among total oral

pathogens may facilitate understanding of the role of periodontal bacteria in the early stages of

periodontitis

HistophysiologiePlaqueentstehung

Krankheiten durch orale Bakterien

Orale

Mikrobiolo

gie von

Philip

Marsh,Mic

hael V.

Martin;

Thieme

Verlag

Columbia university: school of dental and oral surgery

Ökologische Nischen im Mund

Microbial ecosystem in the oral cavity: Metabolic diversity in an ecological niche and ist relationship with

oral diseases Nobuhiro Takahashi *

International Congress Series 1284 (2005) 103– 112

Oral bacterial colonization. From the following article:

Oral multispecies biofilm development and the key role of cell–cell distance

Paul E. Kolenbrander, Robert J. Palmer, Jr, Saravanan Periasamy & Nicholas S. Jakubovics

Nature Reviews Microbiology 8, 471-480 (July 2010) doi:10.1038/nrmicro2381

Spatiotemporal model of oral bacterial colonization, showing recognition of salivary

pellicle receptors by initial colonizing bacteria and coaggregations between initial

colonizers, fusobacteria and late colonizers of the tooth surface. Collectively, these

interactions are proposed to represent development of dental plaque. Starting at the

bottom, initial colonizers, Streptococcus gordonii, Streptococcus mitis, Streptococcus

oralis and Streptococcus sanguinis, bind to complementary salivary receptors

(sialylated mucins, proline-rich protein, α-amylase, salivary agglutinin and bacterial

cell fragments) in the acquired pellicle coating the tooth surface. Late colonizers bind

to previously bound bacteria. Sequential binding results in the appearance of nascent

surfaces that bridge with the next coaggregating partner cell. Coaggregation is

different from aggregation that occurs between genetically identical cells and from

agglutination of cells through interaction of cells with soluble molecules, for example,

antibodies. Most coaggregations are between cells of different genera; Fusobacterium

nucleatum strains, for example, coaggregate intergenerically with representatives of

all oral bacterial species. However, intrageneric coaggregation among fusobacterial

strains is only rarely observed. In sharp contrast, streptococci exhibit broad

intrageneric coaggregation partnerships (for example, S. gordonii and S. oralis) as

well as intraspecies partnerships (for example, S. gordonii DL1 and S. gordonii 38).

Each bacterial strain exhibits specificity in partners. For example, some streptococci

are capable of coaggregating with certain Veillonella spp., whereas other streptococci

cannot coaggregate with those veillonellae but do coaggregate with a separate group

of veillonellae24. Figure modified, with permission, from Ref. 106 © American Society

for Microbiology (2002).

Columbia university: school of dental and oral surgery

Prävalenz der Proteasen von Tannerella forsythia in subgingivaler Plaque Dissertation zur Erlangung des

akademischen Grades doctor medicinae dentariae (Dr. med. dent.) vorgelegt dem Rat der Medizinischen Fakultät

der Friedrich-Schiller-Universität Jenavon Sebastian Gäßner geboren am 08.08.83 in Leipzig

Orale Mikrobiologie von Philip Marsh,Michael V. Martin; Thieme Verlag

Krankheiten durch orale Bakterien

• Gingivitis

• Parodontitis

• Dentoalveoläre Abzesse

• Tonsillitis

• Pharyngitis

• Sinusitis

• Otitis media

• Endokarditis

• Epiglottitis

• Pneumonie

• Meningitis