62
Modulhandbuch „Master of Science“ im Fach Chemie 1 Inhalt (Stand 31.10.2016) Module des Instituts für Anorganische Chemie und Strukturchemie .............................................. 4 Pflichtmodule .......................................................................................................................................... 4 Pflichtmodul Anorganische Chemie (AC) ............................................................................................ 4 Pflichtpraktikum Anorganische Chemie (AC-P) ................................................................................... 5 Wahlpflichtmodule .................................................................................................................................. 5 Bioanorganische Chemie (BioAC) ........................................................................................................ 5 Chemische Kristallographie (ChemKrist) ............................................................................................. 6 Festkörperchemie (FKC) ...................................................................................................................... 7 Katalyse (Kat)....................................................................................................................................... 8 Nanochemie (Nano) ............................................................................................................................ 9 Supramolekulare Chemie (SupChem) ............................................................................................... 10 Forschungsmodul in Anorganischer Chemie (FAC) ........................................................................... 11 Module des Instituts für Biochemie ............................................................................................ 12 Wahlpflichtmodule ................................................................................................................................ 12 Allgemeine Biochemie (ABC) ............................................................................................................. 12 From gene to in silico structure – the use of protein data bases (ISS) ............................................. 13 Molekulare Enzymologie (ME) .......................................................................................................... 14 Proteinkatalysierter Membrantransport (MT) .................................................................................. 15 Vom Gen zum biotechnologischen Produkt (GenProd) .................................................................... 16 Module des Instituts für Bioorganische Chemie ........................................................................... 17 Wahlpflichtmodule ................................................................................................................................ 17 Naturstoffsynthese I (NATSY 1) ......................................................................................................... 17 Naturstoffsynthese II (NATSY 2) ........................................................................................................ 17 Optimierungsverfahren in der Proteinherstellung (OptiProt) .......................................................... 18 Module des Instituts für Organische Chemie und Makromolekulare Chemie ................................ 19 Pflichtmodule ........................................................................................................................................ 19

Modulhandbuch „Master of Science“ im Fach hemie · Modulhandbuch „Master of Science“ im Fach hemie 6 ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester 8 240 1 Semester

Embed Size (px)

Citation preview

Modulhandbuch „Master of Science“ im Fach Chemie

1

Inhalt (Stand 31.10.2016)

Module des Instituts für Anorganische Chemie und Strukturchemie .............................................. 4

Pflichtmodule .......................................................................................................................................... 4

Pflichtmodul Anorganische Chemie (AC) ............................................................................................ 4

Pflichtpraktikum Anorganische Chemie (AC-P) ................................................................................... 5

Wahlpflichtmodule .................................................................................................................................. 5

Bioanorganische Chemie (BioAC) ........................................................................................................ 5

Chemische Kristallographie (ChemKrist) ............................................................................................. 6

Festkörperchemie (FKC) ...................................................................................................................... 7

Katalyse (Kat) ....................................................................................................................................... 8

Nanochemie (Nano) ............................................................................................................................ 9

Supramolekulare Chemie (SupChem) ............................................................................................... 10

Forschungsmodul in Anorganischer Chemie (FAC) ........................................................................... 11

Module des Instituts für Biochemie ............................................................................................ 12

Wahlpflichtmodule ................................................................................................................................ 12

Allgemeine Biochemie (ABC) ............................................................................................................. 12

From gene to in silico structure – the use of protein data bases (ISS) ............................................. 13

Molekulare Enzymologie (ME) .......................................................................................................... 14

Proteinkatalysierter Membrantransport (MT) .................................................................................. 15

Vom Gen zum biotechnologischen Produkt (GenProd) .................................................................... 16

Module des Instituts für Bioorganische Chemie ........................................................................... 17

Wahlpflichtmodule ................................................................................................................................ 17

Naturstoffsynthese I (NATSY 1) ......................................................................................................... 17

Naturstoffsynthese II (NATSY 2) ........................................................................................................ 17

Optimierungsverfahren in der Proteinherstellung (OptiProt) .......................................................... 18

Module des Instituts für Organische Chemie und Makromolekulare Chemie ................................ 19

Pflichtmodule ........................................................................................................................................ 19

Modulhandbuch „Master of Science“ im Fach Chemie

2

Pflichtmodul Organische Chemie (MoPoS) ....................................................................................... 19

Pflichtpraktikum Organische Chemie (MoPoS-P) .............................................................................. 20

Wahlpflichtmodule ................................................................................................................................ 21

Festphasen-Polymersynthese (FP-PS) ab WiSe 2017/18 .................................................................. 21

Multikomponenten- und Dominoreaktionen (MCR) ........................................................................ 22

Präparative Polymerchemie (PPC) .................................................................................................... 23

Sequenzkontrollierte Polymere (SeqPol) .......................................................................................... 24

Stereoselektive Synthese (SSSyn) ..................................................................................................... 25

Synthese und Katalyse (SynKat) ........................................................................................................ 26

Wahlpflichtmodul in Organischer Chemie (WOC) ............................................................................ 27

Module des Instituts für Physikalische Chemie ............................................................................ 27

Pflichtmodule ........................................................................................................................................ 27

Pflichtmodul Physikalische Chemie (SMKS-V) ................................................................................... 27

Pflichtpraktikum Physikalische Chemie (SMKS-P) ............................................................................. 29

Wahlpflichtmodule ................................................................................................................................ 30

Biomolekulare Strukturen und Wechselwirkungen (BSW) ............................................................... 30

Computer im Labor: Steuerung, Datenerfassung, Datenauswertung (CompuLab) .......................... 32

Elektronische Anregungen aus der Sicht des Experimentators (EA) ................................................. 33

Femtosekunden-Spektroskopie chemischer und biologischer Prozessse (FSCB) ............................. 34

Fortgeschrittene Fluoreszenzspektroskopie und –mikroskopie - Vertiefungspraktikum (FFSM-P) . 35

Grenzflächen und Kolloide – Bedeutung für industrielle Anwendungen (Interface) ........................ 36

Grundlagen der Umweltchemie (GUC) .............................................................................................. 38

Laserspektroskopische Techniken (LST) ............................................................................................ 39

Moderne Massenspektrometrie von Makromolekülen (MSM) ........................................................ 40

Molekulare Strukturen und Wechselwirkungen- Vertiefungspraktikum (MSW-P) .......................... 41

Multiparameter Fluoreszenzdetektion (MFD) .................................................................................. 42

Präparative und spektroskopische Aspekte der organischen Photochemie (PSP) ............................ 43

Streumethoden zur Strukturaufklärung von Polymeren und Kolloiden (SSPK) ................................. 44

Superresolution Fluoreszenzmikroskopie (Super FM) ....................................................................... 46

Module des Instituts für Theoretische Chemie und Computerchemie ........................................... 48

Wahlpflichtmodule ................................................................................................................................ 48

Angewandte Quantenchemie und Computerchemie (AnQCCC) ...................................................... 48

Molekülmodellierung (MoMo) .......................................................................................................... 49

Fortgeschrittene Quantenchemie (FQC) ........................................................................................... 51

Modulhandbuch „Master of Science“ im Fach Chemie

3

Spezialisierungsmodul relativistische Quantenchemie (SpRela) ...................................................... 52

Spezialisierungsmodul nichtadiabatische Dynamik (SpDyn) ............................................................. 53

Spezialisierungspflichtmodule .................................................................................................... 54

Advanced Materials (AdMat) ............................................................................................................ 54

Advanced Materials (AdMat-P) ......................................................................................................... 55

Biological Chemistry (BioChem-V) ..................................................................................................... 56

Biological Chemistry (BioChem-P) ..................................................................................................... 57

Molecular and Biomolecular Catalysis (MoBiCa) .............................................................................. 58

Molecular and Biomolecular Catalysis (MoBiCa-P) ........................................................................... 59

Molecular Photonics and Excited-State Processes (MPESP) ............................................................. 60

Molecular Photonics and Excited-State Processes (MPESP-P) ......................................................... 62

Modulhandbuch „Master of Science“ im Fach Chemie

4

Module des Instituts für Anorganische Chemie und Strukturchemie

Pflichtmodule

Pflichtmodul Anorganische Chemie (AC) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Pflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

9 270 1 Semester WiSe 1.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Koordinationschemie: Grundlagen für Katalyse und Bioanorganische Chemie

V 2 90 30 100

Prinzipien der chemischen Material- und Strukturforschung

V 2 90 30 100

Metallorganische Komplexchemie V 1 50 15 100

AC-Übungen Üb 1 40 15 30

Modulverantwortlicher Prof. Dr. Walter Frank

Beteiligte Dozenten Die Dozenten der Anorganischen Chemie

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie (anteilig) Pflicht

Lernziele und Kompeten-zen

Kennenlernen wichtiger Aspekte der modernen anorganischen Che-mie; vertieftes Verständnis der Prinzipien von Struktur und Reaktivität anorganischer Verbindungen; Schulung von Auswahl und Anwendung moderner Synthesemethoden und des Zusammenspiels mit begleiten-den Analyseverfahren

Inhalte

1. Koordinationschemie: Nomenklatur, Elektronenbilanz, Koordi-nationszahl und –polyeder, Isomerie, M-L-Bindung und ihre Effekte (CF, LF, MO Modell), Stabilität, Reaktivität in und von Übergangs-metallkomplexen, Komplexe mit kleinen Molekülen, M-M-Bindungen, medizinische Anwendungen, Untersuchungsmethoden 2. Prinzipien der chemischen Material- und Strukturforschung: ``Tradi-tionelle´´ und Neue Materialien, Materialsyntheseverfahren im Über-blick, Sol-Gel-Verfahren, Aerosol-Prozesse, Chemische Transportreak-tionen, Chemical Vapour Deposition; Röntgenbeugung und Thermo-analyse zur Materialcharakterisierung, Vergleichende Kristallchemie, Eigenschaften von Festkörpern 3. Metallorganische Komplexchemie: Vertiefung der Grundlagen aus dem EOC-BSc-Modul; Systematik der Liganden (Olefine und Diene, Allyle und Dienyle, cyclische Liganden, Carbene); Reaktionsmechanis-men und spektroskopische Methoden in der metallorganischen Che-mie; Isolobalanalogie, Clusterregeln

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Teilnahme an Vorlesungen und Übungen

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 180 benotet

Stellenwert der Note für die Endnote 14/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Modulhandbuch „Master of Science“ im Fach Chemie

5

Literatur

Huheey, Keiter, Keiter: Anorganische Chemie – Prinzipien von Struktur und Reaktivität; Shriver, Atkins, Langford: Anorganische Chemie; zu 1.: Riedel/Janiak, Moderne Anor-ganische Chemie; zu 2.: Müller, Anorg. Strukturchemie; Smart, Moore, Einführung in die Festkörperchemie; Schubert, Hüsing, Synthesis of Inorganic Materials; zu 3.: Rie-del/Janiak: s.o., Elschenbroich, Organometallchemie (Teubner)

Pflichtpraktikum Anorganische Chemie (AC-P) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Pflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

5 150 1 Semester WiSe 1.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Moderne Anorganische Chemie PExp 6 120 90 10

AC-P-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. Walter Frank

Beteiligte Dozenten Die Dozenten der Anorganischen Chemie

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Pflicht

Lernziele und Kompeten-zen

Sicherer Umgang mit komplexen Reaktionsapparaturen; Schulung von Auswahl und Anwendung moderner Synthesemethoden und des Zu-sammenspiels mit begleitenden Analyseverfahren, Kreative Präsenta-tion wissenschaftlicher Ergebnisse

Inhalte

Fortgeschrittene Synthesemethoden (Inertgas- und Schlenktechnik, HV-Apparaturen, Hydrothermalsynthese, Hochtemperaturreaktionen, Sol-Gel-Verfahren, nichtwäss. Lösungmittel); Herstellung und Charak-terisierung von Liganden, Metallkomplexen, bioanorganischen Modell-verbindungen, Pigmenten, Gläsern und Metall- bzw. Halbleiternano-partikeln, Hybridmaterialien; Reaktions- und Produktkontrolle mit kombinierten spektroskopischen Methoden

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Teilnahme am Praktikum; Anfertigen von Protokollen, Seminar- vortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

unbenotet

Stellenwert der Note für die Endnote

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur

J. D. Woollins, Inorganic Experiments; Brauer, Handbuch der Präparativen Anorgani-schen Chemie; Herrmann, Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry; Ausgewählte Artikel aus Chemie in unserer Zeit und dort zitierte Original-arbeiten

Wahlpflichtmodule

Bioanorganische Chemie (BioAC) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht

Modulhandbuch „Master of Science“ im Fach Chemie

6

ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Bioanorganische Chemie V 2 90 30 30

BioAC-Praktikum PExp 6 120 90 15

BioAC-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. C. Janiak

Beteiligte Dozenten Prof. Dr. C. Janiak

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten-zen

Verständnis für die Rolle von Metallionen in biologischen Prozessen. Welche Rolle spielen biologische Verfügbarkeit, Ionenladung, Ionenra-dius, Redoxpotential und Elektronenkonfiguration auf die Verwendung in lebenden Organismen.

Inhalte

Vorlesung Bioanorganische Chemie: Essenzielle Metalle, biologische Liganden. Funktion der Hauptgruppenmetallionen Na, K, Mg, Ca, Zn und der Übergangsmetallionen Fe, Mn, Cu, Co, Mo in der Biochemie: Stabilisierung von Strukturen, Katalyse von Redox- und nicht-Redoxreaktionen. Medizinische Anwendungen von Metallkomplexen. Praktikum Bioanorganische Chemie: Synthesen: biomimetischer Co-balt-Methyl-Komplex, Cobalt-Disauerstoff-Komplex, Eisen-Distickstoff-Komplex, Makrocyclischer N4-Ligand mit Nickel als Templat, Zink- und Cobalt-Komplexe als Modellverbindungen für Carboanhydrase. Analy-sen: AAS-Bestimmung von Mn und Zn in Blättern, Ca und Mg in Frucht-säften, Komplexbildungsgleichgewichte: Nickel(II)-Glycine-Komplexe, pH-Abhängigkeit, Selektiver Transport von Metallionen durch Memb-ranen. Seminar: Diskussion der eigenen Ergebnisse, Präsentation aktueller Publikationen durch die Studierenden.

Teilnahmevoraussetzungen Grundkenntnisse in Koordinationschemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme mit Seminarbeitrag, Anfertigen von Protokollen

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur Lippard, Berg: Bioanorganische Chemie; Da Silva, Williams: The biological chemistry of the elements; Kaim, Schwederski: Bioanorganische Chemie;

Chemische Kristallographie (ChemKrist) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Modulhandbuch „Master of Science“ im Fach Chemie

7

Chemische Kristallographie Sem 3 120 45 30

ChemKris-Praktikum PExp 6 120 90 15

Modulverantwortlicher Prof. Dr. W. Frank

Beteiligte Dozenten Prof. Dr. W. Frank, Dr. G. Reiß

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten-zen

Erlernen bzw. Vertiefen der theoretischen Grundlagen der Kristall-strukturanalyse; Erwerb eines umfassenden Überblicks über die expe-rimentellen Möglichkeiten zur Charakterisierung von Einzelkristallen und Kristallpulvern mittels Röntgenbeugung; Erlernen bzw. Vertiefen der Durchführung und der Dokumentation einer Kristallstrukturanaly-se.

Inhalte

Röntgenstrahlen und Strahlenschutz; Kristallgitter und Symmetrie; Wellenkinematische Theorie der Röntgenbeugung, Die Deutungen des Beugungsphänomens von Laue und Bragg; Das Reziproke Gitter, Die Ewald-Konstruktion, Atomformfaktoren und Strukturfaktoren; Transla-tionenbehaftete Symmetrieelemente; Systema-tische Auslösungen und die Bestimmung von Raumgruppen; Fourier-Reihen in der Kris-tallographie; Optische Diffraktometrie; Experimentelle Methoden (Kristallzucht und –auswahl, Vierkreis-Diffraktometer; Imaging Plate- und CCD-Diffraktometer, Intensitätsdatensammlung); Datenreduktion; Strukturlösung mit Direkten Methoden bzw. Pattersonfunktion; Struk-turverfeinerung und Qualitätsindikatoren; Kritische Beurteilung der Ergebnisse von Kristallstrukturanalysen; Kristallographische Datenban-ken und Crystallographic Information Files; Pseudosymmetriephäno-mene; Aperiodische Kristallstrukturen; Durchführung einer exemplari-schen Kristallstrukturbestimmung und Erstellung einer CIF-Publikation; Grundlagen der Pulverdiffraktometrie und ihrer Meßmethoden, allge-meiner Informationsgehalt eines Röntgen-Pulverdiagramms; Grundla-gen der Rietveld-Methode zur Kristallstrukturverfeinerung; Methoden der Datenreduktion eines Röntgen-Pulverdiagramms; Peakprofilfunk-tionen, Korrekturfaktoren; Modellierung eines Pulverdiagramms ohne Strukturmodell („LeBail Fit“); Fortschritt einer Rietveld-Verfeinerung (R-Faktoren); Quantitative Phasenanalyse mit der Rietveld-Methode

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme mit Seminarbeitrag, Anfertigen von Protokollen

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur Massa, Kristallstrukturbestimmung (Teubner); Borchardt-Ott, Kristallographie (Sprin-ger); Giacovazzo, Fundamentals of Crystallography (Oxford); Krischner, Koppelhuber-Bitschnau, Röntgenstrukturanalyse und Rietveld-Methode (Vieweg)

Festkörperchemie (FKC) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

Modulhandbuch „Master of Science“ im Fach Chemie

8

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Spezielle Festkörperchemie V 2 90 30 30

FKC-Praktikum PExp 6 120 90 15

FKC-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. W. Frank

Beteiligte Dozenten Prof. Dr. W. Frank

Sprache Deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

Lernziele und Kompeten-zen

Fähigkeit zum aktiven Umgang mit den Gegenständen der Vorlesung, Beherrschung von ausgewählten Synthesemethoden der Festkörper-chemie, Anwendung von spektroskopischen und röntgenanalytischen Analysen bei konkreten Fragestellungen

Inhalte

Vorlesung: Ausgewählte Substanzklassen aus dem Bereich der ioni-schen Verbindungen und der intermetallischen Systeme, Schichtmate-rialien und partiell ungeordnete Festkörper; Keramische und „neue“ Syntheseverfahren, Festkörperanalytische Verfahren Praktikum: Synthese neuer Verbindungen aus der aktuellen Forschung, röntgenographische und festkörperspektroskopische Charakterisie-rung

Teilnahmevoraussetzungen Erfolgreiche Teilnahme am Pflichtmodul AC und am Pflichtpraktikum AC oder äquivalente Studienleistung

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Teilnahme an Vorlesung und Praktikum, Anfertigen von Protokollen

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Vorlagen

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur

1. Müller, Anorganische Strukturchemie (Teubner), West, Grundlagen der Festkörper-chemie (VCH), Smart, Moore, Einführung in die Festkörperchemie (Vieweg), Rie-del/Janiak, Moderne Anorganische Chemie (de Gruyter); 2. Massa, Kristallstrukturbe-stimmung (Teubner), Aktuelle Literatur (Zeitschriften)

Katalyse (Kat) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Katalyse V 2 90 30 30

Kat-Praktikum PExp 6 120 90 15

Kat-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. C. Ganter

Beteiligte Dozenten Prof. Dr. C. Ganter

Sprache Deutsch

Weitere Verwendbarkeit Studiengang Modus

Modulhandbuch „Master of Science“ im Fach Chemie

9

des Moduls M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten-zen

Verständnis der Prinzipien der homogenen sowie heterogenen Kataly-se. Erlangen eines fundierten Überblicks über die Bedeutung katalyti-scher Verfahren in Labor und Technik. Einblick in aktuelle Forschungs-tendenzen.

Inhalte

Vorlesung: Wiederholung metallorganischer Elementarreaktionen; Aktivität, Pro-duktivität und Selektivität; Unterschiede zwischen homogener und hete-rogener Katalyse; Ligandendesign; Beispiele aus Labor und Technik, insbesondere zu Metathese, Polymerisation, Copolymerisation.

Praktikum: Übergangsmetallkatalysierte Knüpfung von C-Element-Bindungen: Kreuzkupplung, Polymerisation, Copolymerisation von Olefinen und CO, Hydrierung, Hydroformylierung, Hydrosilylierung. Evtl. Mitarbeit an Forschungsprojekten der Arbeitsgruppe.

Seminar: Diskussion der eigenen Ergebnisse, Präsentation aktueller Publikatio-nen durch die Studierenden.

Teilnahmevoraussetzungen Erfolgreiche Teilnahme am Pflichtmodul AC und am Pflichtpraktikum AC oder äquivalente Studienleistung

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme mit Seminarbeitrag, Anfertigen von Protokollen

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur

D. Steinborn: Grundlagen der metallorganischen Komplexkatalyse; A. Behr: Ange-wandte homogene Katalyse; B. Cornils, W. A: Herrmann: Applied Homogeneous Catalysis with Organometallic Compounds

Nanochemie (Nano) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester SoSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Nanochemie V 2 90 30 30

Nano-Praktikum PExp 6 120 90 10

Nano-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. C. Janiak

Beteiligte Dozenten Prof. Dr. C. Janiak

Sprache Deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten- Kennenlernen wichtiger Aspekte der Nano-Chemie; vertieftes Ver-

Modulhandbuch „Master of Science“ im Fach Chemie

10

zen ständnis der Prinzipien von Struktur und Reaktivität von Nano-Verbindungen; Schulung von Auswahl und Anwendung moderner Na-no-Synthesemethoden und des Zusammenspiels mit begleitenden Analyseverfahren

Inhalte

Nanochemie: Nanokristall-, Nanoröhren-, Nanodrähte-Synthese und -Selbstorganisation, Mikrokugeln, mikroporöse und mesoporöse Mate-rialien, chemische Mustererzeugung und Lithographie, Organisation von Schichten auf Oberflächen; Praktikum: jeweils ausgewählte Reaktionen bzw. Versuche, die die Prinzipien der Vorlesungsinhalte verdeutlichen.

Teilnahmevoraussetzungen Erfolgreiche Teilnahme am Pflichtmodul AC und am Pflichtpraktikum AC oder äquivalente Studienleistung

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an Modulveranstaltungen; Protokolle zu Praktikumsversuchen

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur Lehrbücher der Nanochemie z.B. Ozin, Arsenault Cademartiri, Nanochemistry; Cade-martiri, Ozin, Concepts of Nanochemistry

Supramolekulare Chemie (SupChem) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Supramolekulare Chemie und Nicht-kovalente Bindung

V 2 90 30 20

SupChem-Praktikum PExp 6 120 90 10

SupChem-Seminar Üb 1 30 15 20

Modulverantwortlicher Prof. Dr. W. Frank

Beteiligte Dozenten Prof. Dr. W. Frank

Sprache Deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten-zen

Verständnis der unterschiedlichen Formen Nichtkovalenter Bindung, ihrer charakteristischen Geometrien und der Hierarchie ihrer Gitter-enthalpiebeiträge in Feststoffen; Erkennen der Bedeutung supramole-kularer Assoziation für die Strukturen, Eigenschaften und Reaktivitäten ausgewählter Verbindungsklassen aus allen Bereichen der Chemie

Inhalte

Varianten der Nichtkovalenten Bindung (Bindungsgeometrien, Bin-dungsenthalpien, Bindungsordnungen von Wasserstoffbrückenbin-dungen, Sekundäre Element-Element-Bindungen; Metallion-Aromat-Wechselwirkungen, π-π-Stapelwechselwirkungen; Hydrophobe Wech-selwirkungen); Molekulare Selbstorganisation; Crystal Engineering, Wirt-Gast-Systeme; Kationen- und Anionenselektive Rezeptoren; Chlathrate; Spezies-Engineering; Supramolekulare Assoziation als

Modulhandbuch „Master of Science“ im Fach Chemie

11

Hilfsmittel der Reaktionssteuerung; Einsatz des Crystal Engineering bei der Herstellung Anorganisch-Organischer Hybridmaterialien

Teilnahmevoraussetzungen Erfolgreiche Teilnahme am Pflichtmodul AC und am Pflichtpraktikum AC oder äquivalente Studienleistung

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Teilnahme an Vorlesung Übung, Praktikum, Anfertigen von Protokollen

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur Steed, Atwood, Supramolecular Chemistry (Wiley-VCH); Desiraju, The Crystal as a Supramolecular Entity (Wiley)

Forschungsmodul in Anorganischer Chemie (FAC) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Forschungsmodul in Anorganischer Chemie

Sem 2 60 30 20

FAC-Praktikum PExp 7 180 105 10

Modulverantwortlicher Prof. Dr. C. Janiak

Beteiligte Dozenten Die Dozenten der Anorganischen Chemie

Sprache Deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten-zen

Kennenlernen der projektorientierten Forschung auf einem aktuellen Gebiet der Anorganischen Chemie

Inhalte

Planung und Durchführung eines Forschungsprojektes unter Anleitung eines Doktoranden: Definition des Projektes, Recherche der relevan-ten Literatur, Planung und Durchführung der Experimente, spektro-skopische Analyse der Produkte und Bewertung der Ergebnisse, Pla-nung des weiteren Projektverlaufs; Anfertigung eines Abschlussbe-richts und Präsentation der Ergebnisse im Mitarbeiterseminar

Teilnahmevoraussetzungen Erfolgreiche Teilnahme am Pflichtmodul AC und am Pflichtpraktikum AC oder äquivalente Studienleistung

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Teilnahme am Seminar, regelmäßige Laborarbeit unter Anleitung, An-fertigung eines Berichts und Präsentation der Ergebnisse

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/ Fae-cher/Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur Übersichtsartikel und aktuelle Originalpublikationen zum Projektthema

Modulhandbuch „Master of Science“ im Fach Chemie

12

Module des Instituts für Biochemie

Wahlpflichtmodule

Allgemeine Biochemie (ABC) Stand: 18.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht

ECTS-Punkte Arbeitsaufwand

[h] Dauer Turnus Studiensemester

8 240 Blockmodul

1. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Stoffwechselbiochemie V 4 120 60 30

Methoden der Proteincharakteri-sierung

PExp & Sem 7 120 90 15

Modulverantwortlicher Prof. Dr. Lutz Schmitt

Beteiligte Dozenten Die Dozenten des Instituts für Biochemie

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

B.Sc. Chemie Qualifizierung

Lernziele und Kompeten-zen

Kenntnis wesentlicher Stoffwechselwege und katalytischen Mecha-nismen beteiligter Enzyme; Verständnis für die Zusammenhänge von Stoffwechselprozessen und den resultierenden physiologischen oder pathologischen Auswirkungen; experimentelle Fähigkeiten zur Be-stimmung wichtiger Proteineigenschaften; Fähigkeit zur schriftlichen und mündlichen Präsentation experimenteller Ergebnisse

Inhalte

Vorlesung: Glycolyse, Milchsäure- und Ethanol-Gärung, Substratket-ten-Phosphorylierung, Pyruvatdehydrogenase, Citronensäurezyklus, Oxidative Phosphorylierung, Aufbau biologischer Membranen, Grund-lagen der Bioenergetik, Gegenüberstellung von Oxidativer Phosphory-lierung und Photophosphorylierung, Gluconeogenese und Glykogen-stoffwechsel und ihre hormonelle Steuerung, Abbau und Synthese von Triacylglycerol und deren hormonelle Steuerung, Aminosäure-Abbau, Harnstoffzyklus, Stickstoffkreislauf, Pentosephosphat-Weg in Tieren und Calvin-Zyklus in Pflanzen, Steroid- und Isoprenoidsynthese, Oxygenasen und Desaturasen Praktikum: Proteinsequenzierung durch Edman-Abbau von Insulin; Lipidzusammensetzung der Mitochondrienmembran; Isoelektrofokus-sierung von Cytochrom c und Myoglobin; Quantifizierung von IgG durch ELISA; Darstellung von Proteinstrukturen mit Hilfe von Stan-dardprogrammen und der Brookhaven Protein Data Base

Teilnahmevoraussetzungen Biochemische Grundkenntnisse

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an Praktikum; Protokolle zu den Prakti-kumsversuchen; Abschlusskolloquium zum Praktikum

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Projektor, Tafel, Internet

Webseite Tafel, Projektor, Internet

Literatur Lehrbücher der Biochemie z.B.: Berg, Tymoczko, Stryer "Biochemie", Spektrum Verlag

Modulhandbuch „Master of Science“ im Fach Chemie

13

From gene to in silico structure – the use of protein data bases (ISS)

Stand: 18.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht

ECTS-Punkte Arbeitsaufwand

[h] Dauer Turnus Studiensemester

5 150 Blockmodul

2. Semesterhälfte

WiSe (Präsenz) oder WS und SS als online-Modul

3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Protein Data Bases V 2 70 30 30

From Gene to in silico structure Üb 3 80 45 30

Modulverantwortlicher Prof. Dr. L. Schmitt

Beteiligte Dozenten Prof. Dr. L. Schmitt, Dr. S. Smits

Sprache Englisch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie Wahlpflicht

Lernziele und Kompeten-zen

Befähigung zur Analyse von Proteinen mit Hilfe von Internetdatenban-ken und darin implementierten Programmen; Beherrschung theoreti-scher Grundlagen gängiger Algorithmen; Fähigkeit zur mündlichen Darstellung wissenschaftlicher Zusammenhänge in Englisch

Inhalte

Vorlesung: DNA Sequenzierung (Methoden, Ansätze, Vor- und Nachteile), Identifi-zierung von open reading frames, Sequenzalignments und Datenban-ken (Modelle, Vor- und Nachteile), FASTA und BLAST, Datenbanken für 1-, 2- und 3-dimensionales Suchen, Literaturrecherchen, Datenbanksu-chen mit „Profilen“, Spezialisierte Websites – Proteinidentifikation, -funktion und –aufbau, Multiple Sequenzalignments, In silico Pro-teinanalyse: Identifikation, Funktion, Targeting, Topologievorhersage, Posttranslationale Modifikationen, Transfer Sequenz/Struktur, Homo-logiesuche, Homologiemodellierung Übungen: Vom DNA-Segment zum Protein und dessen Funktion/Struktur; Prä-sentation der Resultate der Übungen

Teilnahmevoraussetzungen Grundkenntnisse der Molekularbiologie und Biochemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Strukturvorhersage und -analyse eines Proteins basierend auf der Gensequenz; Mündliche Präsentation der Versuchsergebnisse

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Diskussion zur Präsentation 30 unbenotet

Stellenwert der Note für die Endnote -

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Biochemie/Lehre

Literatur Aktuelle Reviews und Originalpublikationen nach Mitteilung

Modulhandbuch „Master of Science“ im Fach Chemie

14

Molekulare Enzymologie (ME) Stand: 26.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 Blockmodul

2. Semesterhälfte WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Enzymkatalyse V 2 60 30 30

Lichtgetriebene Systeme V 1 40 15 30

Enzyme in Synthese und Lichtwahr-nehmung

PExp 6 120 90 15

ME-Seminar Sem 1 20 15 30

Modulverantwortlicher Prof. Dr. V. Urlacher

Beteiligte Dozenten Prof. Dr. V. Urlacher, Prof. Dr. W. Gärtner

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie (anteilig) Pflicht

Lernziele und Kompeten-zen

Exemplarische Kenntnisse zur Struktur-/Funktionsbeziehung von En-zymen; Verständnis der Möglichkeiten und Beschränkungen bei der Nutzung enzymkatalysierter Syntheseschritte; Überblick über Eigen-schaften und Funktion lichtsensorische Proteine; Fähigkeiten zum Ein-satz von Redox-Enzymen in der chemischen Synthese; Fähigkeit zur schriftlichen und mündlichen Präsentation experimenteller Ergebnisse

Inhalte

Vorlesung: Reaktionsmechanismen sowie Struktur-Funktionsbeziehungen von industriell-relevanten Enzymen; molekula-rer Hintergrund enzymatischer Selektivität; Photochemische Anregung, Jablonski-Diagramm, lichtaktivierbare Sys-teme, Pigmente von Vertebraten und Invertebraten, Retinochrome; halobakterielle Systeme, blaulichtsensitive Systeme, Photolyasen;

Praktikum: Bestimmung enzymatischer Aktivität, Ermittlung von kine-tischen Konstanten und KD-Werten, Untersuchung der Regio-, Chemo- und Enantioselektivität ausgewählter Enzyme; Assemblierung von Bacteriorhodopsin aus Mutanten-Apoprotein und Retinal, Bestimmung von Photozyklus und Protonentransport. Isolie-rung eines heterolog produzierten, blaulicht-sensitiven Photorezepto-ren und UV-Vis Absorptionsspektroskopie des FMN-Chromophors.

Teilnahmevoraussetzungen Grundkenntnisse der Molekularbiologie und Biochemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme am Praktikum; Protokolle zu den Praktikumsversuchen; Mündliche Präsentation der Versuchsergebnisse

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 60 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Biochemie/Lehre

Literatur Aktuelle Reviews und Originalpublikationen nach Mitteilung

Modulhandbuch „Master of Science“ im Fach Chemie

15

Proteinkatalysierter Membrantransport (MT) Stand: 18.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 Blockmodul

2. Semesterhälfte WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Membrantransport V 3 120 45 30

Transporter und Carrier PExp 7 120 90 15

Modulverantwortlicher Prof. Dr. L. Schmitt

Beteiligte Dozenten Prof. Dr. L. Schmitt

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie Pflicht

Lernziele und Kompeten-zen

Kenntnis wichtiger Membrantransport-Prozesse; Verständnis der Struktur-/Funktionsbeziehung von stofftransportierenden Membran-proteinen, Fähigkeiten zur Isolierung, Rekonstitution und Bestimmung der katalytischen Eigenschaften von Membrantransportproteinen; Fähigkeit zur schriftlichen und mündlichen Präsentation experimentel-ler Ergebnisse

Inhalte

Vorlesung: Primär/sekundär aktive Membrantransporter: Vorkommen und physiologische Bedeutung in Pro- und Eukaryoten, Mechanismen auf der Grundlage der Protein(kristall)strukturen. Funktion und physio-logische Bedeutung von Ionenkanälen; strukturelle Grundlagen für ihre Aktivität, Selektivität und Regulation, Signalübertragung durch memb-ranständige Rezeptoren; Proteintransportsysteme in Pro- und Eukary-oten (Sec, Proteinsekr. Typ I-IV); Rezeptor-vermittelte Endozytose

Praktikum: Drogenresistenz von ausgewählten Hefestämmen, Aufrei-nigung ausgewählter ABC-Transporter bzw. ihrer Domänen, Analyse der Kooperativität, Solubilisierungsstrategien, Charakterisierung der basalen und Substrat-stimulierten ATPase Aktivität in Detergenzlö-sung, Rekonstitution, qualitative und quantitative Charakterisierung von Proteoliposomen, Bestimmung der ATPase -Aktivität rekonstituier-ter ABC-Transporter

Teilnahmevoraussetzungen Grundkenntnisse der Molekularbiologie und Biochemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme am Praktikum; Protokolle zu den Praktikumsversuchen; Mündliche Präsentation der Versuchsergebnisse

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 60 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Biochemie/Lehre

Literatur Aktuelle Reviews und Originalpublikationen nach Mitteilung

Modulhandbuch „Master of Science“ im Fach Chemie

16

Vom Gen zum biotechnologischen Produkt (GenProd) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahl ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Vom Gen zum biotechnologischen Produkt

V 2 75 30 30

GenProd-Praktikum PExp 6 120 90 15

GenProd--Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. V. Urlacher

Beteiligte Dozenten Prof. Dr. V. Urlacher

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahlpflicht Wahlpflicht

Lernziele und Kompetenzen Kenntnisse und praktische Kompetenz in der Expressionsoptimierung von rekombinanten Proteinen und technischen Enzymen, ihrer Aufar-beitung; Einsatz von technischen Enzymen und Produktaufarbeitung

Inhalte

Vorlesung: Vergleich von verschiedenen prokaryotischen und eukaryotischen Expressionssystemen (Escherichia coli, Bacillus, Pseudomonas, Streptomyces, Pichia, Saccharomyces, Baculoviren, tierische und pflanzliche Zellen); Aufarbeitung von Proteinlösungen (Filtrations- und Fällungsmethoden); Aufreinigung von Proteinen und Enzymen über Ionenaustauschchromatographie, hydrophobe Interaktions-chromatographie, Gelfiltration, Affinitätschromatographie; Einsatz von Enzymen in der Biotechnologie, Produktaufarbeitung

Praktikum: grundlegende Techniken und Methoden zur Herstellung rekombinanter Expressionssysteme: Vergleich der Expression in pro- und eukaryotischen Mikroorganismen am Beispiel von Oxidoreduktasen; Aufreinigung und Charakterisierung der Enzyme bezüglich Aktivität, Produktspektrum, Regio- und Chemo-Selektivität; enzymatische Oxidation von hydrophoben Substraten und phenolische C-C-Kopplung im mL-Maßstab Seminar: Präsentation aktueller Publikationen durch die Studierenden

Teilnahmevoraussetzungen Grundkenntnisse Molekularbiologie, Mikrobiologie und Biochemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen, Versuchsprotokolle, Vortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Powerpoint, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Biochemie

Literatur

Proteins: Biochemistry and Biotechnology (G. Walsh) John Wiley & Sons, New York, 2001 Der Experimentator - Proteinbiochemie/Proteomics (H. Rehm, T. Letzel) Spektrum Verlag, 2009 Biotransformations in Organic Chemistry (K. Faber) Springer, 2004

Modulhandbuch „Master of Science“ im Fach Chemie

17

Module des Instituts für Bioorganische Chemie

Wahlpflichtmodule

Naturstoffsynthese I (NATSY 1) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Einführung in die Naturstoffsynthese V 1 25 15 30

NATSY1-Praktikum PExp 6 170 90 15

NATSY1-Seminar Sem 2 45 30 30

Modulverantwortlicher Prof. Dr. J. Pietruszka

Beteiligte Dozenten Prof. Dr. J. Pietruszka

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahl Wahlpflicht

Lernziele und Kompetenzen Die Studierenden erkennen Schlüsselschritte für die Syntheseplanung von (einfachen) Naturstoffen. Die Schlüsselreaktionen werden von ihnen theoretisch verstanden und in die Laborpraxis umgesetzt.

Inhalte

Vorlesung: Konzepte zur Retrosynthese, Schutzgruppenstrategien,

Entwicklung von Synthesestrategien für einfache Naturstoffe (z. B. -Lactam-Antibiotika), Schlüsselreaktionen, Totalsynthese, Biosynthese, physiologische Eigenschaften.

Praktikum: Projektarbeit zur Synthese von Schlüsselbausteinen der organischen Synthese.

Seminar: Besprechung von aktuellen Originalarbeiten, Vorträge zu den Projekten.

Teilnahmevoraussetzungen Praktische Fähigkeiten und Kenntnisse in der Synthesechemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Protokoll zum Praktikum; Seminarvortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor

Webseite http://www.iboc.uni-duesseldorf.de/

Literatur

Nicolaou, Sorensen ‘Classics in Total Synthesis’, VCH, 1996

Nicolaou, Snyder ‘Classics in Total Synthesis II’, Wiley-VCH, 2003

McMurry, Begley ‘Organische Chemie der biologischen Stoffwechselwege’, Spektrum Akademischer Verlag, 2006

Naturstoffsynthese II (NATSY 2) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

Präsenzzeit [h]

Gruppen-größe

Modulhandbuch „Master of Science“ im Fach Chemie

18

[h]

Einführung in die Naturstoffsynthese V 1 25 15 30

NATSY2-Praktikum PExp 6 170 90 15

NATSY2-Seminar Sem 2 45 30 30

Modulverantwortlicher Prof. Dr. J. Pietruszka

Beteiligte Dozenten Prof. Dr. J. Pietruszka

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahl Wahlpflicht

Lernziele und Kompetenzen

Die Studierenden erwerben Kenntnisse und experimentelle Fähigkei-ten zur (Bio)synthese und Retrosynthese von komplexen Naturstoffen. Analytische Methoden (NMR, IR, MS, Enantiomerenanalytik) werden in der Praxisphase an Fallbeispielen erläutert. Am Ende des Moduls sollte die selbstständige Auswertung von Spektren (Strukturzuordnung) möglich sein.

Inhalte

Vorlesung: Besprechung ausgewählter komplexer Zielverbindungen (z. B. Polyketide): Physiologisches Target, Biosynthese, Synthesestrate-gien, Erörterung mechanistischer, methodische Details zu anspruchs-vollen Syntheseschritten, Totalsynthese.

Praktikum: Projektarbeit zur Synthese von Schlüsselbausteinen für die Naturstoffsynthese, Durchführung längerer Reaktionssequenzen.

Seminar: Besprechung von aktuellen Originalarbeiten, Vorträge zu den Projekten.

Teilnahmevoraussetzungen Praktische Fähigkeiten und Kenntnisse in der Synthesechemie; das Modul baut auf 'Naturstoffsynthese I' auf.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Protokoll zum Praktikum; Seminarvortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor

Webseite http://www.iboc.uni-duesseldorf.de/

Literatur

Nicolaou, Sorensen ‘Classics in Total Synthesis’, VCH, 1996

Nicolaou, Snyder ‘Classics in Total Synthesis II’, Wiley-VCH, 2003

McMurry, Begley ‘Organische Chemie der biologischen Stoffwechselwege’, Spektrum Akademischer Verlag, 2006

Optimierungsverfahren in der Proteinherstellung (OptiProt)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Einführung in die Naturstoffsynthese V 1 25 15 30

OptiProt-Praktikum PExp 6 170 90 15

OptiProt-Seminar Sem 2 45 30 30

Modulhandbuch „Master of Science“ im Fach Chemie

19

Modulverantwortlicher Prof. Dr. J. Pietruszka

Beteiligte Dozenten Prof. Dr. J. Pietruszka, Dr. S. Meyer zu Berstenhorst

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahl Wahlpflicht

Lernziele und Kompetenzen Kenntnisse und praktische Fähigkeiten in der Erzeugung von Produkti-onsstämmen sowie unterschiedlicher Verfahren zur Produktion und Funktionsanlyse von Proteinen

Inhalte

Vorlesung: Erzeugung und Optimierung von prokaryotischen und euka-ryotischen Produktionsstämmen, Vergleich verschiedener Fermentati-onstechniken und Anwendung in der Biotechnologie

Praktikum: Projektarbeit zur Erzeugung von Produktionsstämmen, vergleichender Fermentation und Funktionsanalyse der produzierten Proteine.

Seminar: Besprechung von relevanten Originalpublikationen durch die Studierenden.

Teilnahmevoraussetzungen Praktische Fähigkeiten und Kenntnisse in der Biochemie und Moleku-larbiologie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Protokoll zum Praktikum; Seminarvortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor

Webseite http://www.iboc.uni-duesseldorf.de/

Literatur

Proteins: Biochemistry and Biotechnology (G. Walsh) John Wiley & Sons, New York, 2001; Der Experimentator - Proteinbiochemie/Proteomics (H. Rehm, T. Let-zel) Spektrum Verlag, 2009; Biotransformations in Organic Chemistry (K. Faber) Springer, 2004.

Module des Instituts für Organische Chemie und Makromolekulare Chemie

Pflichtmodule

Pflichtmodul Organische Chemie (MoPoS) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Pflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

9 270 1 Semester SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Vertiefte Makromolekulare Chemie V 2 75 30 100

Heterocyclenchemie V 2 75 30 100

Stereochemie V 1 60 15 100

MoPoS-Seminar Sem 1 60 15 30

Modulverantwortlicher Prof. Dr. T.J.J. Müller

Beteiligte Dozenten Prof. Dr. M. Braun, Prof. Dr. T. J. J. Müller, Prof. Dr. L. Hartmann, Dr. M.

Modulhandbuch „Master of Science“ im Fach Chemie

20

Tabatabai, PD Dr. K. Schaper, Dr. B. Mayer, Dr. S. Beutner

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie (anteilig) Pflicht

Lernziele und Kompeten-zen

Vertiefte Kenntnis der Eigenschaften nieder- und hochmolekularer Verbindungen, Stereoselektive Synthese, Weitreichende Kenntnisse der Stereochemie, Synthetische und mechanistische Aspekte der Hete-rocyclenchemie Sicherheit bei der Präsentation aktueller Fachthemen

Inhalte

Polymere und Biopolymere, Chirale Verbindungen und physiologische Wirkung, Funktionale-Pi-Elektronen-Systeme, Synthese und Reaktio-nen von Heterocyclen, Naturstoffsynthese, Biomimetische Synthese, Retrosynthese, Rationale Wirkstoffsynthese, Synthese und Konzeption funktionaler Materialien Im Seminar halten die Studierenden Vorträge über aktuelle Themen der organischen und makromolekularen Forschung

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Regelmäßige und aktive Teilnahme an Vorlesungen und Seminar, Se-minarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 14/135

Medienformen Tafel, Projektor,PC und Internet für Lernhilfen

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/Studium

Literatur

S. Buxton: Einführung in die Organische Stereochemie R. Brückner: Reaktionsmechanismen T. Eicher, S. Hauptmann: The Chemistry of Heterocycles J.J. Li: Name Reactions in Heterocyclic Chemistry S. Warren: Organische Retrosynthese D. Braun, H. Cherdron, M. Rehan, H. Ritter, B. Voit, Polymer Synthesis Theory and Practice, 4th Edition, 2004, Springer Verlag. Hans-Georg Elias, Makromoleküle, Band 1-4, Wiley-VCH.

Pflichtpraktikum Organische Chemie (MoPoS-P) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Pflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

5 150 1. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

MoPoS-Praktikum PExp 6 120 90 15

MoPoS-P-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. T. J. J. Müller

Beteiligte Dozenten Prof. Dr. M. Braun, Prof. Dr. T. J. J. Müller, Prof. Dr. L. Hartmann, Dr. M. Tabatabai, PD Dr. K. Schaper, Dr. B. Mayer, Dr. S. Beutner

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Pflicht

Lernziele und Kompeten-zen

Sicherer Umgang mit komplexen Reaktionsapparaturen; Schulung von Auswahl und Anwendung moderner Synthesemethoden; Verständnis für Möglichkeiten und Grenzen moderner Analyseverfahren, Sicherheit bei der Diskussion aktueller Fachthemen

Modulhandbuch „Master of Science“ im Fach Chemie

21

Inhalte

Fortgeschrittene Synthesemethoden, Mehrstufensynthesen, Reakti-ons- und Produktkontrolle mit kombinierten analytischen Methoden. Im Seminar wird die Auswertung spektroskopischer Daten präsentiert und es werden relevante Aspekte der im Praktikum durchgeführten Versuche diskutiert.

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Regelmäßige und aktive Teilnahme an Praktikum und Seminar, Erfolg-reiche Bearbeitung der Praktikumsaufgaben, Erstellen von Ver-suchsprotokollen.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

unbenotet

Stellenwert der Note für die Endnote

Medienformen Tafel, Projektor,PC und Internet für Lernhilfen und Literatursuche

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/Studium

Literatur

Reinhardt Brückner u.a. Praktikum Präparative Organische Chemie - Organisch-chemisches Fortgeschrittenenpraktikum, Spektrum Akademischer Verlag, 2008.

Ausgewählte Synthesevorschriften und Artikel aus aktuellen Veröffentlichungen, Skriptum zum Praktikum.

Wahlpflichtmodule

Festphasen-Polymersynthese (FP-PS) ab WiSe 2017/18 Stand: 12.10.2016

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Festphasen-Polymersynthese V 2 75 30 30

FP-PS-Praktikum PExp 6 135 90 15

FP-PS-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. L. Hartmann

Beteiligte Dozenten Prof. Dr. L. Hartmann, Dr. M. Tabatabai, Wiss. Mitarbeiterinnen und Mitarbeiter

Sprache Deutsch/ggf. englisch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahlpflicht Wahlpflicht

Lernziele und Kompetenzen Verfeinerung der Fähigkeit zur projektorientierten Forschung auf ei-nem aktuellen Gebiet der Makromolekularen Chemie.

Inhalte

Vorlesung: Das Prinzip der Festphasensynthese wird am Beispiel der Merrifield Festphasenpeptidsynthese eingeführt. Die Anwendung der Festpha-sensynthese in Industrie und Forschung wird am Beispiel der Peptid-, Oligonucleotid-, Zucker- und Polymerfestphasensynthese weiterge-hend beleuchtet. Praktikum: Planung und Durchführung eines Forschungsprojektes unter Anleitung eines Doktoranden.

Modulhandbuch „Master of Science“ im Fach Chemie

22

Die Forschungsarbeit besteht aus Recherche der relevanten Literatur, Planung und Durchführung der Experimente, Charakterisierung der Produkte und Anfertigung eines Abschlussberichts. Die Ergebnisse werden im Mitarbeiterseminar vorgetragen.

Teilnahmevoraussetzungen Fundierte Kenntnisse (Theorie & Praxis) in organischer und makromo-lekularer Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Anfertigung eines Be-richts und Präsentation der Ergebnisse im Mitarbeiterseminar.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Projektor, Tafel, PC und Internet für Lernhilfen und Literatursuche

Webseite http://www.macrochem.hhu.de/

Literatur

W. C. Chan, P. D. White, Fmoc Solid Phase Peptide Synthesis: A Practical Approach (The Practical Approach Series) Oxford University Press 2000 Patrick H. Toy, Yulin Lam, Solid-Phase Organic Synthesis: Concepts, Strategies, and Applications, Wiley.

Multikomponenten- und Dominoreaktionen (MCR) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Multikomponenten- und Dominoreak-tionen

V 2 75 30 30

MCR-Praktikum PExp 6 120 90 15

MCR--Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. T. J. J. Müller

Beteiligte Dozenten Prof. Dr. T. J. J. Müller

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erwerben Kenntnisse und experimentelle Fertigkei-ten über neue Konzepte der Organischen Synthese, zur Synthesepla-nung mit diversitätsorientierter Synthese und werden zur mechanisti-schen Diskussion befähigt.

Inhalte

Vorlesung: Begrifflichkeiten, Reaktivitätsbasierte Konzepte, Reaktive Funktionalitäten, Multikomponentenreaktionen auf Basis von Car-bonylverbindungen, Iminen, Iminiumionen, Michael-Additionen, I-sonitrilen, Cycloadditionen, Radikalreaktionen, metallvermittelten und metallkatalysierten Reaktionen, Homo- und Hetero-Domino-Reaktionen

Praktikum: Ausgewählte Literaturpräparate. Abschließend Mitarbeit an einem aktuellen Forschungsprojekt der Arbeitsgruppe.

Seminar: Diskussion relevanter Aspekte der im Praktikum durchge-führten Versuche.

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie, solide Kennt-

Modulhandbuch „Master of Science“ im Fach Chemie

23

nisse in organischer Synthesechemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Regelmäßige aktive Teilnahme an allen Lehrveranstaltungen, An-fertigung von Versuchsprotokollen, Vortrag über ein bearbeitetes Pro-jekt und den theoretischen Hintergrund

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel & Kreide, PC, Datenbanken (Reaxys, SciFinder) für Literatur-recherchen und Power-Point für den Projektvortrag.

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/Studium

Literatur

T. J. J. Müller, Top. Heterocycl. Chem. 2010, 25, 25. D. M. D’Souza, T. J. J. Müller, Chem. Soc. Rev. 2007, 36, 1095. A. Dömling, Chem. Rev. 2006, 106, 17. G. Balme, E. Boss-harth, N. Monteiro, Eur. J. Org. Chem. 2003, 4101. H. Bienaymé, C. Hulme, G. Oddon, P. Schmitt, Chem. Eur. J. 2000, 6, 3321. G. H. Posner, Chem. Rev. 1986, 86, 831. Multi-component Reactions, J. Zhu, H. Bienaymé, Hrsg., Wiley-VCH, 2005. L. F. Tietze, Chem. Rev. 1996, 96, 115. L. F. Tietze, U. Beifuss, Angew. Chem. 1993, 105, 137. Domino Reactions in Organic Synthesis, L. F. Tietze, G. Brasche, K. M. Gericke, Wiley-VCH, Weinheim, 2006.

Präparative Polymerchemie (PPC) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Präparative Polymerchemie V 2 75 30 30

PPC-Praktikum PExp 6 135 90 15

PPC-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. L. Hartmann

Beteiligte Dozenten Prof. Dr. L. Hartmann, Dr. M. Tabatabai, Wiss. Mitarbeiterinnen und Mitarbeiter

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen Vertieftes Verständnis über Fragestellungen der Polymerchemie, Vor-bereitung zum wissenschaftlichen Arbeiten

Inhalte

Vorlesung: Heterozyklen in Polymerchemie: Heterozyklen mit unterschiedlichen Ringgröße, Epoxide bis Makrozyklen, cyclische Ester, Amide und Ether Polymere und Licht: Licht induzierte Polymerisation, freie radikalische Polymerisation und kationische Polymerisation, technische Entwick-lung und Anwendungen (Coating, Adhesive, Dental-Systeme, Stereo-lithographie usw.), Licht induzierte chemische Prozesse in Polmer-Materialien, Stabilisierung der im Handel erhältlichen Polymere. Praktikum:Technische Polymerisationsverfahren, wichtige Klassen von Funktionspolymeren, hyperverzweigte Polymere, Copolymere, Block-copolymere, Kinetik der Polyreaktionen, Polymere in Lösung, Polymere als Festkörper, polymeranaloge Reaktionen.

Teilnahmevoraussetzungen Fundierte Kenntnisse (Theorie & Praxis) in organischer und makromo-lekularer Chemie

Studienleistungen Aktive Teilnahme an den Lehrveranstaltungen, ausführliche Protokolle

Modulhandbuch „Master of Science“ im Fach Chemie

24

(u.a. als Zulassungsvoraussetzung zur Modulprüfung)

zur wissenschaftliche Forschungsarbeiten

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zu m Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, PC und Internet für Lernhilfen und Literatursuche

Webseite http://www.macrochem.hhu.de/lehrevorlesungen-und-praktika/praktika.html

Literatur

1) Hans-Georg Elias, Makromoleküle, Band 1-4, Wiley-VCH 2) Schnabel, W.; Polymers and Light - Fundamentals and Technical Applications,

Wiley-VCH 3) George Odian, Principles of Polymerization, 3th Edition, Wiley Interscience

Sequenzkontrollierte Polymere (SeqPol) Stand: 12.10.2016

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Sequenzkontrollierte Polymere V 2 75 30 30

SeqPol-Praktikum PExp 6 120 90 15

SeqPol-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Laura Hartmann

Beteiligte Dozenten Prof. Dr. Laura Hartmann, Dr. Monir Tabatabai

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Vertiefte Kenntnisse der modernen Polymerwissenschaften, Metho-den zur Herstellung und Charakterisierung von sequenzkontrollierten Polymeren in Theorie und Praxis.

Inhalte

Vorlesung: Einführung in das Thema – Definitionen, kurzer Rückblick auf die Entwicklung; Synthetische Methoden zur Erzeugung sequenz-kontrollierter Polymere, u.a. Insertionsreaktionen, Templating Poly-merizations, Festphasensynthese; Anwendungsbereiche sequenzkon-trollierter Polymere: Biomedizin, Datenspeicherung, Katalyse.

Praktikum: Ausgewählte Literaturpräparate, abschließende Mitarbeit an einem aktuellen Forschungsprojekt der Arbeitsgruppe.

Seminar: Diskussion relevanter Aspekte der im Praktikum durchgeführ-ten Versuche.

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie, solide Kennt-nisse in organischer Chemie und Makromolekulare Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Regelmäßige aktive Teilnahme an allen Lehrveranstaltungen, An-fertigung von Versuchsprotokollen, Vortrag über ein bearbeitetes Pro-jekt und den theoretischen Hintergrund

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel & Kreide, PC, Datenbanken (z.B. SciFinder) für Literaturrecher-chen und Power-Point.

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/Studium

Modulhandbuch „Master of Science“ im Fach Chemie

25

Literatur Sequence-controlled polymers: Synthesis, self-assembly, and properties. ACS Sympo-sium Series 1170. Edited by J.-F. Lutz, T.Y. Meyer, M. Ouchi, and M. Sawamoto.

Stereoselektive Synthese (SSSyn) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Stereoselektive Synthesen V 2 75 30 30

SSSyn-Praktikum PExp 6 120 90 15

SSSyn--Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. M. Braun

Beteiligte Dozenten Prof. Dr. M. Braun

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erwerben fundierte Kenntnisse der Stereochemie. Sie werden in Theorie und Praxis mit der Planung und Durchführung stereoselektiver Reaktionen mit Hilfe von metallorganischen Reagen-zien vertraut gemacht und erwerben Kenntnisse über Erzeugung und Handhabung metallorganischer Verbindungen unter inerten Bedin-gungen und der Enantiomerenanalytik.

Inhalte

Grundlagen der organischen Stereoisomerie. Struktur und Reaktivität polarer metallorganischer Verbindungen, insbesondere von Li, Mg, B sowie sigma-gebundener Übergangsmetalle (Ti, Zn Cu). Methoden zur Synthese enantiomerenreiner Produkte mit Hilfe von chiralen Auxilia-ren und Katalysatoren. Anwendung metall-vermittelter stereoselekti-ver Synthesemethoden zur Knüpfung von C-H-, C-C-, C-O- und C-N-Bindungen.

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie, solide Kennt-nisse in organischer Synthesechemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Regelmäßige aktive Teilnahme an allen Lehrveranstaltungen, An-fertigung von Versuchsprotokollen, Vortrag über ein bearbeitetes Pro-jekt und den theoretischen Hintergrund

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel & Kreide, PC, Datenbanken (Reaxys, SciFinder) für Literatur-recherchen und Power-Point für den Projektvortrag.

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/Studium

Literatur

N. Krause: Metallorganische Chemie: Stereoselektive Synthesen mit metallorganischen Verbindungen, Spektrum Akademischer Verlag 1996. C. Elschenbroich, Organometallchemie, Teubner Studienbücher 2008. Skriptum zum Praktikum

Modulhandbuch „Master of Science“ im Fach Chemie

26

Synthese und Katalyse (SynKat) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Synthese und Katalyse V 2 75 30 30

SynKat-Praktikum PExp 6 120 90 15

SynKat--Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. T. J. J. Müller

Beteiligte Dozenten Prof. Dr. T. J. J. Müller

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erwerben Kenntnisse und experimentelle Fertigkei-ten über komplexe Reaktionssequenzen und deren retrosynthetische Analyse, Syntheseplanung mit katalytischen Methoden und werden zur mechanistischen Diskussion befähigt.

Inhalte

Vorlesung: Moderne Methoden der homogenen Katalyse in der orga-nischen Synthese: Metall- und organokatalysierte Reaktionen sind oftmals der Schlüsselschritt bei Synthesen, sei es in Forschung oder Produktion. In dieser Vorlesung sollen die homogenkatalytischen Re-aktionen hinsichtlich ihres Anwendungspotentials und aktueller Wei-terentwicklungen beleuchtet werden. Pd-, Ru-, Fe-, Cu-, Au- und Rh-katalysierte Reaktionen, Katalyse mit Metallcarbenoiden, CH-Aktivierung, Oligomerisierungen; Grundlagen der metallfreien Kataly-se, ausgewählte organokatalytische Prozesse.

Praktikum: Ausgewählte Literaturpräparate zu z.B. Metall- und Orga-nokatalyse. Abschließend Mitarbeit an einem aktuellen Forschungs-projekt der Arbeitsgruppe.

Seminar: Diskussion relevanter Aspekte der im Praktikum durchge-führten Versuche.

Teilnahmevoraussetzungen Gültige Immatrikulation im Masterstudiengang Chemie, solide Kennt-nisse in organischer Synthesechemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Regelmäßige aktive Teilnahme an allen Lehrveranstaltungen, An-fertigung von Versuchsprotokollen, Vortrag über ein bearbeitetes Pro-jekt und den theoretischen Hintergrund

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel & Kreide, PC, Datenbanken (Reaxys, SciFinder) für Literatur-recherchen und Power-Point für den Projektvortrag.

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/Studium

Literatur

L.S. Hegedus, Organische Synthese mit Übergangsmetallen, Wiley-VCH, 1995; A. Ber-kessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, 2005; A. De Meijere, F. Diederich (Hrsg.), Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed., Wiley-VCH, 2004; S.-I. Murahashi (Hrsg.), Ruthenium in Organic Synthesis, Wiley-VCH, 2004; Iron Catalysis in Organic Chemistry, Wiley-VCH, 2008;Praktikumsskript.

Modulhandbuch „Master of Science“ im Fach Chemie

27

Wahlpflichtmodul in Organischer Chemie (WOC) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 Blockmodul

1. Semesterhälfte SoSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

WOC-Seminar Sem 2 90 30 20

WOC-Praktikum PExp 6 150 90 10

Modulverantwortlicher Prof. Dr. T.J.J. Müller

Beteiligte Dozenten Prof. Dr. M. Braun, Prof. Dr. T.J.J. Müller, PD Dr. K. Schaper

Sprache Deutsch/ggf. englisch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten-zen

Verfeinerung der Fähigkeit zur projektorientierten Forschung auf ei-nem aktuellen Gebiet der Organischen Chemie

Inhalte

Planung und Durchführung eines Forschungsprojektes unter Anleitung eines Doktoranden: Definition des Projektes, Recherche der relevan-ten Literatur, Planung und Durchführung der Experimente, spektro-skopische Analyse der Produkte und Bewertung der Ergebnisse, Pla-nung des weiteren Projektverlaufs; Anfertigung eines Abschlussbe-richts und Präsentation der Ergebnisse im Mitarbeiterseminar

Teilnahmevoraussetzungen Solide Kenntnisse in organischer Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Regelmäßige und aktive Teilnahme am AK-Seminar, sachgerechte Laborarbeit, Anfertigung eines Berichts und Präsentation der Ergebnis-se

Prüfungen

Prüfungsform Dauer [min] benotet/unbenotet

mündliche Prüfung beim AK-Leiter

30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Organische_Chemie/Studium

Literatur Übersichtsartikel und aktuelle Originalpublikationen zum Projektthema

Module des Instituts für Physikalische Chemie

Pflichtmodule

Pflichtmodul Physikalische Chemie (SMKS-V) Stand: 12.03.2012

Studiengang: M. Sc. Chemie Modus: Pflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

9 270 1 Semester SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Spektroskopie komplexer Systeme (SMKS-1)

V 3 120 45 200

SMKS-1 Übungen Üb 1 60 15 30

Mikroskopie komplexer Systeme (SMKS-2)

V 2 90 30 200

Modulhandbuch „Master of Science“ im Fach Chemie

28

Modulverantwortlicher Prof. Dr. Karg / Prof. Dr. Seidel

Beteiligte Dozenten Dozenten der physikalischen Chemie im Wechsel

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie (anteilig) Pflicht

Lernziele und Kompeten-zen

Verständnis moderner spektroskopischer und mikroskopischer Me-thoden zur Analyse von komplexen Molekülen, Grenzflächen und Na-nosystemen.

Inhalte

Vorlesung 1 (SMKS-1): Spektroskopie komplexer Systeme 1. Grundlegende Prinzipien Motivation und historisches Abriss Definition Spektroskopie, Spektroskopie mit EM-Wellen, Spektralbe-reiche Resonanz (klassisch, quantenmechanisch), Absorption und Dispersion Allgemeine Messmethoden der Spektroskopie Nicht-lineare Spektroskopie 2. Spektroskopie von Molekülen in der Gasphase und in flüssiger Phase Überblick, Vorteile der Behandlung von isolierten Molekülen Rotationen Schwingungen Elektronische Anregungen Unterschiede Gasphase/flüssige Phase: Linienbreiten, Resonanzfre-quenzen 3. Grundlagen der statistischen Thermodynamik Die Zustandssumme, Ableiten der Inneren Energie als Funktion der Zustandssumme. 4. Zerfall angeregter Zustände und zeitaufgelöste Spektroskopie Übersicht über Zeitskalen, kürzestes Zeitskala für chemische Reaktio-nen Methoden der zeitaufgelösten Spektroskopie, fs-Spektroskopie Jablonski-Diagramm, Zerfallszeiten, Quantenausbeuten Strahlende Lebensdauer, Strickler-Berg Fluoreszenzlöschung Löschung durch Energietransfer (FRET) Löschung durch Elektrontransfer Intramolekulare Prozesse: Innere Konversion, Interkombination, Photochemie Vorlesung 2 (SMKS-2): Mikroskopie komplexer Systeme 1. Physikalische Chemie an der Grenzfläche und Festkörperspektro-skopie Grenzflächen und Nanostrukturen Rastertunnelmikroskopie Rasterkraftmikroskopie, Elektronenmikroskopie Rastersondenmikroskopie Photoelektronenspektroskopie an Oberflächen Einführung u.a. in EXAFS (Extended X-ray Absorption Fine Structure), Augerelektronen-Spektroskopie, Evaneszente Infrarot-Spektroskopie, Plasmonenspektroskopie, Oberflächenverstärkter Ramaneffekt (SERS) 2. Optische Mikroskopie

Modulhandbuch „Master of Science“ im Fach Chemie

29

Optische Grundlagen Optische Mikroskopie jenseits der Beugungsgrenze 3. Kinetik Kinetik und Dynamik auf Oberflächen, Katalyse Begleitend werden zu den verschiedenen Themen die Inhalte des Praktikums in beiden Vorlesungen vermittelt. Übungen für Chemiker Vertiefende Rechenübungen zu den Themen der Vorlesung SMKS1. Gestellte Aufgaben werden selbständig bearbeitet. Die korrigierten Übungsaufgaben werden gemeinsam mit der Darstellung der Lö-sungswege besprochen.

Teilnahmevoraussetzungen Bachelor Sc. Chemie oder äquivalent

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Abgabe der Übungsaufgaben, Schriftliche Prüfung zum Gesamtstoff.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 14/135

Medienformen Vorlesungsskript als pdf Dokument, Tageslichtprojektor, Powerpoint, Tafel, Videos, einige praktische Vorführungen

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur

Vorlesungsskripte, Fachbücher:

P.W. Atkins, "Physikalische Chemie", Wiley-VCH

G. Wedler, "Lehrbuch der Physikalischen Chemie", Verlag Chemie

W.J. Moore, D.O. Hummel, "Physikalische Chemie", W. de Gryter

G.M. Barrow, G.W. Herzog, "Physikalische Chemie I-III", Vieweg

H. Kuhn, H.-D. Försterling, "Principles of Physical Chemistry", Wiley C.M. Hamann, W. Vielstich: Elektrochemie, Wiley-VCH.

Pflichtpraktikum Physikalische Chemie (SMKS-P) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Pflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

5 150 1. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

SMKS-Praktikum mit Seminar PExp 7 150 80 15

Modulverantwortlicher Prof. Dr. Karg / Prof. Dr. Seidel

Beteiligte Dozenten Dozenten der physikalischen Chemie im Wechsel

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie (anteilig) Pflicht

Lernziele und Kompeten-zen

Verständnis moderner spektroskopischer und mikroskopischer Me-thoden zur Analyse von komplexen Molekülen, Grenzflächen und Na-nosystemen.

Inhalte

Praktikum/ Seminar Experimentelle Übungen zur physikochemischen Charakterisierung komplexer Systeme. Die Theorie wird in begleitenden Seminaren zusätzlich diskutiert. 8 ausgewählte Versuche aus einem Pool von Versuchen, z.B.

Modulhandbuch „Master of Science“ im Fach Chemie

30

Registrierung und Auswertung eines Iod-Dampf VIS- Spektr.

Rotations- und Schwingungsspektren symmetrischer Kreisel

Mikroskop. Techniken zur Messung von Größenverteilungen

Impedanzspektroskopie

Fluoreszenzspektroskopie

Protonierungskinetik

Leitfähige Polymere

Korrosion + Passivität sowie weitere Versuche in enger Anlehnung an die Vorlesung.

Teilnahmevoraussetzungen Bachelor Sc. Chemie oder äquivalent

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Praktikum: vor Versuchsbeginn mündliches Kolloquium zum Experi-ment, Seminarvortrag, Anfertigung von Protokollen.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Kolloquien zu den Versuchen 30 unbenotet

Stellenwert der Note für die Endnote

Medienformen Versuchsaufbauten

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur

Vorlesungsskripte, Fachbücher:

P.W. Atkins, "Physikalische Chemie", Wiley-VCH

G. Wedler, "Lehrbuch der Physikalischen Chemie", VCH

W.J. Moore, D.O. Hummel, "Physikalische Chemie", de Gruyter

G.M. Barrow,G.W. Herzog, "Physikalische Chemie I-III", Vieweg

H. Kuhn, H.-D. Försterling, "Principles of Physical Chemistry", Wiley

C.M. Hamann, W. Vielstich: Elektrochemie, Wiley-VCH.

Wahlpflichtmodule

Biomolekulare Strukturen und Wechselwirkungen (BSW) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Biomolekulare Strukturen und Wech-selwirkungen

V 2 60 30 30

BSW-Praktikum PExp 6 135 90 15

BSW-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Claus Seidel

Beteiligte Dozenten Prof. Dr. Lutz Schmitt, Prof. Dr. Claus Seidel

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Die Studierenden erwerben Kenntnisse zur Struktur der Biomoleküle, deren Dynamik und intermolekularen Wechselwirkungen und experi-mentelle Fähigkeiten zur Bestimmung dieser Wechselwirkungen in der Ligandenbindung.

Inhalte Vorlesung: Biophysikalische Grundlagen der Strukturbildung, Dynamik,

Modulhandbuch „Master of Science“ im Fach Chemie

31

und Stabilität von insbesondere Proteinen und Nukleinsäuren, Über-blick über die spektrosko¬pischen Methoden zur Strukturanalyse und Kinetik. Arten der intra¬molekularen Wechselwirkungen und Einfluss äußerer Faktoren. Biomolekulare Faltung, Modelle, Vorhersagen, Me-thoden und Energien. Beschreibung von Bindungsisothermen, Modulation der Enzymaktivi-tät durch die Konzentration von Enzym und Ligand. Verständnis der Kooperativität aus thermodynamischer Sicht ( z. B. Adair-Gl. Hill-Gl. Scatchard Gl. und komplexere Modelle). Seminar: Vertiefender Vortrag der Teilnehmer zum Stoff der Vorlesung unter Nutzung von Büchern und Originalarbeiten (Vortragssprache Deutsch oder Englisch nach Wahl). Praktikum: Aufreinigung, Aktivitätsbestimmung und Charakterisierung einer ATPase.

Teilnahmevoraussetzungen abgeschlossenes B.Sc.-Studium

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum, Seminarvortrag

Prüfungen

Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung* (oder Klausur zum Gesamtmodul*) *Die jeweilige Prüfungsform wird am Beginn des Moduls festgelegt

30-45 (40)

Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel und Kreide, Folien- und Powerpoint-Projektionen

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur

Die jeweils aktuellen Ausgaben der internationalen Standardbücher für Bioche-mie/Biophysik für Naturwissenschaftler, Fachbücher zur Proteinfaltung, z.B. Charles R. Cantor, Paul R. Schimmel, Biophysical Chemistry, Parts I-III, W H Freeman & Co (1980). Kensal E. van Holde, W. Curtis Johnson, P. Shing Ho, Principles of Physical Biochemis-try, Prentice Hall; 2. Auflage (2004). Bengt Nölting, Protein folding kinetics: Biophysical Methods, Springer, Berlin; 2. Aufla-ge (2005).

Modulhandbuch „Master of Science“ im Fach Chemie

32

Computer im Labor: Steuerung, Datenerfassung, Daten-auswertung (CompuLab)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Computer im Labor: Steuerung, Da-tenerfassung, Datenauswertung

V 2 60 30 30

CompuLab-Praktikum PExp 6 135 90 15

CompuLab-Übungen Üb 1 45 15 30

Modulverantwortlicher Prof. Dr. Matthias Karg

Beteiligte Dozenten Prof. Dr. Matthias Karg

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Es soll an Hand ausgewählter Beispiele die Steuerung einer Messappa-ratur (bewegliche Elemente, zeitliche Folgen) sowie die Erfassung der Messdaten mit Hilfe der Software Labview erklärt und die Auswertung der Messdaten mit Mathcad, Origin und Answer 42 vorgeführt wer-den. Lernziel ist das Verständnis der computergestützten Apparate-steuerung, Datenerfassung, Datenauswertung und Simulation.

Inhalte

Vorlesung: Mathcad Basiskurs (Befehle, Algorithmen, Darstellungen). Ausgewählte Simulationen von Spektren und kinetischen Prozessen. Messen und Steuern mit Labview . Origin und Answer 42 Basiskurs (wichtigste Funktionen). Fit von Spek-tren zur Parameterextraktion. Grafische Spektrendarstellung für Veröf-fentlichungen. Übungen: Einfache Steuerungs- und Datenerfassungsprobleme. Da-tenauswertung mit Origin und Answer 42. Simulationen mit Mathcad. Praktikum: Erstellung eines Programmes zur Steuerung eines Prakti-kumversuchs und zugehörige Datenerfassung in Gruppenarbeiten.

Teilnahmevoraussetzungen abgeschlossenes B.Sc.-Studium

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 90 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Overhead, Beamer, Tafel, Computer

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur Verschiedene Skripte und Beispielprogramme zur Vorlesung (Origin, Answer 42, Mathcad).

Modulhandbuch „Master of Science“ im Fach Chemie

33

Elektronische Anregungen aus der Sicht des Experimenta-tors (EA)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Elektronische Anregungen aus der Sicht des Experimentators

V 2 60 30 30

EA-Praktikum PExp 6 135 90 15

EA-Übungen Üb 1 45 15 30

Modulverantwortlicher Prof. Dr. Rainer Weinkauf

Beteiligte Dozenten Prof. Dr. Rainer Weinkauf

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen Vermittlung der Kenntnisse zur elektronischen Anregung und ihrer Auswirkung auf verschiedenen Problemfelder der Analytik, der Spekt-roskopie, der Photostabilität, der Fragmentierung und der Farbgebung

Inhalte

Vorlesung: Vom Atomorbitalen zu Molekülorbitalen, Elektronen-konfigurationen, das Theorem von Koopmanns, die Konfigurationen elektronischer Zustände, verschiedene Moleküle als Beispiele (Doppel-anregung, Nicht-Koopmanns-Verhalten, CI), das Jablonski-Diagramm, strahlende und nicht-strahlende Prozesse, vermiedene Kreuzungen und konische Schnitte, S-T-Durchdringungen, dunkle Zustände: nπ*-Zustände, Triplett-Zustände, CT-Zustände, Symmetrieverbote, Konfi-gurationsauswahlregeln, Lösemittel-, Exciton- und Ladungstransfer-Effekte. Die Ionisation, die Elektronenanlagerung, die Photoelektro-nenspektroskopie (PES) vom neutralen Molekül zum Kation, die Mul-tiphoton-Laser-PES, die PES vom Anion zum neutralen Molekül, die PES mit der HeI-Linie und mit Röntgenlicht. Anwendungen: Ladungstransfer in Polymeren, Effekte an Grenz-schichten, Oberflächenanalyse mit ESCA, PES-Untersuchungen an Me-tall- und Halbleiter-Clustern, Neutralenspektroskopie an geschlossen-schaligen Molekülen, mehrfachgeladene Anionen, geschlossenschalige Anionen und Kationen, Konsequenzen für die moderne Massenspektrometrie (Proteinanalyse und DNA-Analyse), die Ladungssituation bei ESI-MS, Photoanregung von Multianionen und Multi-Kationen, Multiples Photodetachment und multiple Radikale, Elektroneneinfang bei mehrfach positiv geladenen Ionen Übungen: Rechenbeispiele zu Themenbereichen in der Vorlesung, Vorbereiten von Praktikumsversuchen. Praktikum: Durchführen von Experimenten an Forschungsapparaturen in kleinen Gruppen (beispielhaft):

- Photodissoziation an ESI-gesprühten Ionen - Anionen-PES zur Spektroskopie von Triplettzuständen - HeI-PES and Molekülen in der Gasphase und auf Oberflächen - ESCA-Analysen von organischen und nichtorganischen Ober-

flächen

Teilnahmevoraussetzungen abgeschlossenes B.Sc.-Studium

Studienleistungen Teilnahme an Vorlesung und Übungen. Fill-Ins, Protokolle zum Prakti-

Modulhandbuch „Master of Science“ im Fach Chemie

34

(u.a. als Zulassungsvoraussetzung zur Modulprüfung)

kum.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Internet, Vorlesungsversuche

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur Vorlesungsskript

Femtosekunden-Spektroskopie chemischer und biologi-scher Prozessse (FSCB)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Femtosekunden-Spektroskopie chemi-scher und biologischer Prozess

V 2 60 30 30

FSCB-Praktikum PExp 6 135 90 15

FSCB-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Peter Gilch

Beteiligte Dozenten Prof. Dr. Peter Gilch

Sprache deutsch, englisch nach Teilnehmerkreis

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Bedeutung zeitaufgelöster Verfahren in der modernen physikalisch-chemisch und bio-physikalischen Forschung Laserbasierte Messtechnik insbesondere Femtosekunden-Techniken Chemische und biologische Prozesse auf kurzen Zeitskalen Einarbeitung in aktuelle wissenschaftliche Literatur Konzeption, Durchführung und Dokumentation eines Forschungspro-jekts

Inhalte

Vorlesung 1. Zeitskalen physikalisch-chemischer Prozesse. 2. Methoden der zeitaufgelösten Spektroskopie im Überblick 3. Messverfahren der Femtosekunden-Spektroskopie

Funktionsprinzip des Lasers Modenkopplung Titan-Saphir-Laser und Verstärker Charakterisierung von Femtosekunden-Impulsen Frequenz-Konversion / Nicht-lineare Optik Verfahren der Detektion: Absorption, Fluoreszenz, IR, Raman,

etc. 4. Physikalische Prozesse im Femtosekunden-Bereich Dynamik versus Kinetik Wellenpaketsbewegungen Nicht-strahlende Prozesse Dynamische Solvatation

5. Chemische Prozesse im Femtosekunden-Bereich Elektrontransfer und Marcus-Theorie Proton- und Wasserstofftransfer

Modulhandbuch „Master of Science“ im Fach Chemie

35

Isomerisierungen 6. Biologische Prozesse im Femtosekunden-Bereich Photosynthese Sehprozess DNA-Photoschäden

Seminar: In Zusammenarbeit mit dem Dozenten werden aktuelle Ori-ginalarbeiten aus dem Themenbereich der Vorlesung ausgewählt und von den Studierenden vorgestellt.

Teilnahmevoraussetzungen BSc-Abschluss in Chemie, Physik, Biochemie, Biologie oder Wirt-schaftschemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Anfertigung von Protokollen, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel und Kreide, Folien- und Powerpoint-Projektionen

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur

C. Rulliére (Herausgeber): Femtosecond Laser Pulses. 2. Auflage, Springer 2005 J.-C. Diels, W. Rudolph: Ultrashort Laser Pulse Phenomena, 2. Auflage, Academic Press, 2006 D. Meschede: Optik, Licht und Laser, Teubner Studienbücher, 1999 R.W. Boyd: Nonlinear Optics, 3. Auflage, Associated Press, 2008 A. Nitzan: Chemical Dynamics in Condensed Phases, Oxford Graduate Texts, 2006 P. Klán, J. Wirz: Photochemistry of Organic Compounds, Wiley-CH, 2009 L.O. Björn (Herausgeber): Photobiology: The Science of Life and Light, Springer, 2009 Ausgewählte Original- und Übersichtsarbeiten

Fortgeschrittene Fluoreszenzspektroskopie und –mikro-skopie - Vertiefungspraktikum (FFSM-P)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

FFSM-Übungen Üb 1 45 15 30

FFSM-Praktikum PExp 8 165 120 15

FFSM-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. Claus Seidel

Beteiligte Dozenten Prof. Dr. Claus Seidel

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie, M. Sc. Biochemie Wahlpflicht

Lernziele und Kompetenzen

Die Studierenden erwerben Kenntnisse zur Photophysik und Photo-chemie von Farbstoffen. Sie erlernen die praktische Durchführung von aktuellen Methoden der Fluoreszenzmikroskopie sowie deren Anwen-dung zur Charakterisierung von Nanomaterialien und biologischen Objekten.

Inhalte Übungen: Vertiefung des Inhalts des Praktikums. Seminar: Vertiefender Vortrag der Teilnehmer zum Stoff der Vorle-sung unter Nutzung von Büchern und Originalarbeiten, Vortrag der

Modulhandbuch „Master of Science“ im Fach Chemie

36

Praktikumsergebnisse (Vortragssprache Deutsch oder Englisch nach Wahl). Praktikum: Eventuelle Mitarbeit an aktuellen Forschungsthemen der Arbeitsgruppe. Es gibt verschiedene Themenbereiche: (1) Charakterisierung der Eigenschaften von Fluoreszenzfarbstoffen in verschiedenen Umgebungen, Optimierung ihrer Eigenschaften in Be-zug auf Signalstärke und Photostabilität. (2) Multiparameter Imagespektroskopie von komplexen Systemen. (3) Multiparameter Einzelmolekül-Fluoreszenzspektroskopie (4) Verschiedenste Techniken der Fluoreszenzkorrelations-spektroskopie.

Teilnahmevoraussetzungen

Erfolgreiche Teilnahme an einem der folgenden Module, wo die not-wendige Theorie vermittelt wurde: Multiparameter Fluoreszenzdetek-tion (MFD), Grenzflächen und Kolloide – Bedeutung für industrielle Anwendungen (Interface) oder Superresolution Fluoreszenzmikrosko-pie (Super FM).

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel und Kreide, Folien- und Powerpoint-Projektionen

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur Die jeweils aktuellen Ausgaben der internationalen Standardbücher und Übersichtsar-tikel für Photophysik, Photochemie, Biochemie/Biophysik bzw. Kolloidchemie für Naturwissenschaftler, Fachbücher zur Mikroskopie, Laborprotokolle.

Grenzflächen und Kolloide – Bedeutung für industrielle Anwendungen (Interface)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Grenzflächen und Kolloide V 2 60 30 30

Interface-Praktikum PExp 6 135 90 15

Interface-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Wolfgang von Rybinski / Prof. Dr. Claus Seidel

Beteiligte Dozenten Prof. Dr. Wolfgang von Rybinski

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Vertiefung der Kenntnisse in der Physikalischen Chemie der Grenzflä-chen und dispersen Systeme Vermittlung der physikalisch-chemischen Grundlagen der Kolloid- und Grenzflächenchemie an Beispielen aus der industriellen Anwendung Bedeutung physikalisch-chemischer Grenzflächeneffekte für Anwen-dungen in der Grundlagenforschung und in der Praxis

Inhalte Vorlesung: 1. Typen von Grenzflächen, Eigenschaften von Kolloiden, Beispiele für

Modulhandbuch „Master of Science“ im Fach Chemie

37

Anwendungen 2. Grenzflächenaktive Substanzen (Tenside und Polymere) 2.1. Struktur und Typen grenzflächenaktiver Substanzen 2.2. Herstellung grenzflächenaktiver Substanzen 2.3. Physikalisch-chemische Eigenschaften grenzflächenaktiver Sub-stanzen 2.3.1. Adsorption an der Grenzfläche Wasser/Luft, Oberflächenspan-nung 2.3.2. Phasenverhalten grenzflächenaktiver Substanzen 3. Benetzung von festen Oberflächen 3.1. Benetzung/Umnetzung 3.2. Ladungseffekte 3.3. Mehrkomponentensysteme 3.4. Wasch- und Reinigungsprozesse 4. Emulsionen 4.1. Stabilität 4.2. Herstellung 4.3. Grenzflächenspannung 4.4. Phasenverhalten von Mehrkomponentensystemen 4.5. Emulsionen in der Anwendung 5. Schäume 5.1. Bildung 5.2. Stabilität 5.3. Flotation als technisches Verfahren 6. Dispersionen 6.1. Stabilisierung von Dispersionen 6.2. Modifizierung von Nanopartikeln 6.3. Rheologisches Verhalten 6.4. Pigmente in der Anwendung Seminar: Vorträge der Studierenden zu aktuellen Themen und zur Ver-tiefung des Stoffes des Moduls. Praktikum: Zur Einarbeitung sollen ausgewählte Versuche mit Tensio-metrie, Rheologie und optischer Spektroskopie zur vergleichenden Untersuchung von Tensidlösungen gemacht werden. Anschließend wird das System unter enger Betreuung durch die Mitarbeiter des Arbeitskreises mit ausgewählten Methoden weiter vermessen.

Teilnahmevoraussetzungen Gültige Einschreibung in den Masterstudiengang Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Anfertigung von Protokollen, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Overhead, Beamer, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur Vorlesungsskript Buchbeiträge und Bücher Prof. Dr. Wolfgang von Rybinski H.-D. Dörfler, „Grenzflächen und kolloid-disperse Systeme“, Springer 2002

Modulhandbuch „Master of Science“ im Fach Chemie

38

Grundlagen der Umweltchemie (GUC) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Grundlagen der Umweltchemie V 2 60 30 30

GUC-Praktikum PExp 6 135 90 15

GUC-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Michael Schmitt

Beteiligte Dozenten Prof. Dr. Michael Schmitt

Sprache Deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Eigenständige Anwendung von in den Grundvorlesungen der Physikali-schen Chemie erworbenen Fähigkeiten in der Thermodynamik, Kinetik und Spektroskopie auf Fragestellungen in der Umweltchemie. Befähi-gung zur vernünftigen Abschätzung von Größenordnungen physiko-chemischer Prozesse in der Umwelt. Befähigung zur Beurteilung von Modellvorstellungen.

Inhalte

Vorlesung: Aufbau der Atmosphäre

Physik der Atmosphäre Strömungen Temperatur- und Druckverlauf

Chemie der Atmosphäre Kinetische Modellierungen Der natürliche Treibhauseffekt Der anthropogene Treibhauseffekt Das stratosphärische Ozonloch Emission und Verhinderung von Schadgasen durch Industrie Emission und Verhinderung von Schadgasen durch Verkehr

Energieverbrauch/Energieerzeugung Prinzipien regenerativer Energiquellen

Seminar: Eigenständige Bearbeitung und Vorstellung ausgewählter Themen aus der Umweltchemie Praktikum (als Blockpraktikum): Anwendung spektroskopischer Techni-ken zur Messung und Quantifizierung von Spurengasen.

Teilnahmevoraussetzungen BSc Chemie oder Wirtschaftschemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. An-fertigung von Protokollen.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Beamer, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur . Reinhard, A. Heinz: Chemie und Umwelt ,Springer 1996 K. Voß: Umweltchemie, Springer 1997 http://www.oekochemie.tu-bs.de/ak-umweltchemie/start.php

Modulhandbuch „Master of Science“ im Fach Chemie

39

Laserspektroskopische Techniken (LST) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Laserspektroskopische Techniken V 2 60 30 30

LST-Praktikum PExp 6 135 90 15

LST-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Michael Schmitt

Beteiligte Dozenten Prof. Dr. Michael Schmitt

Sprache Deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen Kritisches Verständnis und Bewertung spektroskopischer Methoden Theoretisches Design und Konzipieren von Experimenten.

Inhalte

Laser Detektoren Polarisation Interferenz Spektrometer und Interferometer Frequenzstabilisierung Dopplerbegrenzte Spektroskopie mit Lasern Linienprofile Absorptionsspektroskopie Photoakustisches Spektroskopie Optogalvanische Spektroskopie Cavity Ring Down Spectroscopy Raman-Spektroskopie Nichtlineare Ramanspektroskopie Ionisationsspektroskopie Fluoreszenzspektroskopie Dopplerfreie Techniken Praktikum Laserspektroskopie an düsenstrahlgekühlten Molekülen, ausgewählte Versuche zur Fluoreszenzspektroskopie (statisch, zeitaufgelöst).

Teilnahmevoraussetzungen BSc Chemie oder Wirtschaftschemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Teilnahme an Vorlesung und Seminar. Fill-Ins, Multiple Choice und Formelrechnen mit Einheiten, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Beamer, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur

Ausgewählte Kapitel anerkannter Lehrbücher/ sowie Verwendung einschlägiger Origi-nalpublikationen.

Laserspektroskopie, Wolfgang Demtröder Springer-Verlag, New York, 1991

Einführung in die Molekülspektroskopie, Herzberg, Steinkopf Verlag, Darm-stadt 1971

Molecular spectra and molecular structure III, G. Herzberg, D. van Nostrand Co. Inc., Princeton, 1966.

Modulhandbuch „Master of Science“ im Fach Chemie

40

Moderne Massenspektrometrie von Makromolekülen (MSM)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Ziele und Möglichkeiten der Massen-spektrometrie

V 2 60 30 30

MSN-Praktikum PExp 6 135 90 15

MSN-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Rainer Weinkauf

Beteiligte Dozenten Prof. Dr. Rainer Weinkauf

Sprache deutsch (Fachwörter englisch)

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Kenntnisse zu modernen Massenspektrometrie-Geräten und –Methoden, Fertigkeiten zur Aufnahme und Interpretation von Mas-senspektren, Kompetenz für experimentelle Fragestellungen die richti-ge Methode und das geeignete Gerät zu wählen

Inhalte

Vorlesung: Aufbau eines Massen-Spektrometers Einlasssysteme, Ionisationsmethoden, Massentrennverfahren Nachweismethoden. Einlass von gasförmigen Proben, Einlass von thermisch nicht stabilen Proben - ESI - MALDI - SIMS, Cf-Plasmadesorption, Laserdesorption/Laserionisation, Probleme der Fragmentierung großer Moleküle (RRKM-Theorie) Fragmentierungsmethoden, Stossanregung, Laseranregung, electron capture dissociation Anwendungen: Anwendungen der klassischen Massenspektrometrie, quantitative Analytik, Analytik von Spurenstoffen, zeitaufgelöste Analytik. Kombination mit Vortrenn-Methoden (GC-MS, HPLC-MS) Biochemische Anwendung: Identifikation von Proteinen, Sequenz-analyse mit Hilfe der Massenspektrometrie, Untersuchungen von Schlüssel-Schloß-Prinzipien etc.) Seminar: Prinzipielle Informationen im Massenspektrum Anpassung der Konzeption der massenspektrometrischen Analyse an die jeweilige chemische, Biochemische oder biologische Problem-stellung. Auswahl der Methode Auswerten von Massenspektren. Ab-schätzungen von Empfindlichkeiten und Probeneinwagen, Praktikum: Es sollen im Rahmen desPraktikums an verschiedenen Massen-spektrometern (EI+ Magnetsektor, EI + Quadrupol, ESI + Paulsfalle und MALDI+Flugzeitmassenspektrometer) Vorführungen und eigene Mes-sungen durchgeführt werden. Dabei sollen die Schritte der Probenauf-bereitung, die Messmethoden, die wichtigsten Gerätefunktionen und

Modulhandbuch „Master of Science“ im Fach Chemie

41

die Spektrenaufbereitung erlernt werden. Es ist explizit vorgesehen vergleichende Messungen mit verschiedenen massenspektro-metrischen Methoden und Geräten an den gleichen Molekülen durch-zuführen.

Teilnahmevoraussetzungen BSc Chemie oder Wirtschaftschemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Anfertigung von Protokollen, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tageslichtprojektor, Powerpoint

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur

Interpretation of mass spectra, F.W. McLafferty/ F. Turecek, University Science Books, Sausalito 1993. Mass Spectral Interpretation, T.A. Lee, John Wiley & Sons, New York, 1998. Mass Spectrometry for Chemists and Biochemists, R.A.W. Johnstone, M.E. Rose, Cam-bridge University press, 1996

Molekulare Strukturen und Wechselwirkungen- Vertie-fungspraktikum (MSW-P)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

MSW-Übungen Üb 1 45 15 30

MSW-Praktikum PExp 8 165 120 15

MSW-Seminar Sem 1 30 15 30

Modulverantwortlicher Prof. Dr. Claus Seidel

Beteiligte Dozenten Prof. Dr. Claus Seidel, Prof. Dr. von Rybinski, Prof. Dr. L. Schmitt

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie, M. Sc. Biochemie Wahlpflicht

Lernziele und Kompetenzen

Die Studierenden erwerben Kenntnisse zur Struktur der Makro- und Biomoleküle und Kolloide, deren Dynamik und intermolekularen Wechselwirkungen und experimentelle Fähigkeiten zur Bestimmung dieser Wechselwirkungen in der Ligandenbindung.

Inhalte

Übungen: Vertiefung des Inhalts des Praktikums. Seminar: Vertiefender Vortrag der Teilnehmer zum Stoff der Vorle-sung unter Nutzung von Büchern und Originalarbeiten, Vortrag der Praktikumsergebnisse (Vortragssprache Deutsch oder Englisch nach Wahl). Praktikum: Eventuelle Mitarbeit an aktuellen Forschungsthemen der Arbeitsgruppe. Es gibt verschiedene Themenbereiche: (1) Expression und Aufreinigung von ausgewählten Proteinen, Charak-terisierung der biomolekularen Funktion (Messung von: Reinheit, Akti-vität, Ligandenbindung, strukturelle Eigenschaften), Markierung mit Fluoreszenzfarbstoffen.. (2) Umgang mit Zellkulturen, Multiparameter Imagespektroskopie an diesen Zellen.

Modulhandbuch „Master of Science“ im Fach Chemie

42

(3) Charakterisierung von Kolloiden und Grenzflächen mit physikali-schen Methoden.

Teilnahmevoraussetzungen

Erfolgreiche Teilnahme an einem der folgenden Module, wo die not-wendige Theorie vermittelt wurde: Biomolekulare Strukturen und Wechselwirkungen (BSW), Multiparameter Fluoreszenzdetektion (MFD), Grenzflächen und Kolloide – Bedeutung für industrielle An-wendungen (Interface) oder Superresolution Fluoreszenzmikroskopie (Super FM).

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel und Kreide, Folien- und Powerpoint-Projektionen

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur Die jeweils aktuellen Ausgaben der internationalen Standardbücher für Bioche-mie/Biophysik bzw. Kolloidchemie für Naturwissenschaftler, Fachbücher zur Protein-charakterisierung und Mikroskopie, Laborprotokolle.

Multiparameter Fluoreszenzdetektion (MFD) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Multiparameter Fluoreszenzdetektion V 2 60 30 30

MFD-Praktikum PExp 6 135 90 15

MFD-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Claus Seidel

Beteiligte Dozenten Prof. Dr. Claus Seidel

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie, M. Sc. Biochemie Wahlpflicht

Lernziele und Kompetenzen Grundlegende Kenntnisse der Fluoreszenzspektroskopie. Anwendung zur Charakterisierung von Nanomaterialien und biologischen Objekten.

Inhalte

Vorlesung: 1. Grundlagen: Jablonski-Diagramm: Absorption und Fluo-reszenz , Stoke'sche Verschiebung der Fluoreszenz und dynamische Relaxationsprozesse in kondensierter Phase. Spektrale Eigenschaften: Fluoreszenzanregungsspektren, Aufbau eines Spektrometers, Vorstel-lung von Fluorophoren. Fluoreszenzquantenausbeute: Definition, Mes-sung. Intensität: Konzentrationsabhängigkeit, Inner-Filter-Effekt, Fluo-reszenzmarkierung (Kopplungsgruppen und Markierungsgrad). 2. Fluoreszenzlöschung: Fluoreszenzlebensdauer: Kinetische Ableitung und Anwendung. Statische und dynamische Fluoreszenzlöschung. Re-aktionen im elektronisch anregten Singulettzustand. 3. Fluoreszenzanisotropie: Polarisiertes Licht, Photoselektion, Definiti-on und Ableitung, fundamentale Anisotropie, Rotationsdiffusion, Zeit-abhängigkeit, Perrin-Gleichung. 4. Förster-Resonanz-Energietransfer (FRET): Messung von biomoleku-laren Strukturen und deren Dynamik durch FRET: Theorie und Meßme-

Modulhandbuch „Master of Science“ im Fach Chemie

43

thoden. 5. Multiparameter-Fluoreszenzdetektion: Einzelmolekül-Fluoreszenzspektroskopie und Multiparameter-Fluoreszenzdetektion (MFD): Meßprinzipien. Grundlagen der Fluoreszenzkorrelationsspekt-roskopie (FCS) zur Analytik und kinetischen Charakterisierung von Pro-zessen. Seminar: Vorträge der Studierenden zu aktuellen Themen und zur Vertiefung des Stoffes des Moduls. Praktikum: Zur Einarbeitung sollen ausgewählte Versuche zur Erarbei-tung von Fluoreszenzeigenschaften: Löschung, Anisotropie, Superreso-lution-FRET. Anschließend wird ein ausgewähltes Molekül unter enger Betreuung durch die Mitarbeiter des Arbeitskreises mit Einzelmole-külmethoden weiter vermessen.

Teilnahmevoraussetzungen abgeschlossenes B.Sc.-Studium

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Overhead, Beamer, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur Vorlesungsskript. Valeur, B. (2002). Molecular Fluorescence: Principles and Applica-tions, Wiley-VCH Verlag Weinheim. Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. New York, Springer.

Präparative und spektroskopische Aspekte der organischen Photochemie (PSP)

Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Präparative und spektroskopische Aspekte der organischen Photochemie

V 2 60 30 30

PSP-Praktikum PExp 6 135 90 15

PSP-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Peter Gilch, Priv.-Doz. Dr. Klaus Schaper

Beteiligte Dozenten Prof. Dr. Peter Gilch, Priv.-Doz. Dr. Klaus Schaper

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Angeregte Zustände als elektronische Isomere Bedeutung der Photochemie in Technologie und Industrie Photochemische Arbeitsweisen und Messtechniken Einarbeitung in aktuelle wissenschaftliche Literatur Konzeption, Durchführung und Dokumentation eines Forschungspro-jekts

Inhalte Vorlesung 1. Angeregte Zustände als „elektronische Isomere“ 2. Physikalische Zerfallsprozesse angeregter Zustände

Modulhandbuch „Master of Science“ im Fach Chemie

44

Strahlende Zerfälle (Fluoreszenz und Phosphoreszenz) Nichtstrahlende Zerfälle (Innere Konversion, Interkombination) Energietransfer

3. Zeitaufgelöste Spektroskopie – kurzer Überblick Photochemische Kinetik Blitzlichtphotolyse Femtosekundenspektroskopie

4. Präparative Photochemie – Methodische Aspekte Lichtquellen Filter, Gläser Typen von Reaktoren „Grüne“ Photochemie

5. Photochemische Reaktionen – Präperative und spektroskopische Aspekte

Elektron-, Proton- und Wasserstofftransfer Isomerisierung Cycloadditionen Photoreaktionen von Carbonylverbindungen

6. Technische und industrielle Anwendungen der Photochemie Photohalogenierungen Photolithographie Photolabile Schutzgruppen Photoprotektion

Seminar: In Zusammenarbeit mit dem Dozenten werden aktuelle Ori-ginalarbeiten aus dem Themenbereich der Vorlesung ausgewählt und von den Studierenden vorgestellt. Praktikum: Wahlweise können forschungsnahe Projekte mit dem Schwerpunkt präparative Photochemie oder Spektroskopie bearbeitet werden.

Teilnahmevoraussetzungen BSc Chemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tablet-PC („Lückentext“), Beamer, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur

P. Klán, J. Wirz: Photochemistry of Organic Compounds, Wiley-CH, 2009 N.J. Turro, V. Ramamurthy, J.C. Scaino: Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito California, 2010 D. Wöhrle, M.W. Tausch, W.-D. Stohrer: Photochemie: Konzepte, Methoden, Experi-mente, Wiley-VCh, 1998 C. Rullière: Femtosecond Laser Pulses, 2. Auflage, Springer, New York 2005 Ausgewählte Original- und Übersichtsarbeiten

Streumethoden zur Strukturaufklärung von Polymeren und Kolloiden (SSPK)

Stand: 15.09.2016

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

Präsenzzeit [h]

Gruppen-größe

Modulhandbuch „Master of Science“ im Fach Chemie

45

[h]

Streumethoden zur Strukturaufklärung von Polymeren und Kolloiden

V 2 60 30 30

SSPK-Praktikum PExp 6 135 90 15

SSPK-Seminar Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Matthias Karg

Beteiligte Dozenten Prof. Dr. Matthias Karg

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompetenzen

Grundlagen der Polymer- und Kolloidchemie Grundlegendes Verständnis zur Anwendung verschiedener Streume-thoden in der Strukturaufklärung Handhabung von Messdaten

Inhalte

Vorlesung: Einführung zu Polymeren und Kolloiden

- Definition, Herstellung, Stabilität, Anwendung - Aufbau und Eigenschaften - Charkterisierungsmethoden Wechselwirkung elektromagnetischer Strahlung mit Materie - Absorption, Streuung, Reflektion, Beugung - Statische Lichtstreuung - Dynamische Lichtstreuung - Depolarisierte dynamische Lichtstreuung - Kleinwinkellichtstreuung Neutronen- und Röntgen-Kleinwinkelstreuung - Strahlungserzeugung - Streuquerschnitt - Formfaktor - Strukturfaktor - Kontrastvariation - Zeitaufgelöste Experimente

Seminar: Eigenständige Bearbeitung und Vorstellung ausgewählter Themen aus der Strukturaufklärung Praktikum (als Blockpraktikum): Es werden verschiedene Aspekte der Kolloid- oder Polymersynthese, der Lichtstreuung, der Mikroskopie und Bildauswertung sowie der Handhabung von Streudaten bzw. Realraumdaten durch beispielhafte experimentelle und theoretische Versuche veranschaulicht.

Teilnahmevoraussetzungen BSc Chemie oder Wirtschaftschemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Beamer, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur - Dörfler, Grenzflächen und kolloid-disperse Systeme, Springer, 2002 - Butt, Graf, Kappl, Physics and Chemistry of Interfaces, Wiley-VCH, 2006

Modulhandbuch „Master of Science“ im Fach Chemie

46

- Brown, Dynamic Light Scattering, Clarendon Press, Oxford 1993 - Hendrix, Leipertz, Photonenkorrelationsspektroskopie, Physik in un-serer Zeit, 1984, 3, 68 - Higgins, Benoit, Polymers and Neutron Scattering, Clarendon Press, Oxford, 1994 - D.S. Sivia, Elementary Scattering Theory – For X-ray and neutron us-ers, Oxford University Press, 2011

Superresolution Fluoreszenzmikroskopie (Super FM) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, SoSe 2.-3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Superresolution Fluoreszenzmikrosko-pie

V 2 60 30 30

Praktikum PExp 6 135 90 15

Übungen Sem 1 45 15 30

Modulverantwortlicher Prof. Dr. Claus Seidel/ Prof. R. Simon

Beteiligte Dozenten Prof. Dr. Claus Seidel/ Prof. R. Simon

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie, M. Sc. Biochemie Wahlpflicht

Lernziele und Kompetenzen

Grundlegende Kenntnisse der optischen Mikroskopie mit der Vorstel-lung aktueller Methoden der Fluoreszenzmikroskopie. Anwendung zur Charakterisierung von Nanomaterialien und biologi-schen Objekten.

Inhalte

Vorlesung: Wiederholung der Grundlagen der Optik, Beleuchtungs-modi und Kontrasttechniken, Wiederholung Fluoreszenzspektroskopie, optische Mikroskopie jenseits der Beugungsgrenze (Superresolution-Mikroskopie), Raster-Sonden Mikroskopien, Ramanmikroskopie, Plas-monenspektroskopie, Methoden zur Bestimmung molekularer Interak-tionen, Detektionsverfahren auf Basis einzelner Moleküle. Optimie-rung der Selektivität und Auflösung von Fluoreszenzmikroskopen. Förster-Resonanz-Energietransfer (FRET) in der Mikroskopie, Raster-Imagespektroskopie (RICS), Fluoreszenzkorrelationsspektroskope (FCS) zur Charakterisierung der Transporteigenschaften von Partikeln (Rota-tions- und Translationsdiffusion). Mikroskopie mit Videorate. Strate-gien zur Photoprotektion der Markermoleküle. Seminar: Vorträge der Studierenden zu aktuellen Themen und zur Vertiefung des Stoffes des Moduls. Praktikum: Zur Einarbeitung sollen ausgewählte Versuche zur Erarbei-tung wichtiger Methoden in der Fluoreszenzmikroskopie: wahlweise materialwissenschaftliche, biophysikalische oder biologische Ausrich-tung. 1. Aufbau eines konfokalen Mikroskops. 2. Analyse der Transporteigenschaften von fluoreszierenden Partikeln mit FCS: unterschiedliches Diffusionsverhalten von GFP und Rhodamin 110. 3. Höchstauflösende Mikroskopie: Total internal reflection fluores-cence (TIRF) und “points accumulation for imaging in nanoscale topog-

Modulhandbuch „Master of Science“ im Fach Chemie

47

raphy” (PAINT). 4. Messung von FRET und Imaging wahlweise unter in vitro oder in vivo Bedingungen. Anschließend wird ein ausgewähltes Molekül unter enger Betreuung durch die Mitarbeiter des Arbeitskreises mit Einzelmolekülmethoden weiter vermessen.

Teilnahmevoraussetzungen abgeschlossenes B.Sc.-Studium

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Prakti-kum, Seminarvortrag.

Prüfungen

Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung* (oder Klausur zum Gesamtmodul*) *Die jeweilige Prüfungsform wird am Beginn des Moduls festgelegt

30-45 (40)

Benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Overhead, Beamer, Tafel

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Physikalische_Chemie

Literatur Vorlesungsskript. Pawley, J. B. (2006). Handbook of Biological Confocal Microscopy New York (NY), Springer. Lakowicz, J. R. (2006). Principles of Fluorescence Spectrosco-py. New York, Springer.

Modulhandbuch „Master of Science“ im Fach Chemie

48

Module des Instituts für Theoretische Chemie und Computerchemie

Wahlpflichtmodule

Angewandte Quantenchemie und Computerchemie (AnQCCC)

Stand: 29.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 Blockmodul

1. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

AnQCCC-Vorlesung V 2 60 30 250

AnQCCC-Seminar Sem 1 45 15 30

AnQCCC-Praktikum PExp 6 135 90 15

Modulverantwortlicher Prof. Dr. C. Marian

Beteiligte Dozenten Die Dozenten des Instituts für Theoretische Chemie und Computer-chemie

Sprache englisch/deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

B. Sc. Wirtschaftschemie (anteilig) B. Sc. Chemie B. Sc. Informatik M. Sc. Wirtschaftschemie

Qualifizierung Qualifizierung Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Näherungsverfahren der Quantenchemie; Quantenchemische Metho-den zur Behandlung des elektronischen Grundzustands, elektronisch angeregte Zustände

Inhalte

1. Quantenchemische Methoden für Eigenschaften von Molekülen im elektronischen Grundzustand (Hartree-Fock, Dichtefunktio-naltheorie, Møller-Plesset-Störungstheorie, semiempirische Ver-fahren

2. Grundzüge der statistischen Thermodynamik, Zustandssummern für Translation, Rotation, Schwingungs- und elektronische Ener-gien

3. Einschätzen der Leistungsfähigkeit der quantenchemischen und semiempirischen Methoden

4. Interpretation der Ergebnisse von MO-Rechnungen 5. Suche nach Minima und Übergangszuständen ,

Reaktionswärmen (Wahl von Atomorbitalbasen, Bedeutung der Nullpunktsschwingungsenergie, Temperaturabhängigkeit, Lö-sungsmitteleffekte)

6. Berechnung elektronischer Anregungsspektren mit DFT/MRCI

Teilnahmevoraussetzungen Erfolgreiche Teilnahme am Modul QCCC oder äquivalente Leistungen.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Teilnahme an Vorlesung und Praktikum, Auswertung der Praktikums-aufgaben, Seminarvortrag.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Einzelprüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Computer, Tafel, Projektor

Webseite http://www.chemie.uni-duesseldorf.de/lehre_de__.html

Modulhandbuch „Master of Science“ im Fach Chemie

49

Literatur Skript zur Vorlesung, C.J.Cramer „Essentials of Computational Chemistry“, Wiley 2004

Molekülmodellierung (MoMo) Stand: 29.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 Blockveranstaltung WiSe 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Simulation von Biomolekülen V 2 60 30 30

BioSim-Praktikum PExp 6 105 90 8

BioSim-Seminar Sem 1 45 15 12

Modulverantwortlicher Jun. Prof. Dr. Birgit Strodel

Beteiligte Dozenten Jun. Prof. Dr. Birgit Strodel, Prof. Walter Thiel

Sprache deutsch, englisch auf Wunsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

B. Sc. Chemie B. Sc. Wirtschaftschemie (anteilig) M. Sc. Informatik M. Sc. Wirtschaftschemie

Qualifikation Qualifikation Wahlpflicht Wahlpflicht

Lernziele und Kompetenzen Grundlegendes Verständnis und praktische Anwendung von Computersimulationsmethoden für Biomoleküle, insbesondere für Proteine

Inhalte

Vorlesung: 1. Biomolekulare Kraftfelder: Annahmen und Grundlagen; Funktionale Form: bindende und nichtkovalente Beiträge; Parameterisierung; Übliche Kraftfelder: CHARMM, AMBER, GROMOS, OPLS; Ausblick: “Knowledge-based” und “coarse-grained”-Kraftfelder. 3. Berechnung nichtkovalenter Wechselwirkungen: Reduktion des Rechenaufwandes: “Cutoff”-, Ewald- und Multipolmethoden; Solvatation mit Kontinuumsmethoden. 4. Geometrieoptimierung: Überblick über verschidene Minimierungsmethoden 5. Molekulardynamik (MD) - Grundlagen: Grundlagen; Integration der Newtonschen Bewegungsgleichungen; MD in verschiedenen Ensembles: konstante Temperatur (Thermostate: Berendsen und Nosé-Hoover) und konstanter Druck; Auswertung von MD-Simulationen (Freie Energie, Ordnungsparameter, Hauptkomponentenanalyse); MD-Programm: GROMACS 6. Molekulardynamik – Weitere Themen: Langevin-Dynamik; Brownsche Dynamik; MD unter Zwangsbedingungen; Umbrella Sampling; “Replica exchange MD”. 7. Monte-Carlo (MC)-Simulationen: Idee; Metropolis-Methode; Generation von Versuchskonformationen; MC zur globalen Optimierung. 8. QM/MM-Simulationen: Konzept; Einbettungsverfahren; Behandlung der QM/MM-Grenzregion; QM/MM-Optimierungs- und Simulationsverfahren; QM/MM-Methoden für elektronisch angeregte Zustände; Übersicht über Anwendungen auf Enzyme und photoaktive Proteine.

Modulhandbuch „Master of Science“ im Fach Chemie

50

Seminar: – Bearbeiten von Übungen zu den Themen der Vorlesung. Die Übungsaufgaben werden selbständig bearbeitet und gemeinsam mit der Darstellung der Lösungswege besprochen. – Seminarvortrag (30 Minuten, Powerpoint) Computerpraktikum: 1. Einführung in Linux, die Benutzung des MD-Programms GROMACS, des QM/MM-Programms ChemShell und des Programms VMD zur Darstellung von Biomolekülen;

2. Bearbeitung von praktischen Übungen zu den Themen der Vorle-sung am PC unter Linux

Teilnahmevoraussetzungen Grundlegende Kenntnisse der Physikalischen Chemie, der Quanten-chemie, der statistischen Thermodynamik und der Proteinbiochemie

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Bearbeitung von Übungen im Rahmen des Computerpraktikums inklu-sive Protokolle, Seminarvortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Powerpoint, Computer

Webseite http://www.chemie.uni-duesseldorf.de/lehre_de__.html

Literatur

1. Skript zur Vorlesung 2. Fachbücher: - T. Schlick, “Molecular Modeling and Simulation. An Interdisciplinary Guide.” Springer, New York. - A.R. Leach, "Molecular Modeling – Principles and Applications.” Prentice Hall, Har-low. - D. Frenkel, B. Smit, "Understanding Molecular Simulation", Academic Press, San Diego - H. M. Senn, W. Thiel, Angew. Chem. Int. Ed. 2009, 48, 1198. 3. Spezialliteratur zu Seminarthemen wird ausgegeben.

Modulhandbuch „Master of Science“ im Fach Chemie

51

Fortgeschrittene Quantenchemie (FQC) Stand: 29.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 Blockmodul

2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppengröße

Quantenchemische Methoden für elektronisch angeregte Zustände

V 2 90 30 250

Mathematische Methoden der Theo-retischen Chemie

V 1 45 15 250

Quantenchemische Methoden für elektronisch angeregte Zustände

Üb 1 45 15 30

Mathematische Methoden der Theo-retischen Chemie

Üb 1 45 15 30

Ausgewählte Kapitel der Theoreti-schen Chemie

Sem 1 15 15 30

Modulverantwortliche Prof. Dr. C. Marian

Beteiligte Dozenten Die Dozenten des Instituts für Theoretische Chemie und Computerche-mie

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie Wahlpflicht

Lernziele und Kompeten-zen

Weiterführendes Verständnis von quantenchemischen Methoden und Symmetrieeigenschaften von Molekülen

Inhalte

Vorlesung Quantenchemische Methoden für elektronisch angeregte Zustände 1. Optimierung von Molekülorbitalen (HF, CASSCF, DFT) 2. Elektronenstrukturmethoden für angeregte Zustände

2.1. Variationsverfahren (CI, CIS, DFT/MRCI) 2.2. Störungstheoretische Verfahren (CASPT2) 2.3. Response-Methoden (TDHF, TDDFT, RICC2)

3. Umgebungseffekte auf elektronische Spektren 4. Dipolübergänge und Oszillatorstärken 5. Spin-Bahn-Kopplung, Phosphoreszenz, Intersystem crossing Vorlesung Mathematische Methoden der Theoretischen Chemie 1. Mathematische Grundlagen der Quantenmechanik. 2. Molekülpunktgruppen. 3. Reduzible und irreduzible Darstellungen, Charaktere,

Orthogonalitätstheorem, Projektionsoperatoren. 4. Symmetrie von Wellenfunktionen und Operatoren. 5. Auswahlregeln für Übergänge zwischen molekularen Zuständen. 6. Drehimpulse, Kommutatoren, Schiebeoperatoren.

Teilnahmevoraussetzun-gen

Kenntnis von Lehrinhalten, wie sie z.B. im Bachelormodul QCCC vermit-telt werden. Das Modul kann nicht belegt werden, wenn bereits das Modul MPESP belegt wurde.

Studienleistungen (u.a. als Zulassungsvoraus-setzung zur Modulprüfung)

Erfolgreiche Bearbeitung der Übungsaufgaben

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Modulhandbuch „Master of Science“ im Fach Chemie

52

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Computer

Webseite http://www.chemie.uni-duesseldorf.de/lehre_de__.html

Literatur A. Szabo and N. Ostlund, Modern Quantum Chemistry, Dover Pubn, 2000

D.M. Bishop, Group Theory and Chemistry, Dover Pubn, 1993

Spezialisierungsmodul relativistische Quantenchemie (SpRela)

Stand: 29.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, jedes 2.

Jahr 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Relativistische Quantenchemie V 2 90 30 30

Relativistische Quantenchemie Üb 1 45 15 30

Relativistische Quantenchemie PExp 6 105 75 15

Modulverantwortlicher Prof. Dr. C. M. Marian

Beteiligte Dozenten Die Dozenten des Instituts für Theoretische Chemie und Computer-chemie

Sprache deutsch, englisch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie M. Sc. Informatik M. Sc. Physik

Wahlpflicht Wahlpflicht Wahlpflicht

Lernziele und Kompetenzen Vertieftes Verständnis relativistischer Effekte in der Chemie und ihrer theoretischen Beschreibung

Inhalte

Vorlesung 1. Relativistische Effekte, Dirac-Coulomb-Gleichung, No-Pair-

Näherung, Skalarrelativistische Effekte, Effektive Rumpfpotentiale, 2. Elektronische Spin-Bahn-Kopplung: Operatoren, Auswahlregeln,

Spinabhängige Effekte 3. Fluoreszenz- und Phosphoreszenzraten Praktikum Forschungspraktikum zu Themen der Vorlesung nach individueller Vereinbarung

Teilnahmevoraussetzungen Kenntnisse, wie sie z.B. in den Vorlesungen „Quantenchemische Me-thoden für angeregte Zustände“ und „Mathematische Methoden der Theoretischen Chemie“ vermittelt werden.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Erfolgreiche Bearbeitung der Übungs- und Praktikumsaufgaben, Prak-tikumsprotokoll.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Computer

Webseite http://www.chemie.uni-duesseldorf.de/lehre_de__.html

Literatur

M. Reiher, A. Wolf „Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science”, Wiley-VCH, 2009

K. Dyall, K. Faegri, “Introduction to Relativistic Quantum Chemistry”, Oxford Univ Press, 2007

Modulhandbuch „Master of Science“ im Fach Chemie

53

C. M. Marian “Spin-Orbit Coupling and Intersystem Crossing in Molecules”, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(2012) 187–203

C. M. Marian „Spin-orbit coupling in molecules“ in: Reviews in Computational Chemistry, ed. by K. Lipkowitz and D. Boyd, Wiley-VCH, Weinheim, 17 (2001) 99-204

Spezialisierungsmodul nichtadiabatische Dynamik (SpDyn) Stand: 29.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

8 240 1 Semester WiSe, jedes 2.

Jahr 3.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Nichtadiabatische Dynamik V 2 90 30 30

Nichtadiabatische Dynamik Üb 1 45 15 30

Nichtadiabatische Dynamik PExp 6 105 75 15

Modulverantwortlicher Jun. Prof. Dr. J. Tatchen

Beteiligte Dozenten Die Dozenten des Instituts für Theoretische Chemie und Computer-chemie

Sprache deutsch, englisch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Wirtschaftschemie M. Sc. Informatik M. Sc. Physik

Wahlpflicht Wahlpflicht Wahlpflicht

Lernziele und Kompetenzen Vertieftes Verständnis der vibronischen molekularen Dynamik und ihrer theoretischen Beschreibung

Inhalte

Vorlesung 1. Born-Huang-Entwicklung und nichtadiabatische Kopplungen 2. Raten für strahlungslose Übergänge: Fermis Goldene Regel,

Franck-Condon-Näherung 3. Zeitabhängige Schrödingergleichung, Propagatoren, theoretische

Femtosekundenspektroskopie 4. Gaußsche Wellenpaketdynamik, Surface-Hopping-Dynamik, Wig-

ner-Dynamik 5. Multi-Configuration Time-Dependent Hartree (MCTDH) Praktikum Forschungspraktikum zu Themen der Vorlesung nach individueller Vereinbarung

Teilnahmevoraussetzungen Kenntnisse, wie sie z.B. in den Vorlesungen „Quantenchemische Me-thoden für angeregte Zustände“ und „Mathematische Methoden der Theoretischen Chemie“ vermittelt werden.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Erfolgreiche Bearbeitung der Übungs- und Praktikumsaufgaben, Prak-tikumsprotokoll.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Mündliche Prüfung 30-45 benotet

Stellenwert der Note für die Endnote 8/135

Medienformen Tafel, Projektor, Computer

Webseite http://www.chemie.uni-duesseldorf.de/lehre_de__.html

Literatur V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems,

Wiley-VCh, 2004

Modulhandbuch „Master of Science“ im Fach Chemie

54

D. J. Tannor, Introduction to Quantum Dynamics: A Time-Dependent Perspective, University Science Books, Sausalito, California, 2007

Spezialisierungspflichtmodule

Advanced Materials (AdMat) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

9 270 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Anorganische Neue Materialien V 1 54 15 30

Moderne Aspekte der anorganischen Materialchemie

V 1 54 15 30

Photokatalyse und Stromerzeugung mit Nanokompositmaterialien

V 1 54 15 30

Moderne Farbstoffchemie V 1 54 15 30

Spezielle Supramolekulare Chemie V 1 54 15 30

Modulverantwortlicher Prof. Dr. W. Frank

Beteiligte Dozenten Prof. Dr. W. Frank, Prof. Dr. C. Janiak , , Prof. Dr. T. J. J. Müller, Prof. Dr. L. Hartmann

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M.Sc. Wirtschaftschemie (anteilig) Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erwerben Kenntnisse und Methodenkompetenz auf dem Gebiet der chemischen Materialforschung. Im Fokus stehen dabei Synthese und Charkterisierung von „Hybridmaterialien“ bzw. „Hybrid-material“-Komponenten

Inhalte

Anorganische Neue Materialien

1. Klassifizierung „Neuer Materialien“ 2. Ausgewählte Synthesekonzepte und -verfahren: Sol-Gel-Verfahren, Precursormethoden, Solvothermalsynthesen) 3. Struktur-Eigenschaftsbeziehungen bei Anorganischen Materialien und Anorganisch-Organischen Hybridmaterialien 4. Moderne Entwicklungen bei Gläsern, Keramiken, Pigmenten 5. 2D- und 3D-strukturierte Anorganisch-Organische Hybrid-materialien Moderne Aspekte der anorganischen Materialchemie 1. Herstellung, Aufbau, und Anwendung von Metal-Organic Frame-works 2. Ausgewählte Kapitel aus der Nanochemie

Photokatalyse und Stromerzeugung mit Nanokompositmaterialien

1. Klassifizierung „Neuer Materialien“ 2. Ausgewählte Synthesekonzepte und -verfahren: Sol-Gel-Verfahren, Precursormethoden, Solvothermalsynthesen) 3. Struktur-Eigenschaftsbeziehungen bei Anorganischen Materialien und Anorganisch-Organischen Hybridmaterialien 4. Moderne Entwicklungen bei Gläsern, Keramiken, Pigmenten 5. 2D- und 3D-strukturierte Anorganisch-Organische Hybrid-

Modulhandbuch „Master of Science“ im Fach Chemie

55

materialien Moderne Farbstoffchemie 1. Klassifizierung der Farbstoffe 2. Farbe von Organischen Verbindungen 3. Ausgewählte Farbstoffklassen (Polyene, Polymethine, Di- und Tria-rylmethine, Aza[18]annulene, Azofarbstoffe, etc.) –Synthese und Ei-genschaften 4. Ausgewählte Anwendungen (Optische Aufheller, Pigmente, Imaging und Datenspeicherung, Bioanalytik) 5. Ökologische und toxikologische Aspekte

Spezielle Supramolekulare Chemie

1. Molekulare Überstrukturen mit niedermolekularen und polymeren Cyclodextrinen 2. Komplexchemie mit Curbituril und Calixarenen 3. Supramolekulare Strukturen durch H-Brücken 4. Catenane, Rotaxane

Teilnahmevoraussetzungen Praktische Fähigkeiten und Kenntnisse in der Synthesechemie.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Vorlesungen.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 16/135

Medienformen Tafel, Projektor

Webseite www.chemie.uni-duesseldorf.de/Faecher/ Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur

U. Schubert, N. Hüsing, Synthesis of Inorganic Materials, 2nd

ed., Wiley-VCH, 2004 M. Kaneko, I. Okura, Photocatalysis, Biological and Medical Physics Series, Springerver-lag, 2002 H. Zollinger, Color Chemistry (Syntheses, Properties, and Applications of Organic Dyes and Pigments), 3rd edition, Wiley-VCH, 2003 Vögtle, Supramolekulare Chemie

Advanced Materials (AdMat-P) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

7 210 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

AdMat-Praktikum PExp 8 150 120 15

AdMat-Seminar Sem 2 60 30 30

Modulverantwortliche Prof. Dr. W. Frank

Beteiligte Dozenten Prof. Dr. W. Frank, Prof. Dr. C. Janiak , Prof. Dr. T. J. J. Müller, Prof. Dr. L. Hartmann

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M.Sc. Wirtschaftschemie (anteilig) Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erwerben praktische Fähigkeiten auf dem Gebiet der Synthese und Analyse neuer Materialien.

Inhalte Praktikum: Bevorzugt zur Thematik „Hybridmaterialien“ können wahlweise forschungsnahe Projekte mit Schwerpunkten aus einem

Modulhandbuch „Master of Science“ im Fach Chemie

56

oder mehreren der Themenfelder des Vorlesungsverbundes „Neue Materialien“ (siehe Modul AdMat) bearbeitet werden. Der Fokus liegt bei Auswahl und Einsatz materialklassenspezifischer Syntheseverfah-ren und/oder der fortgeschrittenen Nutzung analytischer Werkzeuge für die Eigenschafts- und Struktur-charakterisierung.

Seminar: Zum Abschluss des Praktikums stellen die Teilnehmer eine ihrer Praktikumsaufgabe und die erzielten Ergebnisse im Kreis der Teilnehmer mit einer Kurzpräsentation vor.

Teilnahmevoraussetzungen Praktische Fähigkeiten und Kenntnisse in der Synthesechemie.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Protokoll zum Praktikum, Seminarvortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

unbenotet

Stellenwert der Note für die Endnote

Medienformen Computer, Tafel, Projektor

Webseite www.chemie.uni-duesseldorf.de/Faecher/ Anorganische_Chemie/Vorlesungen_und_Praktika

Literatur

Ausgewählte Versuchsvorschriften aus neueren Originalarbeiten zu den Themenkrei-sen „Anorganische Materialien und Anorganisch-Organische Hybridmaterialien“ , „Funktionspolymere, Hybridmaterialien und Nanocomposite“ Praktikumsskript „Solarzelle und Photokatalyse mit Nanoteilchen“ U. a. Präparate aus "Functional Organic Materials", T. J. J. Müller, U. H. F. Bunz, Hrsg., Wiley-VCH, 2007

Biological Chemistry (BioChem-V) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

9 270 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Grundlagen der Biokatalyse V 4 160 60 30

Struktur-Funktionsanalyse von Proteinen

V 3 110 45 30

Modulverantwortliche Prof. Dr. V. Urlacher

Beteiligte Dozenten Prof. Dr. J. Pietruszka, Prof. Dr. C. Seidel, Prof. Dr. L. Schmitt, Prof. Dr. V. Urlacher

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie (anteilig)

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erlernen Methoden zur Struktur-Funktions-Analyse von Proteinen und erwerben Kenntnisse und Methodenkompetenz in der Katalyse mit Enzymen. Des Weiteren besitzen sie die Fähigkeit, Messdaten der Struktur-analytischen Methoden selbständig zu inter-pretieren und analytische Werkzeuge für das praktische Arbeiten mit Biokatalysatoren anzuwenden.

Inhalte

Grundlagen der Biokatalyse: Screening nach enzymatischen Aktivitä-ten, rekombinante Enzyme, technisch relevante Umsetzungen mit isolierten Enzymen und Ganzzellbikatalysatoren, Protein- Engineering und Immobilisierung. Anwendungen in der Synthese: Racematspal-

Modulhandbuch „Master of Science“ im Fach Chemie

57

tung, C-O-Bindungen (Carbonsäurederivate, Epoxide, Glycoside), C-N-Bindungen (Nitrile, Amide, Trans-aminierung), C-C-Bindungen (Aldol-reaktion, Acyloinkondensation, Cyanhydrine), Reduktionen (Ketone, Imine) und Oxidationen (C-H- und C=C-Bindungen, Alkohole, Amine, Carbonyle). Struktur-Funktionsanalyse von Proteinen: Grundlagen von Protein-strukturen; Strukturbildende Elemente (Primär-, Sekundär-, Tertiär-, Quartärstruktur); an Hand ausgewählter Proteinfamilien (Proteasen, Nukleotid-bindende Proteine, Immunglobuline) soll durch die dreidi-mensionale Struktur die Funktion und auch die Bedeutung von Muta-tionen auf die Aktivität analysiert werden. An Hand dieser Strukturen sollen auch die unterschiedlichen Liganden-Erkennungsmechanismen erläutert werden. Biophysikalische Grundlagen der Strukturbildung, Dynamik, und Stabi-lität von insbesondere Proteinen und Nukleinsäuren, Überblick über die spektroskopischen Methoden zur Strukturanalyse und Kinetik. Arten der intramolekularen Wechselwirkungen und Einfluss äußerer Faktoren. Modelle, Vorhersagen.

Teilnahmevoraussetzungen Grundkenntnisse in der Biochemie und Synthesechemie Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive und regelmäßige Teilnahme an den Modulveranstaltungen.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 16/135

Medienformen Tafel, Projektor

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Biochemie

Literatur

K. Faber, Biotransformations in Organic Chemistry, Springer, 2004; R.D Schmid, Taschenatlas „Biotechnologie und Gentechnik“, Wiley-VCH, 2006; Branden und Toze ‚Introduction to protein structure’ Garland Publisher, 1999; Charles R. Cantor, Paul R. Schimmel; Biophysical Chemistry, Freeman, New York 1998

Biological Chemistry (BioChem-P) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

7 210 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

BioChem-Praktikum PExp 7 150 105 15

BioChem-Seminar Sem 2 60 30 30

Modulverantwortliche Prof. Dr. V. Urlacher

Beteiligte Dozenten Prof. Dr. J. Pietruszka, Prof. Dr. C. Seidel, Prof. Dr. L. Schmitt, Prof. Dr. V. Urlacher

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Biochemie M. Sc. Wirtschaftschemie (anteilig)

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erlernen Methoden zur Struktur-Funktions-Analyse von Proteinen und erwerben Kenntnisse und Methodenkompetenz in der Katalyse mit Enzymen. Desweiteren besitzen sie die Fähigkeit, Messdaten der Struktur-analytischen Methoden selbständig zu inter-pretieren und analytische Werkzeuge für das praktische Arbeiten mit

Modulhandbuch „Master of Science“ im Fach Chemie

58

Biokatalysatoren anzuwenden.

Inhalte

Praktikum einschl. Übungen und Seminar Angewandte Proteinbiochemie. Herstellung von rekombinanten Prote-inen, Durchführung enzymatischer Reaktionen im einphasigen und im zweiphasigen System, Vergleich von Reaktionen mit Ganzzellbiokataly-satoren und isolierten Enzymen. Synthesen von nichtnatürlichen Subs-traten für die Enzymkatalyse, Produktcharakterisierung mit Hilfe von Vergleichssubstanzen, Enantiomerenanalytik, enzymatische Umset-zung. An einem ausgewählten Beispiel soll der Einfluss einer Mutation auf die katalytische Aktivität eines Enzyms bestimmt werden. Hierzu ist die Anzucht von Bakterien, die Aufreinigung des Proteins und die Bestim-mung seiner enzymatischen Aktivität nötig. Messung, Bearbeitung und Darstellung von biomolekularen Struktu-ren, Beschreibung und Messung von Bindungsisothermen.

Teilnahmevoraussetzungen Grundkenntnisse in der Biochemie und Synthesechemie Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Vortrag der Teilnehmer zum Stoff der Vorlesung unter Nutzung von Büchern und Originalarbeiten (Vortragssprache Deutsch oder Englisch nach Wahl); Protokoll zum Praktikum

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

unbenotet

Stellenwert der Note für die Endnote

Medienformen Tafel, Projektor

Webseite http://www.chemie.uni-duesseldorf.de/Faecher/Biochemie

Literatur

Skript zum Praktikum; McMurry, Begley ‘Organische Chemie der biologischen Stoffwechselwege’, Spektrum Akademischer Verlag, 2006; Kensal E. van Holde, W. Curtis Johnson, P. Shing Ho, Principles of Physical Biochemis-try, Prentice Hall 1998.

Molecular and Biomolecular Catalysis (MoBiCa) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

9 270 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Grundlagen der homogenen Katalyse V 2 120 30 30

Grundlagen der Biokatalyse V 4 150 60 30

Modulverantwortlicher Prof. Dr. J. Pietruszka

Beteiligte Dozenten Prof. Dr. C. Ganter, Prof. Dr. T. J. J. Müller, Prof. Dr. J. Pietruszka, Prof. Dr. V. Urlacher

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M.Sc. Wirtschaftschemie (anteilig) Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erwerben Kenntnisse und Methodenkompetenz in der Katalyse. Der Fokus liegt auf der Nutzung von Enzymen und ihrer Anwendung in der organischen Synthese. Analytische Werkzeuge für das praktische Arbeiten mit selektiven Katalysatoren werden an Fall-beispielen erläutert.

Modulhandbuch „Master of Science“ im Fach Chemie

59

Inhalte

Grundlagen der homogenen Katalyse: Physikalisch-chemische Grund-lagen der molekularen Katalyse, Prinzipien der metallorganischen Chemie (Formalismen, Liganden, Elementarreaktionen, Mechanis-men), Hydrierungen, Hydrosilylierung, Kreuzkupplungen, Polymerisati-onskatalyse, Organokatalyse (Enamin-, Iminium-Katalyse, Stetter-Reaktion).

Grundlagen der Biokatalyse: Screening nach enzymatischen Aktivitä-ten, rekombinante Enzyme, technisch relevante Umsetzungen mit isolierten Enzymen und Ganzzell-biokatalysatoren, Optimierung von Enzymen durch Protein Engineering und Immobilisierung. Anwendun-gen in der Synthese: Racematspaltung, C-O-Bindungen (Carbonsäure-derivate, Epoxide, Glycoside), C-N-Bindungen (Nitrile, Amide, Transa-minierung), C-C-Bindungen (Aldolreaktion, Acyloinkondensation, Cyanhydrine), Reduktionen (Ketone, Imine) und Oxidationen (C-H- und C=C-Bindungen, Alkohole, Amine, Carbonyle).

Teilnahmevoraussetzungen Praktische Fähigkeiten und Kenntnisse in der Synthesechemie.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Vorlesungen.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 16/135

Medienformen Tafel, Projektor

Webseite http://www.iboc.uni-duesseldorf.de/

Literatur

K. Faber, Biotransformations in Organic Chemistry, Springer, 2004. McMurry, Begley ‘Organische Chemie der biologischen Stoffwechselwege’, Spektrum Akademischer Verlag, 2006 D. Steinborn, Grundlagen der metallorganischen Komplexkatalyse, Teubner, 2007. A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, 2005.

Molecular and Biomolecular Catalysis (MoBiCa-P) Stand: 18.01.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

7 210 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

MoBiCa-Praktikum PExp 8 170 120 15

MoBiCa-Seminar Sem 2 40 30 30

Modulverantwortlicher Prof. Dr. J. Pietruszka

Beteiligte Dozenten Prof. Dr. C. Ganter, Prof. Dr. T. J. J. Müller, Prof. Dr. J. Pietruszka, Prof. Dr. V. Urlacher

Sprache deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M.Sc. Wirtschaftschemie (anteilig) Wahlpflicht

Lernziele und Kompeten-zen

Die Studierenden erwerben praktische Kenntnisse und Metho-denkompetenz in der Katalyse. Der Fokus liegt auf der Nutzung von Enzymen und ihrer Anwendung in der organischen Synthese. Analyti-sche Werkzeuge für das praktische Arbeiten mit selektiven Katalysato-ren werden an Fallbeispielen erläutert.

Inhalte Synthese ausgewählter Katalysatoren (Pd-Katalysatoren, Thiazoli-umsalze), Ausgewählte metall- und organokatalysierte Reaktionen (z.

Modulhandbuch „Master of Science“ im Fach Chemie

60

B. Sonogashira-, Suzuki-Kupplung, Stetter-Reaktion), Durchführung einer Hydrierungskinetik.

Synthesen von nichtnatürlichen Substraten für die Enzymkatalyse, Produktcharakterisierung mit Hilfe von Vergleichssubstanzen, Enanti-omerenanalytik, Herstellung von rekombinanten Proteinen, enzymati-sche Umsetzung im einphasigen und zweiphasigen System, Vergleich von Reaktionen mit Ganzzellbiokatalysatoren und isolierten Enzymen.

Im Seminar halten die Studierenden Vorträge über aktuelle Themen der molekularen und biomolekularen Forschung.

Teilnahmevoraussetzungen Praktische Fähigkeiten und Kenntnisse in der Synthesechemie.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Protokolle zum Praktikum, Seminarvortrag

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

unbenotet

Stellenwert der Note für die Endnote

Medienformen Computer, Tafel, Projektor

Webseite http://www.iboc.uni-duesseldorf.de/

Literatur

K. Faber, Biotransformations in Organic Chemistry, Springer, 2004. McMurry, Begley ‘Organische Chemie der biologischen Stoffwechselwege’, Spektrum Akademischer Verlag, 2006 D. Steinborn, Grundlagen der metallorganischen Komplexkatalyse, Teubner, 2007. A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, 2005.

Molecular Photonics and Excited-State Processes (MPESP) Stand: 29.02.2012

Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

9 270 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

Quantenchemische Methoden für elektronisch angeregte Zustände

V 2 90 30 30

Mathematische Methoden der Theo-retischen Chemie

V 1 45 15 30

Präparative und spektroskopische Aspekte der organischen Photochemie

V 2 90 30 30

Moderne Farbstoffchemie V 1 45 15 30

Modulverantwortliche Prof. Dr. C.M.Marian

Beteiligte Dozenten Die Dozenten des Instituts für Theoretische Chemie und Computer-chemie, Prof. P. Gilch, Prof. T.J.J. Müller, PD K. Schaper

Sprache englisch/deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Informatik M. Sc. Physik

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Das Modul bietet eine breite Einführung in die Chemie und Physik elektronisch angeregter Molekülzustände. Die Inhalte spannen den Bogen von den theoretischen und physikalischen Hintergründen über Rechenmethoden, Spektroskopie und Photoreaktionen bis zur Synthe-se organischer Chromophore.

Inhalte Vorlesung Quantenchemische Methoden für elektronisch angeregte Zustände

Modulhandbuch „Master of Science“ im Fach Chemie

61

6. Optimierung von Molekülorbitalen (HF, CASSCF, DFT) 7. Elektronenstrukturmethoden für angeregte Zustände

7.1. Variationsverfahren (CI, CIS, DFT/MRCI) 7.2. Störungstheoretische Verfahren (CASPT2) 7.3. Response-Methoden (TDHF, TDDFT, RICC2)

8. Umgebungseffekte auf elektronische Spektren 9. Dipolübergänge und Oszillatorstärken 10. Spin-Bahn-Kopplung, Phosphoreszenz, Intersystem crossing

Vorlesung Mathematische Methoden der Theoretischen Chemie 7. Mathematische Grundlagen der Quantenmechanik. 8. Molekülpunktgruppen. 9. Reduzible und irreduzible Darstellungen, Charaktere,

Orthogonalitätstheorem, Projektionsoperatoren. 10. Symmetrie von Wellenfunktionen und Operatoren. 11. Auswahlregeln für Übergänge zwischen molekularen Zuständen. 12. Drehimpulse, Kommutatoren, Schiebeoperatoren.

Präparative und spektroskopische Aspekte der organischen Photo-chemie 1. Angeregte Zustände als „elektronische Isomere“ 2. Physikalische Zerfallsprozesse angeregter Zustände: Strahlende

Zerfälle (Fluoreszenz und Phosphoreszenz), Nichtstrahlende Zerfälle (Innere Konversion, Interkombination), Energietransfer

3. Zeitaufgelöste Spektroskopie – kurzer Überblick: Photochemische Kinetik, Blitzlichtphotolyse, Femtosekundenspektroskopie

4. Präparative Photochemie – Methodische Aspekte: Lichtquellen, Filter, Gläser, Typen von Reaktoren, „Grüne“ Photochemie

5. Photochemische Reaktionen – Präparative und spektroskopische Aspekte: Elektron-, Proton- und Wasserstofftransfer, Isomerisierung, Cycloadditionen, Photoreaktionen von Carbonylverbindungen

6. Technische und industrielle Anwendungen der Photochemie: Photohalogenierungen Photolithographie, photolabile Schutzgruppen, Photoprotektion

Moderne Farbstoffchemie 1. Klassifizierung der Farbstoffe 2. Farbe von Organischen Verbindungen 3. Ausgewählte Farbstoffklassen (Polyene, Polymethine, Di- und

Triarylmethine, Aza[18]annulene, Azofarbstoffe, etc.) – Synthese und Eigenschaften

4. Ausgewählte Anwendungen (Optische Aufheller, Pigmente, Ima-ging und Datenspeicherung, Bioanalytik)

5. Ökologische und toxikologische Aspekte

Teilnahmevoraussetzungen Kenntnis von Lehrinhalten, wie sie z.B. im Bachelormodul QCCC ver-mittelt werden. Gleichzeitige Teilnahme am Modul MPESP-P.

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme an den Vorlesungen.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

Klausur zum Gesamtmodul 120 benotet

Stellenwert der Note für die Endnote 16/135

Medienformen Tafel, Projektor

Webseite http://www.chemie.uni-duesseldorf.de/lehre.html

Modulhandbuch „Master of Science“ im Fach Chemie

62

Literatur

A. Szabo and N. Ostlund, Modern Quantum Chemistry, Dover Pubn, 2000

D.M. Bishop, Group Theory and Chemistry, Dover Pubn, 1993

P. Klan, J. Wirz, Photochemistry of Organic Compounds: From Concepts to Prac-tice, John Wiley & Sons, 2009

H. Zollinger, Color Chemistry (Syntheses, Properties, and Applications of Organic Dyes and Pigments), 3rd edition, Wiley-VCH, 2003

Molecular Photonics and Excited-State Processes (MPESP-P)

Stand: 29.02.2012

Studiengang: M. Sc. Chemie Modus: Wahpflicht ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester

7 210 2. Semesterhälfte SoSe 2.

Lehrveranstaltungen Typ Umfang [SWS]

Arbeits-aufwand

[h]

Präsenzzeit [h]

Gruppen-größe

MPESP-Praktikum PExp 6 90 75 15

MPESP-Seminar Sem 1 30 15 30

MPESP-Übungen Üb 2 90 30 30

Modulverantwortliche Prof. Dr. C. M. Marian

Beteiligte Dozenten Die Dozenten des Instituts für Theoretische Chemie und Computer-chemie, Prof. P. Gilch, Prof. T.J.J. Müller, PD K. Schaper

Sprache englisch/deutsch

Weitere Verwendbarkeit des Moduls

Studiengang Modus

M. Sc. Informatik M.Sc. Physik

Wahlpflicht Wahlpflicht

Lernziele und Kompeten-zen

Vertiefung und praktische Anwendung der im Vorlesungsmodul er-langten Kenntnisse

Inhalte

Praktikum: Wahlweise können forschungsnahe Projekte mit den Schwerpunkten Theoretische Chemie, Präparative Photochemie, Spektroskopie oder Chromophorsynthese bearbeitet werden. Seminar: In Zusammenarbeit mit den Dozenten werden aktuelle Originalarbei-ten aus dem Themenbereich der Vorlesungen ausgewählt und von den Studierenden vorgestellt. Übungen: Übungsaufgaben mit Hausaufgaben aus den Themen der Vorlesungen „Quantenchemische Methoden für elektronisch angeregte Zustände“ und „Mathematische Methoden der Theoretischen Chemie“

Teilnahmevoraussetzungen Gleichzeitige Teilnahme am zugehörigen Vorlesungsmodul MPESP

Studienleistungen (u.a. als Zulassungsvoraussetzung zur Modulprüfung)

Aktive Teilnahme am Praktikum, Auswertung der Versuche, Protokolle, Seminarvortrag, Erfolgreiche Bearbeitung der Übungsaufgaben.

Prüfungen Prüfungsform Dauer [min] benotet/unbenotet

unbenotet

Stellenwert der Note für die Endnote

Medienformen Computer, Tafel, Projektor

Webseite http://www.chemie.uni-duesseldorf.de/lehre.html

Literatur

U. a. Präparate aus "Functional Organic Materials", T. J. J. Müller, U. H. F. Bunz, Hrsg., Wiley-VCH, 2007 B.O. Roos, P.O. Widmark “European Summerschool in Quantum Chemistry”, Lund 2007, http://www.teokem.lu.se/esqc/book/