2
This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz. NOTIZEN Scattering of a Particle by a Modified Coulomb Field T. TIETZ Department of Theoretical Physics, University of Lodz, Lodz, Poland (Z. Naturforschg. 22 a, 1281—1282 [1967]; received 21 February 1967) An exact solution for the scattering amplitude /(#) in analytic form is known only for a limited number of fields. Of these the most important is the COULOMB field The purpose of this note is to give an exact ex- pression of the phase shifts for a modified COULOMB field. Consider the collision between two particles of charges Z e and Z' e of reduced mass m and relative velocity v (mv = hk). Then the COULOMB field U (r) = 2 ka/r where a = m Z Z' e 2 / (kh 2 ). In many physical problems, e. g. the scattering of electron by H~, besides the COULOMB field there acts on the particle an additio- nal short range field V (r) which at large r values falls off faster than l/r 2 so that the scattered particle is de- scribed by the following SCHRÖDINGER equation d 2 ui dr 2 k 2 V(r) -U(r) 1(1+1) ui = 0 (1) The regular solution ui(r) of this SCHRÖDINGER equa- tion fulfils at the point r = 0 the boundary condition ui(0) =0, and for large r values it has the following asymptotic behaviour ui(r) „j* sin (kr—hln + di + 7]i — a In 2 k r) (2) where <3; = arg r(l +1 + i a) and rji is the phase shift due to the short range field V (r). If V (r) = 0 then r\i = 0. In the case F ( r ) = 0 Eq. (1) has two indepen- dent solutions Fi(r) and Gi(r). The first which is re- gular at the point r = 0, is given by 2 Fi(r)= k r e"* 1 (2 kr) 1 e ikr tFt (i a + 1 + 1 ; 2Z + 2; - 2 ikr) (3) and has the symptotical behaviour at large r values Fi(r)-fr^sm(kr-i lji + di-a\n2kr). (4) The symbol 1F1 appearing in Eq. (3) denotes the hy- pergeometric function. The other solution Gi(r) which is irregular at r = 0, may be chosen such that its asym- ptotical behaviour for large values of r is Gi (r) * — cos (k r — h I n + di — a In 2 k r). (5) We do not write down here explicitely Gi(r) for it can be found in the literature 3 . Since V (r) is a short range potential which at large r values falls off faster than l/r 2 , for sufficiently large r values iij( r ) can be writ- ten in the form ui (r) = cos rji Fi (r) - sin rji Gi (r) ui(r) has an oscillatory character and for sufficiently large zero r0 of ui(r) we see from the last formula that tgr]i = Fi(r0)/Gi(r0). (7) Knowing the sufficiently large zero r0 of the solution ui(r) given by Eq. (1) we can determine the phase shift rji from the last formula since Fi(r) and Gi(r) are given analytically. Further I am going to derive a formula which allows us to determine the sufficiently large zero r0 . In order to do that we write the SCHRÖ- DINGER equation for Fi(r) in the case when V (r) = 0 as follows sin (k r — h I ji + di + rji a In 2 k r). (6) d-Fi dr 2 + kr — U (r) - 1(1 +1) Fi = 0 From the last equation and Eq. (1) we see that du; dr Fi - ui = J V (r) Fi ui dr (8) (9) Using the asymptotic forms of ui, Fi for large r values given by Eq. (2) and (4) as well as the fact that u l( r o) = 0 we obtain from the last formula the expres- sion k sin rji - cos rji d Fiijl d r — sin rji d Gi(r) dr F/(r0) = cos rji [ V (r) [F/(r)] 2 dr-sin rji I V (r) Fi(r) Gi(r) dr i r. (10) 1 TA-YOU WU TAKASHI OHMURA, Quantum Theory of Scattering, 2 For reference see 1 . Prentice Hall, Englewood Cliffs, N. Y. 1962, a. T . TIETZ, 3 For reference see N. E. MOTT and H. S. W . MASSEY, The Nuovo Cim. 308, 35 [1964]. Theory of Atomic Collisions, Clarendon Press, Oxford 1950.

NOTIZEN - Max Planck Societyzfn.mpdl.mpg.de/data/Reihe_A/22/ZNA-1967-22a-1281_n.pdf · Für die übrigen, auf elementare Ausdrücke re-duzierbaren Integrale war die Genauigkeit bedeutend

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NOTIZEN - Max Planck Societyzfn.mpdl.mpg.de/data/Reihe_A/22/ZNA-1967-22a-1281_n.pdf · Für die übrigen, auf elementare Ausdrücke re-duzierbaren Integrale war die Genauigkeit bedeutend

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution4.0 International License.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschungin Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung derWissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:Creative Commons Namensnennung 4.0 Lizenz.

N O T I Z E N

Scattering of a Particle by a Modified Coulomb Field

T . TIETZ

Department of Theoretical Physics, University of Lodz, Lodz, Poland

(Z. Naturforschg. 22 a, 1281—1282 [1967]; received 21 February 1967)

An exact solution for the scattering amplitude / (# ) in analytic form is known only for a limited number of fields. Of these the most important is the COULOMB field The purpose of this note is to give an exact ex-pression of the phase shifts for a modified COULOMB field. Consider the collision between two particles of charges Z e and Z' e of reduced mass m and relative velocity v (mv = hk). Then the COULOMB field U (r) = 2 ka/r where a = m Z Z' e2/ (kh2). In many physical problems, e. g. the scattering of electron by H~, besides

the COULOMB field there acts on the particle an additio-nal short range field V (r) which at large r values falls off faster than l/r2 so that the scattered particle is de-scribed by the following SCHRÖDINGER equation

d 2ui dr2 k2 — V(r) -U(r) 1(1+1) ui = 0 (1)

The regular solution ui(r) of this SCHRÖDINGER equa-tion fulfils at the point r = 0 the boundary condition ui(0) =0 , and for large r values it has the following asymptotic behaviour

ui(r) „j* s in (kr—hln + di + 7]i — a In 2 k r) (2)

where <3; = arg r(l +1 + i a) and rji is the phase shift due to the short range field V (r). If V (r) = 0 then r\i = 0. In the case F ( r ) = 0 Eq. (1) has two indepen-dent solutions Fi(r) and Gi(r). The first which is re-gular at the point r = 0, is given by 2

Fi(r)= k r e " * 1 (2 kr)1 eikr tFt (i a +1 + 1 ; 2Z + 2; - 2 ikr) (3)

and has the symptotical behaviour at large r values Fi(r)-fr^sm(kr-i lji + di-a\n2kr). (4)

The symbol 1F1 appearing in Eq. (3) denotes the hy-pergeometric function. The other solution Gi(r) which is irregular at r = 0, may be chosen such that its asym-ptotical behaviour for large values of r is

Gi (r) * — cos (k r — h I n + di — a In 2 k r). (5)

We do not write down here explicitely Gi(r) for it can be found in the literature 3. Since V (r) is a short range potential which at large r values falls off faster than l/r2, for sufficiently large r values iij(r) can be writ-ten in the form

ui (r) = cos rji Fi (r) - sin rji Gi (r)

ui(r) has an oscillatory character and for sufficiently large zero r0 of ui(r) we see from the last formula that

tgr]i = Fi(r0)/Gi(r0). (7)

Knowing the sufficiently large zero r0 of the solution ui(r) given by Eq. (1) we can determine the phase shift rji from the last formula since Fi(r) and Gi(r) are given analytically. Further I am going to derive a formula which allows us to determine the sufficiently large zero r0 . In order to do that we write the SCHRÖ-DINGER equation for Fi(r) in the case when V (r) = 0 as follows

sin (k r — h I ji + di + rji — a In 2 k r). (6)

d-Fi dr2 + kr — U (r) - 1(1 +1) Fi = 0

From the last equation and Eq. (1) we see that

du; dr Fi - ui = J V ( r ) Fi ui d r

(8)

(9)

Using the asymptotic forms of ui, Fi for large r values given by Eq. (2) and (4) as well as the fact that ul(ro) = 0 we obtain from the last formula the expres-sion

— k sin rji - cos rji d Fi i j l d r — sin rji d Gi(r)

dr F/(r0) = cos rji [ V (r) [F/(r)]2 dr -s in rji I V (r) Fi(r) Gi(r) dr i r. (10)

1 TA-YOU WU TAKASHI OHMURA, Quantum Theory of Scattering, 2 For reference see 1. Prentice Hall, Englewood Cliffs, N. Y . 1 9 6 2 , a. T . TIETZ, 3 For reference see N. E. MOTT and H. S. W . MASSEY, The Nuovo Cim. 308, 3 5 [ 1 9 6 4 ] . Theory of Atomic Collisions, Clarendon Press, Oxford 1950 .

Page 2: NOTIZEN - Max Planck Societyzfn.mpdl.mpg.de/data/Reihe_A/22/ZNA-1967-22a-1281_n.pdf · Für die übrigen, auf elementare Ausdrücke re-duzierbaren Integrale war die Genauigkeit bedeutend

where the derivatives of Fi (r) and Gi (r) are taken at the point r = r0 . Using the last formula and Eq. (7) we obtain

-k Fl(r0) Gi(r0)

dFi(r) dr

[ Fi(r0) r=r, ' Gi(r0)

d Gi(r) dr

o o o o

rwmrFi(i•„) = jV(r)[FKr)]2dr-|^j>(r) Fi(r) Gi(r) dr.

Since Fi(r) and Gi(r) are given analytically and V(r) is known, Eq. (11) which determines sufficiently large zero is convenient for practical calculations of r0 . If r0 has been found from the last expression then one can obtain the phase shift rji due to V (r) by help of Eq. (7). Eqs. (7) and (11) are exact and allow us to find the phase shift r\i with any accuracy. Fi(r) and Gi(r) involve complex numbers and are not convenient

(11)

for calculations. Expansions involving only real quanti-ties have been given by Y O S T , W H E E L E R and B R E I T 4 .

F . L . Y O S T , J . A. W H E E L E R , and G . B R E I T , Phys. Rev. 49, 1 7 4 [ 1 9 3 6 ] ; Terrest, Mag. and Atmos. Elec. 40, 4 4 3 [ 1 9 3 5 ] ; and G . B R E I T , article in Handbuch der Physik, Vol. 40/1, Springer-Verlag, Berlin 1959, p. 24.

Berechnungen des Wassermoiekiils mit Hartree-Fock-Atomorbitalen *

D . H A G E R + , E . H E S S 4 " 1 " u n d L . Z Ü L I C K E

Institut für Physikalische Chemie der Deutschen Akademie der Wissenschaften zu Berlin

Berlin-Adlershof ( Z . Natur f o r s chg . 22 a , 1 2 8 2 — 1 2 8 3 [ 1 9 6 7 ] ; e i n g e g a n g e n a m 3 . Juni 1967)

In den letzten Jahren sind für das Wassermolekül mehrere quantenmechanische Berechnungen in verschie-denen Näherungen publiziert worden1 -11 . Sie unter-scheiden sich vor allem durch den Ansatz für die Mole-kül-Wellenfunktion bzw. durch die verwendete Basis von Einelektronfunktionen; bis auf eine Ausnahme1

enthalten diese Rechnungen keine zusätzlichen Approxi-mationen.

Die streng durchgeführten Ansätze 7' 8 mit einer Mi-nimalbasis atomarer Einelektronfunktionen vom S L A T E R -

Typ (STO) ergeben ohne Optimierung der nichtlinea-ren Parameter (Geometrie, Orbitalparameter) günstig-stenfalls Molekül-Gesamtenergien um —75,70 at.E. (experimenteller Wert: —76,482 at.E.) und bei Ver-wendung einer geeigneten Hybridisierung auch gute Werte für das Dipolmoment7; diese Resultate lassen sich verbessern durch Wahl eines anderen, dem Pro-blem besser angepaßten Typs von Basisfunktionen, durch Erweiterung der Basis und durch Parameter-

variation. In Weiterführung der Arbeiten 7 zur Unter-suchung der Ladungsverteilung in 0 — H-Bindungen haben wir mit einer Minimalbasis atomarer H A R T R E E —

FocK-Funktionen mehrere verschiedene approximative Wellenfunktionen für das Wassermolekül berechnet mit dem Ziel, möglichst einfache, dabei aber leistungsfähige Ansätze aufzufinden, die sich ohne großen Aufwand für Abschätzungen von Moleküldaten weiterverwenden lassen.

Bei allen im folgenden besprochenen Rechnungen wurden die von C L E M E N T I et al.12 angegebenen analy-tischen Näherungen für die HARTREE-FocK-Funktionen der K- und der L-Schale des Sauerstoffatoms sowie die beiden Wasserstoff-ls-Funktionen benutzt. In der B O R N —

OppENHEiMER-Separation bezieht sich der zugrunde ge-legte (nichtrelativistische) HAMILTON-Operator für die Elektronenhülle des Systems auf ein starres Kern-gerüst, dessen Geometrie durch den 0 — H-Kernabstand 0,965 Ä und den Bindungswinkel <£ HÖH = 104,45° festgelegt ist (vgl. Ref. 7 ) ; Kerngeometrie und Orbital-parameter wurden nicht variiert.

Die Berechnung der nichtelementaren zwei- bzw. drei-zentrigen molekularen Integrale erfolgte mittels der CooLiDGE-BARNETT-CouLsoN-Methode l3~15, die Fehler lagen dabei in der Größenordnung 1 0 - 3 at. E. und dar-unter. Für die übrigen, auf elementare Ausdrücke re-duzierbaren Integrale war die Genauigkeit bedeutend höher. Alle aufwendigen Teile der Rechnungen (Inte-

* Teilergebnisse der in Vorbereitung befindlichen Disserta-tionen von D. H A G E R und E. H E S S , Leipzig.

+ Anschrift: VEB Kombinat Böhlen, 7 2 0 2 Böhlen. ++ Anschrift: VEB Farbenfabrik Wolfen, 444 Wolfen.

1 F. O . ELLISON U. H. SHULL, J. Chem. Phys. 23, 2 3 4 8 , 2 3 5 8 [ 1 9 5 5 ] , - R . M C W E E N Y U. K . O H N O , Proc. Roy. Soc. Lond. A255, 3 6 7 [ I 9 6 0 ] .

2 S . F. B O Y S , G. B . C O O K , C . M. R E E V E S U. I. S H A V I T T , Nature 1 7 8 . 1 2 0 1 [ 1 9 5 6 ] .

3 D. P. M E R R I F I E L D , Quart. Progr. Rept. Solid-State and Mol. Theory Group, M.I.T. 43, 2 7 [ 1 9 6 2 ] .

4 D. M. BISHOP, J. R. H O Y L A N D U. R. G. P A R R , Mol. Phys. 6, 4 6 7 [ 1 9 6 3 ] .

5 M . K R A U S S , J. Res. Nat. Bur. Stand. A 6 8 , 6 3 5 [ 1 9 6 4 ] .

6 R. M O C C I A , J . Chem. Phys. 37, 9 1 0 [ 1 9 6 2 ] ; 40, 2 1 8 6 [ 1 9 6 4 ] . 7 L. ZÜLICKE, Z . Naturforschg. 1 9 a, 1 0 1 6 [ 1 9 6 4 ] . 8 B . KOCKEL, D. H A M E L U . K . RUCKELSHAUSEN, Z . Naturforschg.

2 0 a , 2 6 [ 1 9 6 5 ] . 9 J. W . MOSKOWITZ u. M . C. H A R R I S O N , J. Chem. Phys. 43,

3 5 5 0 [ 1 9 6 5 ] . 10 D. M. BISHOP U. M. R A N D I C , Mol. Phys. 1 0 , 5 1 7 [ 1 9 6 6 ] . 11 D. H A M E L , Z . Naturforschg. 22 a, 1 7 6 [ 1 9 6 7 ] . 12 E. CLEMENTI, C . C . J. ROOTHAAN U. M. Y O S H I M I N E , Phys. Rev.

1 2 7 , 1 6 1 6 [ 1 9 6 2 ] . 13 A. S . COOLIDGE, Phys. Rev. 42, 1 8 9 [ 1 9 3 2 ] . 14 M. P. BARNETT U . C . A. COULSON, Phil. Trans. Roy. Soc.

A 2 4 3 , 2 2 1 [ 1 9 5 1 ] . 15 L. ZÜLICKE, Ann. Phys. Leipzig 1 9 , 1 [ 1 9 6 7 ] .