40
ARCHIV FUR METEOROLOGIE GEOPHYSIK UND BIOKLIMATOLOGIE <c> by Springer-Verlag 1980 Arch. Met. Geoph.Biokl., Ser. A. 29,1-40 (1980) 551.515.4 Department of Environmental Sciences, Universityof Virginia, Charlottesville, U. S.A. On Cumulus Mergers Joanne Simpson, Nancy E. Westcott, R. J. Clerman, andR. A. Pielke With 11 Figures Received July 9, 1979 Summary Joining together or merging is postulated to be a major way in which convective clouds become larger, enhancing their transports and impactsupon their environment. Cumulus shower merger is defined in terms of echoes from a calibrateddigitized 10-cmradar reviewinga 0.9 x 105km2 area in south Florida, U. S. A., which encompasses a 1.3 x 1~ km2 experimental areafor randomized seeding. A detailed physicaland statistical studyis reported for three relatively undisturbed un- treateddays in the summer of 1973, the driestof which was a randomly selected control day for the experiment. Mergers arefound to produce more than an order of magnitude more rain than unmerged echoes, while mergers of mergers (secondorder mergers) produce still an order of magnitude more rain. On the threedays studied, mergedsystems producedabout86%of the rainfall overthe area. Duration,echo area and raindepths arealsocompared for merged and unmerged systems. Eachday is thenanalyzed individ- ually, indicating a correlationbetween organization and rain amount, confirmed by other research reviewed briefly. 1:he location and time of merger is relatedto the seabreeze convergence zones aspre- dicted by the University of Virginia Mesoscale Model with overall good agreement. Physical hypotheses suggesting the importance of downdrafts in cumulusmergingare developed. The relevance of mergers to hydrology, weather modification and the large- scale impacts of convective cloudsis discussed. Zusammenfassung tlber das Verschmelzen von Cumulus-Wolken Das Zusammenwachsen oder Verschmelzen yon Cumulus-Wolken wild als einer del Hauptgriinde fliT fur Wachstum sowie fliT ihren EinfluE auf ihre Umgebung und auf die duTch sie bewerkstelligten Transportprozesse angesehen. Das Verschmelzen yon Cumulus- Schauern wild auf Grund del yon einem kalibrierten und digitisierten 10-cm-Radar empfangenen Echos definiert. Das Radargeriit iiberblickt fine Fliiche yon 0.9 x 105 km2 1 Arch Met. Geoph Biokl. A. Bd 29, H 1-2 0066-6416/80/0029/0001/$08.00

On Cumulus Mergers - by Roger Pielke Sr. · PDF file2 Joanne Simpson et al. imStidenFloridas(U.S.A.),dieeinExerimentaigebietvon 1.3 x I~ km2 flirrando-misierte Wolkenimpfung umgibt

Embed Size (px)

Citation preview

ARCHIVFUR METEOROLOGIEGEOPHYSIK UNDBIOKLIMATOLOGIE<c> by Springer-Verlag 1980

Arch.

Met. Geoph. Biokl., Ser. A. 29,1-40 (1980)

551.515.4Department of Environmental Sciences, University of Virginia, Charlottesville, U. S. A.

On Cumulus Mergers

Joanne Simpson, Nancy E. Westcott, R. J. Clerman, and R. A. Pielke

With 11 Figures

Received July 9, 1979

Summary

Joining together or merging is postulated to be a major way in which convective cloudsbecome larger, enhancing their transports and impacts upon their environment. Cumulusshower merger is defined in terms of echoes from a calibrated digitized 10-cm radarreviewing a 0.9 x 105 km2 area in south Florida, U. S. A., which encompasses a1.3 x 1~ km2 experimental area for randomized seeding.A detailed physical and statistical study is reported for three relatively undisturbed un-treated days in the summer of 1973, the driest of which was a randomly selected controlday for the experiment. Mergers are found to produce more than an order of magnitudemore rain than unmerged echoes, while mergers of mergers (second order mergers)produce still an order of magnitude more rain. On the three days studied, merged systemsproduced about 86% of the rainfall over the area. Duration, echo area and rain depthsare also compared for merged and unmerged systems. Each day is then analyzed individ-ually, indicating a correlation between organization and rain amount, confirmed by otherresearch reviewed briefly.1:he location and time of merger is related to the seabreeze convergence zones as pre-dicted by the University of Virginia Mesoscale Model with overall good agreement.Physical hypotheses suggesting the importance of downdrafts in cumulus merging aredeveloped. The relevance of mergers to hydrology, weather modification and the large-scale impacts of convective clouds is discussed.

Zusammenfassung

tlber das Verschmelzen von Cumulus-Wolken

Das Zusammenwachsen oder Verschmelzen yon Cumulus-Wolken wild als einer delHauptgriinde fliT fur Wachstum sowie fliT ihren EinfluE auf ihre Umgebung und auf dieduTch sie bewerkstelligten Transportprozesse angesehen. Das Verschmelzen yon Cumulus-Schauern wild auf Grund del yon einem kalibrierten und digitisierten 10-cm-Radarempfangenen Echos definiert. Das Radargeriit iiberblickt fine Fliiche yon 0.9 x 105 km2

1 Arch Met. Geoph Biokl. A. Bd 29, H 1-2

0066-6416/80/0029/0001/$08.00

2 Joanne Simpson et al.

imStidenFloridas(U.S.A.),dieeinExerimentaigebietvon 1.3 x I~ km2 flirrando-misierte Wolkenimpfung umgibt.Eine detaillierte physikalische und statistische Studie fliT drei relativ ungest6rte Tageohne Wolkenimpfung wiihrend des Sommers 1973 Wild hiermit vorgelegt. Der trockenstediesel Tage war willkiirlich als Kontrolltag fliT das Wolkenimpfungsexperiment gewiihltworden. Verschmelzungsprozesse weisen urn mehr als eine Gr6/!'enordnung mehr Nieder-scWag auf als unverschmolzene Echos, wiihrend Verschmelzungen yon Verschmelzungen(Verschmelzungen zweiter Ordnung) nochmals eine Gr6/!'enordnung mehr Regen ergeben.An den drei untersuchten Tagen produzierten verschmolzene Systeme ungef!ihr 86% deslibel clem Untersuchungsgebiet beobachteten Regens. Andauer, Echoausmal!, und Nieder-schlagsh6he werden fliT verschmolzene und unverschmolzene Wolkensysteme vergiichen.Jeder Tag Wild individuell analysiert, wobei eine Korrelation zwischen Wolkenorganisa-tion und Niederschlagsbetrag angedeutet wild, die auch yon anderen, kurz erwiihntenForschungsarbeiten bekraftigt wurde.art und Zeit des Verschmelzens hangen yon del Seewind-Konvergenzzone ab, welchedUTCh das mesoskalare Rechenmodell del University of Virginia gut vorhergesagt wurde.Eine physikalische Hypothese libel die Wichtigkeit del Absinkbewegung wahrend desCumulus-Verschmelzungsprozesses Wild dargelegt. Die Bedeutung del Verschmelzungs-vorgange flir die Hydrologie, fUr die ktinstliche Wetterbeeinflussung und fliT den gro/!'-raumigen Einflu/!' konvektiver Wolken wild diskutiert.

1. Introduction, Historical Perspective and Motivation

I

An important frontier in meteorology concern$ the factors controlling thesizes of cumulus clouds. The correlation between heights and widths ofcumuli has been well documented [28,48]. As they become larger, cumulusclouds produce more rain, release more heat and transport more energyaloft. Critical size also appears necessary for severe storm events, such assqualls, hail.and torI}adoes, with the Browning :'supercell" [6, 27] theultimate giant of the spepies. The processes forcing cumulus clouds aresuspected to control their size, but theserelatioriships are not yet wen under-stood. Cumulus models so far must assume the dimensions of an initial per-turbation [9, 49]. For parameterizing cumulus effects in th~ large-scalemodels, size controls are among the most vital unknowns.This paper adds a link to understanding cumulus relations to their forcingby examining the growth of cumulus showers by merging or aggregation,which is hypothesized to be a main mechanism of producing larger clouds.Merging has been observed on a hierarchy of scales, with the element dia-meters ranging from a few hundred meters to tens of kilometers. We examinethe merging of showers in the vicinity of Florida, U. S. A., in the size rangeobserved by a lo-cm radar, namely about I to 100 km in horizontaldimension.Merger was actually first documented in Florida by the ThunderstormProject [7] and by Malkus over the tropical oceans [32,34]. In the latter

qsa1J R ~U!P!A01d ARP q:>Ra dOIaAap sauoz a:>Ua~laAUO:> azaa1qRas aqJ 'Sa:>UR

-q1mSW aIR:>S-:>!JdoUAS Aq paJ:>aJJRUn sp°!lad uI '~U!:>lOJ l!aqJ OJ UO!JRIa1U! A{lRIn:>!J1Rd 'SpnOI:> aA!J:>aAUO:> JO SJ:>adSR IIR ~U!ApmS 10J AlOJR10qRI IRap!

UR a){RW SlaJRM ~U!pUnOllnS pUR (I '~!d) RInSU!uad paJRaq JRU S,RP!l°Id

s.la3.law l1P!.l°ld JO Sa!pnJS .ll1pl1~ JO UO!Jl1.1!J°W '{ or

'q:JJP.as~ll~q~mJ ~A!SU~~X~ S~UBllB/t\ pUB [vZ 'vI] s~!pn~s ~SB:J /t\~J ~ U! p~~Bl~SUOU1~p

U;}\}q sBq gU!'iil~W pUB ~:JU~gl~AUO:J U~~/t\~~q UO!~BI~l V '~:JU~~l~AUO:J

~q~ JO UO!~Bmp pUB ~Z!S ~q~ wall ~IqB~:Jwrod ~lB s~unOWB uo!~B~!d!:J~ld

~q~ '~loUll~q~md 'gU!~SB:J~lOJ pOJI~d-~lOqS U! ~sn ~!Ull~d o~ ~W!~ :Ju~!:J!JJnsB 10J UO!~~~!d!:J~ld ~dA~-l~/t\Oqs ~p~:J~ld zW){ O~-Z Jo s~uoz ~:JU~~l~AUO:J

~~q~ [09 '6~] punoJ gUB~SlBD pUB PlSUBm 'BPJIOId UI '[Z9 'vZ] UO!:J:J~A-uO:J gu!~B~!d!:J~ld ~A!~Bl~~u~d 10J UO!~!puo:>-~ld AlBSS~:J~U B S! (~IB:JS-:J!~doUAS

la/pUB Os~w) ~:JU~gl~AUO:J I~A~I-/t\°I ~Bq~ /t\oqs o~ gu!~Blnwn:J:JB u~~q

SBq ~:JU~P!A~ IBUO!~BAl~sqo '~pB:J~p ~sBd ~q~ uI 's,OL6 I ~q~ I!~un 1B~I:Jun s~/t\'l~A~/t\Oq '~u~wdOI~A~p pnol:J pUB ~:JiI~gl~AUO:J ~q:J u~~/t\~~q A~!IBsnB:J pUB

~:Ju~nb~s ~W!:J ~q:J ~SUO!'B~l ~u~gl~AUO:J ~IB:JS-:J!~dOUAS U! p~lln:J:JO Sl~/t\O~ ~P!/t\

~Bq:J [8£ '9£] P~Z!u3'O:J~l SB/t\ ~! s,096 1 ~q~ uI 'smoq Z- I Aq uo!~B~!d!:J~ld

p~p~:J~ld pUB ~u~wdOI~A~p snInwn:J q~!/t\ P~P!:JU!o:J I-:J~S (-OI x Z-IJo ~:JU~~l~AUO:J ){B~d q:J!/t\ tW){ OZ-OI Jo l~plO ~q~ UO sII~:J ~:JU~~l~AUO:J

~:JBJms ~Bq~ ~P!lOld wall ~:JU~P!A~ p~~u~s~ld [L] umqBlg pUB Sl~Ag '6v6I uI

uo,lJvnd!:JaJJ puv Ja3Jaw 'a:Jua3Jaltuo:J [' [

"S;}UO J;}IIt1WS {t1J;}A;}S JO

UOI~t1g;}J~t1 ;}q~ Aq P;}UJJOJ SJ;}MO~ J;}gJP.{ ;}q~ ~t1q~ P;}UJJYUO:) q:)IqM 'sgUJ:)t1J~

;}sdt1{-;}WI~ Aq "S{t1UJJ;}q~" JO S;}{qqnq SnOJ;}WnU JO g~J;}W ;}q~ p;}dd~w

[Lf] Jroo:)S pm sn){{t1w s;}pn~I~t1{-PIW UI 'J;}~~t1W pno{:) snonuI~uo:) UJ~JM

s~Jt1JPdn gUJU;}PIM O~UJ P;}gJ;}W S~U;}W;}{;} ;}~ S{;}A;}{ J;}qgIq ~t1 ~spno{:) ~SOW

JO UOI~Jod J;}MO{ ;}q~ UI S~U;}W;}{;} ~Jt1Jpdn U;};}M~;}q punoJ ;}J;}M S;}{oq {t1:)I~;} A

.[17f] ~Jt1J:)JIt1 Aq p;}~u;}wn:)op St1M S;}~t1g;}~t1 Jo dn ;}pt1W ;}J;}M I{nwn:) {t1:)IdoJ~

(ill:>{ f-Z sdo~) p;}Z!8-wnw;}w ~t1q~ ;}:)U;}PIAH .S;}UO J;}IIt1WS Jo UOI~t1Wt1g{t1Wt1

;}q~]O p;}sodwo:) ;}J;}M spno{:) J;}~Iq MOq Jo s~:);}dst1 P;}~t1{;}J P;}MOqS

s,O~6 { ;}~ Jo t1~t1p ~Jt1J:):I!t1 pm [O~ '8Z] AJO;}~ ;}{qqnq J;}Jo:)s-wt1wn'l ;}qJ."[ 9f] S;}UI{ ;}q~ gUO{t1 gUI'BJ;}W Aq MOJg Ug~JO q:)IqM I{nwn:) IIt1WS JO S;}UJ{ SI

;}POW guI:)Ut1qU;}-q~MO~ P;}AJ;}sqo AIIt1nSIA J;}q~ouV ';}S~MJ;}q~O JO ~UggJ;}AUO:)

'P{;}y MOg p;}sow;}dns AUt1 gJ~nb;}J ~OU S;}OP Joqqg~;}U t1 JO UO~~t1[n:):I!:) ;}~ U~

sn[nwn:) t1 JO "~u;}wdt1J~U;},, ;}q~ q:)~qM U~ '[ fZ] II~H Aq {;}POW t1 U~ p;}~t1[nw~s

U;};}q St1q SS;}:)OJd UO~~t1g;}J~t1 s~q.L 'SJoqqg~;}U JP.;}U JI;}q~ q~IM U09t1g;}~t1

Aq MOJg A{UOUlWO:) p{nOM ;}S;}q.L 'SSOJ:)t1 SJ;}~;}W p;}Jpunq M;}J t1 s~;}{pno[:)

IIt1WSJO s;}q:)unq gu!J1!;}ddt1-wopUt1J St1 S;}A~[ ;}[q~S~A JI;}q~ UJg;}q O~ Ug;}S U;}~JO

;}J;}M sdnoJg pno{:) 'S;}~AOW ;}sdt1[-;}WI~ PUt1 ~Jt1J:)JJt1 P;}~U;}wru~suI Aq 'S;}Ipn~s

SJ:l8J:lW snrnwnJ uO

Joanne Simpson et al.4

333.5 km

~5nml'50nml \

166.7km

'\b

""0'I....r

':--':":"", A

,"" ..,,'>"'.

'"././

166.7km(90nml)

cJ FACE TARGET AREA

~ UVo MESONETWORK

333.5 km(180nmi)

RAINGAUGE

CLUSTER

Fig. 1. The study area is the truncated circle within the squares bounded by 333.5 by333.5 km domain, the 100 n mi (183.5 km) radar range marker and the 25 n mi(46.3 km) radar range marker. The large quadrilateral in the upper left is the FACEseeding target,- showing within it the University of Virginia mesonetwork. The fiverain gauge clusters are denoted by dots, one per gauge ,

start for the cumuli, which usually decay as the heating declines after sunset.Pielke and colleagues [10, 11, 30,41] have evolved the University of VirginiaMesoscale Model (UVMM) of the boundary layer and seabreezes which hasbeen improved, applied and tested extensively in Florida, as well as in severalother areas [44,45,46]. Over Florida the strength and patterning of theconvergence zones are sensitive to the imposed windspeed and direction.Although the model does not yet include water substance phase changes,good agreement between the positions of large radar echoes and predictedconvergence zones have been found, which improve as the daily cycleprogresses [43, 46]. Typical scales of the seabreeze convergence zones are300 by 30 km along the coast lines, with core magnitudes of about 10-4

Jo~d p;)JJn;);)o ;)Aeq AelU ~U!~J;)lU pnoI;) yenS!A]O S;)~e~S yeJ;)A;)S 'APSJ!d

"SUO!~OlU ye;)!~J;)A ;)ye;)S-pnoy;) ]0 JO spnoy;) P;)~;);)~;)P AnenS!A ]0 J;)fu;)lU ;)q~lUOJ] J;)]]!P AelU q;)!qA\ ';)J;)q p;)!pn~S S! ~U!~J;)lU J;)A\oqs ~eq~ ;)Z!U~O;);)J ;)1\\

"y;)A;)I Jno~UO;) ;)~eJ U!eJt-Jq lUlU 0" [ ;)q~ ~e SJ;)~J;)lU J;)pJO-PUO;);)S JO ~SJU ;)JOlU JO OA\~]O ;)Jm;)unf

;)q~ Aq P;)UJJO] S! J;)~J;)lU J;)pJO-PUO;);)S e pue 'S;)oq;);) ;)fii'U!S ~u;)pu;)d;)pu!

AysnO!A;)Jd ;)JOlU JO OA\~ ]0 ~U!u!of ;)q~ ]0 ~ynS;)J ;)q~ S! J;)~J;)lU J;)pJO-~SJU

V ";)~eJ U!eJ]O q~;)ydos! t-Jq lUlU Y ;)q~ ~e swq;);) ;)~eJed;)s AysnO!A;)Jd"OA\~]0 UO!~ep!yosUO;) ;)q~ se P;)U!];)P S! J;)~J;)lU V "mpeJ J;)q~e;)A\ lU;)-o y p;)~eJq!ye;)e UO p;)~:J!d;)p se 'S;)oq;);) J;)~J;)lU J;)pJO-PUO;);)S pue S;)oq;);) J;)~J;)lU J;)pJo-~SJU'S;)oq;);)

;)fii'U!S]O P;)SOdlUO;) ~U!;)q se ;)J;)q P;)TT;)POlU ;)Je SlU;)~SAS uo!~e~!d!;);)Jd

UO!J!Ulfc3U .lc33.lc3W '3u!11c3POW UO!JlJJ!d!.Jc3.lJ fr" [

.AI;)~e1;)q!I;)P p;)~u;)~ne;)q Ue;) 10 U;);)q seq l;)gl;)lli l;)q~;)qM '~X;)~UO;) JR~U;)lli!l;)dX;) ue U! ';)~enIeA;)

O~ pUR SS;);)Old S!q~ ;);)Uequ;) O~ MOq U1e;)I O~ Ie!~U;)SS;) S! gU!gl;)lli Ie1n~eU JO

UO!~e~U;)llin;)Op ~eq~ OS 'UO!~e~U;)lligne U!e110J gU!P;);)S ;)!llieUAp U! ;)A~;);)fqo10felli e S! l;)gl;)lli p;);)Uequ;) 'P1!ql 'SUO!~eInU1!s ;)Ie;)S-;)gleI U! S~;)edlli!

pUR SI01~UO;) S~! ;)~e10dlo;)u! O~ 1;)P10 U! 'UO!~e~!d!;);)ld JO SI;)POlli Ie;)!sAqd/Ie;)!~S!~e~S ~;)ru~SUO;) O~ S;)AI;)Slli;)q~ U! P;)P;);)U ;)le SUO!~nq!l~S!p U!e1 'PUO;);)S

'S;)SS;);)Old gU!;)lOJ l!;)q~ O~ UO!~eI;)l U! Slli;)~SAS ;)A!~;);)AUO;) JO S;)!~1;)d01d

;)q~ gU!~;)!p;)ld pUR gU!II;)POlli 'gU!pUe~Sl;)pUn p1eMO~ d;)~S Ie!~!U! ue ;)P!A01dO~ '~Sl!d :PIOJ-;);)lq~ ;)le S;)A!~;);)fqo ;)ql 'Slli;)~SAS P;)gl;)lli SnS1;)A Sl;)MOqS

p;)~eIOS! JO UO!~e1np pUR IJRJU!e1 ';)Z!S ;)q:J AI;)A!~e1edlliO;) S;)U!IueX;) ApmS SWl

l{.?lVaSaN Sll{.L 10 saI111.?a!qo '?Yl.?ads E' [

°llit?l~Old ~UIP~~S ~q} JO .~AI}:>~fqo loft?lli t? sI l~~l~lli p~:>Ut?q-U~ 'Sl~MOqS P~}t?YOSI lliOlJ Ut?q} l~q:Jt?l S~X~ydlliO:> p~~l~lli lliOlJ S~lliO:> .lyt?J

-UIt?l UOSt?~ll~llillinS ~q} JO }SOlli Sdt?ql~d }t?q:J p~}s~~ns [£L '£~] t?PIJoYd UIs~IPms pnoy:> }Jt?l:>lIt? put? :>Jqdt?l~O}oqd 'It?pt?l Alt?UIllin~ld ~:>uIS 0 Y '~Id

Jo }J~y l~ddn ~q} uI yt?l~}t?YIlpt?nb Zlli)[ .,0 Y x £0 Y ~q} l~AO p~st?~l:>UI ~qUl!:> TTt?JUI1!l ~AI}:>~AUO:> l~q}~qM [8L 'ZL 't~ 'Z~] UJt?I'Bold ~UIP~~s :>IUJt?UAP

p~ZIlliOpUt?l t? Aq ~UIUIl~}~P O} SI S}U~lliIJ~dx~ ~s~q} JO ~AI}:>~fqo ~lO:> ~q.L

'[LL '9L] Y 3:)Y d p~y{t?:> (9L6 y -OL6 y) }u~lliI.I~dx3 snynllin:) t?~lY t?PIlOYds, YYON Aq P~PIAOld AYUIt?lli u~~q St?q ApmS l~~l~lli sIq} lOJ ~St?q t?}t?p ~q.L

.sTT~:> ~:>U~~l~AUO:> P~AIY-l~}lOqSpUt? ~yt?:>s-l~TTt?lliS Jo ~~t?l~At? lO ~}t?~~l~~t? Ut? AY~l~lli ~lt? l~}}t?y ~q} l~q:J~qM

lO SUOIB'~l ~:>U~~l~AUO:> ~Z~~lqt?~S ~S~q:J UIq}I!t\ ~lt? [09 '6~] ~ut?}Sll1D

put? Pfsut?Tfl Aq punoJ s~uoz ~:>U~~l~AUO:> l~TTt?lliS ~q:J l~q}~qM S! uo!}s~nb

}Ut?}lOdlli! uY °S~uoz ~:>U~~l~AUO:> ~Z~~lqt?~S P~}:>!p~ld-y~POlli ~q:J q}!MSUOI}t?:>oy l~~l~lli P~M~!A-JP.pt?l ~lt?dlliO:> O} S! l~dt?d S!q} Jo ~A!}:>~fqo UIt?lli Y

't?ynsu!u~d ~q} Jo d!} }S~Mq:Jnos ~q} JP.~U UOllilliO:>S! S~pm!ugBlli ~s~q} ~yqnop q}!M UI:>[ Ot Aq 00 Y ~uoz {t?:>!}d!TT~ uY .I-:>~S

SI:181:1W snrnwnJ UQ

Joanne Simpson et at.6

to shower fonnation, as suggested in Section 1. Secondly, the visual cloudbody containing the shower studied could merge prior to echo merger.Several cases [14, 24] suggest this difference to be 5 minu tes or less in themiddle levels although a visible low cloud "bridge" between towers com-monly occurs still earlier (Figs. 9-11).Radar echoes of rainshowers are chosen for this study both because of thelesser laboriousness of acquisition of a meaningful sample than in the caseof visible clouds and updrafts and because of the inherent importance ofthe rainfall. However, the subjects of visual cloud and updraft mergerwarrant intensive study in relation to those of echoes; efforts are 'beingpursued with photogrammetry and multiple doppler data in the FACEanalyses [14, 16] and with other tools in examining the clouds of the easternAtlantic in the GATE! [4,26,40,62].

The Data and Methods of the Research

2.1

The Radar Data

In 1972 the National Weather Service Miami 10-cm WSR-57 radar wasdigitized and calibrated for quantitative rain measurements, in part to serveas the main rain-measuring tool in the FACE 1 program in 1973, 1975 and1976. A Miami reflectivity-rainfall relationship had been developed andadapted [21, 22, 55], which underwent extensive further testing in thesummer of 1973 [74,75]. It was shown that when rain gauge clusters areused to adjust the radar rainfall estimates, significant improvement inaccuracy is obtained. This finding has received stronger confirmation inthe second phase of FACE (begun in 1978) when a network of 100 re-cording gauges was established over the entire seeding target [58].The data studied here are from the 1973 season when daily adjustmentsfor the radar were obtained from the five clusters in Fig. 1. Results weretested against the values obtained by the 229 closely spaced gauges in theirregular-shaped mesonetwork shown within the target. The 1973 and 1978tests indicate that the rain differences of importance in this research lieoutside the margin of errors in the measurements [1, 58, 71,74,75].The WSR-57 radar radially scans with a beam width of 2° at an antenna tiltranging between 0.0° and 0.5°. The area within the 46.3 km (25 n.mi) rangemarker, generally filled with ground clutter, is omitted from the analysis.The region outside of the 185.3 km (100 n.mi) range marker is also ex-cluded because of beam filling problems. Cloud base averages about 860 mduring the summer months over south Florida. Beyond 185.3 km range, the

GATE denotes GARP Atlantic Tropical Experiment.GARP denotes Global Atmospheric Research Program.

Jno ]0 s~Insa~ ':)~a 1~1"B/t\ s:nsJ~A puel !paadspuf/t\ se q:)ns 'suof~e:)f]!~eJ~s

paJ!sap ]0 Jaqwnu e Aq U/t\Op Ua)[OJq sJa~aweJed ufeJ pue oq:)a ]0 safJew-tUns "ep ;}{oq/t\ pue Jnoq-Jo-pU;} sa!lddns S1. V 1.S p;}ne:) weJ~oJd q~JnoJ V

'papfAOJdosJ1! sf oq:)a q:)ea]o (~flds e Jo ~lnsaJ JO' Ja~Jaw e]o ~lnsaJ 'oq:)a ~sol 'oq:)a

~U!~~!Ids 'oq:)a ~~Jaw 'oq:)a /t\au) sn~e~s pm! 'awnloA ufeJ pa~elnwn:):)e 'a~eJufeJ 'eaJe 'uo!~e:)°I aq1. 'sa~nufw ~ pm! W)[ ~8'1 ale suo!~nlosaJ IeJodwa~

pue J1!!~eds aq1. 'ue:)s Jeln:)!~Jed ~eq~ ~upnp ~uasaJd saoq:)a aq~ Jo ~U!~S!Ie (z) pm! 'ealP. W)[ ~'£££ x W)[ ~'£££ aq~ ~u!laAo:) dew a~eJ U!eJ a~nu!W ~

e (I) Jo S~S!suo:) ~:)npoJd pua aq1. 'saUleJ] uaa/t\~aq ,,~!nuf~uo:) ~U!P!AOJd

'pa~epdn uof~eWJoJU! pa)[:)eJ~ aq~ pm! aweJJ o~ aweJ]woJJ paq:)~ew uaq~ ale

saoq:)a lenpfAfpuI iOL] 'Ie ~a ~Ja~fA\ "q paq!J:)sap S! anb!uq:)a~ sfq1. '~uno:):)eo~uf ua)[e~ alP. oq:)a ue ufq~!/t\ ew!xew le:)°I aJaq/t\ 'poq~aw ~uawow aq~ "q

paq!l:)sap S! oq:)a q:)ea Jo uof~nq!l~sfP a~eJ u!eJ lewa~U! aq1. 'poq~aw q:)mass~u!od ~U!PunOJJnS-8 aq~ ~U!sn saoq:)a sa~elosf 'UletJOJd PJfq~ aq~ 'S)JV3d

'[9]salP.nbstfW'u I Jo PfJ~ m!!sa~Je.:) e o~uf paWJoJsueJ~ osle S! wa~s"s a~euWJoo:)Jelod

aq1. 'wetJoJd 1.~V)I aq~ U! sdfqsuof~elaJ pauof~uawaJo]e aq1 "q a~eJ ufeJ

o~uf sro pue "~fA!~:)auaJ o~uf pa~JaAuo:) uaq1 sf e~ep paZ!IeWJou a~ueJ aq1.

'(fW'U ~Zl) W)[ ~ I Z ~e aq Plno/t\ ~f ~eq/t\ o~ paz!leWJou sf Ja/t\od s, U!q aq1.

'euua~ue aq1 WOJJ a:)m!~sfP ~U!seaJ:)U! aq1 JoJ s~:)aJJo:) sfqJ. 'sU!q ~uawaJ:)-U! leq~nW!ze oO'Z "q al!w ]J1!q OOZ aq~ ]0 q:)ea U! e~ep pauJn~aJ Ja/t\od

a~eJaAe aq~ saZ!leWJou )J.:)VdNfl 'S)JV3d pm! 1.~V)I ')J':)VdNfl pane:)

ale 'SJo~eJoqeno:) pue punl~so '~Ja~fA\ "q padolaAap 'swetJoJd "a)[ aaJq1.

'SJnoq ~~!I"ep ~q1 ~no~noJq~ sa~nu!w aAfJ !..IaAa saoq:)a J~/t\oqspa)[:)eJ~ "uenpfAwuf Jo PIau e JO] (W)[ ~8' I "q ~8' I uof~nIOSaJ) a~eJ U!eJ pm!

Bale 'uo!~e:)ol uo uof~eWJo]U! apfAOJd s~:)npoJd aq1. 'suo!~elndod U! pm!

"uenpfAfPu! q1oq pa~uawn:)op alP. safpadoJd Ja/t\oqs '[OL '69 'L9] JepeJ

paZ!~!~fP aq1]o spJo:)aJ aq1 WOJ] saoq:)a ~U!:)npoJd-UfeJ aq~ ]0 Saf~JadoJd:)u!:)ads uJt?,'Jqo o~ padolaAap uaaq seq aJe/t\~]os aAfsua~xa sma" aq~ JaAQ

paz!l!Jfl sJ.JnpoJclJaJndUlo.) 'Z"z

"%I utJqJ ss~I SJ~AO:) [09 '6~) gutJJsltJD

putJ PlsutJIO f..q p~!pmS )[lOMJ~UOS~W P~U!tJJuO:)-J~gltJJ ~qJ ~nqM 'tJ~lR ~qJ

Jo %~I s~!dn:):)o J~gJP.J gU!P~~S 3JVd ~q.l "Sl~JtJM gU!pUnOllns %09 putJtJlnSU!u~d %OP JnoqtJ s~spdwo:) tJ~lR s!iI.l .I .g!d U! ~l:)l!:) J~Jno putJ l~UU!

~qJ U~~MJ~q tJ~ltJ t W)[ 1 90£6 tJ l~AO ~ptJw ~q utJ:) SJU~W~lnstJ~W ~A!JtJJ!JutJno

"[ PZ] s~Jnu!w ~ I OJ~ f..q s~oq:)~ l~MOqs ,,~stJq pnol:)" ~qJ Jo Sl~gl~W ~qJ gtJl OJ s~gntJg ~:)tJJlns

f..q P~JtJ~U!l~P StJ sII~:)U!tJl Jo l~gJ~W MOqS 'l~A~MOq 'S~!pmS ~stJJ 'S~J tJW!Js~

U!tJJ ~gntJg U!tJJ pUt! lRptJl U~~MJ~q Ju~w~~J'atJ poog ~qJ U! JUt!Jlodw!

~lR J~f..tJl pnol:)qns ~qJ U! f..J!p!wnq qg!q putJ ~stJq pnol:) Mol ~qJ 'tJPPOld

UI '~stJq pnol:) ~AOqtJ J~J~wOl!)[ tJ utJqJ alOW S! w~q ~qJ Jo ~gp~ l~MOl

Sl:JS1:JW snlnwnJ uO

8 Joanne Simpson et aI.

study will be analyzed in the context of existing products of STATS inSection 7.With the output of PEAKS, considerable comparative human analyses hadto be performed using the 5 minute photographs of the PPI scope. Detailsare described by Westcott [64, 65].Because of the labor described above combined with that of documentingthe larger-scale cloud environment, only 3 days in the summer of 1973have been analyzed in depth. Near the end of the paper, these will be placedin the context of 16 additional summer days analyzed from a populationrather than a tracking viewpoint using the STATS program.

2.3 Echo Analysis Products

As each echo is tracked, its location, rain rate and area are recorded. If anecho splits, the components are considered to be a continuation of theparent echo, and are included in the computation of the parent echo'slife span, mean and accumulated characteristics. If an echo is said to merge,the component echoes'life histories are terminated, and the consolidatedsystem's history begins at the time of merger. Three echo-types are de-scribed, the single echo, the first order merger, and the second order merger.The duration, the meaQarea, the maximum area, the mean and maximumfive minute rainfall and the accumulated rainfall are determined for eachecho.The mean, standard deviation and standard error are calculated for each ofthe three echo categories (Table 2). The initial purpose of this investigationhas been to investigate the difference in the mean characteristics of the threetypes of echoes without further stratification and to apply statistical teststo determine the significance of these differences. T,he six variables de-scribing each echo have been stratified by echo type and analyzedwith respect to the best fit distribution by means of a program [15] com-paring the fit of nine different distributions to the data. In the majority ofcases, on each day and for the combined days, the raw data follow eithera log-normal, or gamma-like distribution. These are heavy tailed distribu-tions which are skewed to the right, that is, there are many more small thanvery large values. Both the raw data, and the natural log transformed datadifferences are tested for their significance. The log transformed data areapproximately normally distributed because of the near log-normal characterof the untransformed distribution.

2.4 Preliminary Discussion of the Three Selec ted Days

Three summer days have been chosen, mainly on the basis of data quality,to investigate the duration, rainfall and area characteristics of radar- echoes.The dates are July 1, August 4 and July 17, 1973, in order of descendingwhole-day rainfall over the study area. The synoptic and mesoscale situations

OOT

898TvT

££'91

LO'IIP6'ZZ£'Z

001

£sLZOZ

t8ZLS'I

L9LZ8

998Zt1)91£

(tUr}() !1:1lV

oor

9"r

8"8

9"68

L'8U

L'£

OZ~OZ

J1!1°.L

1;J81;JW1;JplO-pUZ1;J81;JW 1;JplO-1S1

oq:);J ;Jj8U!S

(EWI.Ol)U!1!~':J:JV %%%laqwnN

UO!IDUlUIns aldUiDSalnu!w-s- S,cDU E .lallO pa3D.lallV llDfU!D?f palD/nUlnJ.JV ID10.[ PUD Da.lV '.laqUinN. I ;}1911j,

'JU~W-~JeJS.I~pun Jq'J!IS e ~lP. S~n{11A ~qJ '(SJ~~J~W J~pJo-pUO:>~S Z jO ~se:> ~qJ U!

Jd~:>x~) p~pnI:>u! ~Je ueds~j!I ~J!Ju~ J!~qJ ~u!lnp p~){:>eJJ ~J~/t\ q:>!q/t\ s~oq:>~~soqJ AIUO ~:>U!S 'AJO~~Je:> q:>e~ U! s~oq:>~ jO J~qwnu ~~eJ~Ae ~qJ S/t\oqs pue

'IIejU!eJ AI~P IeJoJ OJ pue IIeju!eJ Aq p~J~AO:> e~Je IeJoJ OJ AJO~~Je:> oq:>~q:>e~ JO UO!Jnq!lJuo:> AI~P ~~eJ~Ae ~qJ jO UO!JeW!Js~ ue sJu;)s~Jd I ~Iqe.i

'z pueI s~Iqe.i U! u/t\oqs ~Je sJInS~J I{11J~AO Jo[ew 'SJ~~J~W ou pue IIejU!eJ IeJoJ~qJ Jo %L Jnoqe jO ssoI p~Jew!Js~ ue qJ!/t\ sw~IqoJd oq:>~ ~sIej pue euu~Jue

OJ ~U!/t\o pu~ q:>e~ Je sJnoq O/t\J Jnoqe Aq p~Je:>uruJ se/t\ po!l~d APnJS~qJ V Js~nv uO '.is. 000Z-6I Jnoqe OJ (.i~ OOfI) .is. 0080 JnoqeAI~weu '~I:>A:> J~/t\oqs IeUJn!p ~qJ jO pu~ ~qJ OJ ~U!UU~~q IeWJou ~qJ WOJj

p~Ju~wn:>op s~!JJ~doJd J!~qJ pue 'p~){:>eJJ ~J~/t\ s~oq:>~ 'P~J:>~I~S sAep ~qJ uO

AIUO laAa'l Ja&'Jaw Aq pa!J!JRJJS sJ{nsaH IJRJaAO of

'paufwt!xa aq o~ suoseallol '8Ufpaas 3.:)V d aq~ lol At!p {t!~uawfladxa alqt!~fns t! st! pa~~alas St'M

'L I Alnf AlaUJt!U 'At!p ~saflp aq~ AJUO ~t!~ Aq~loMa~ou sf ~I 'passn~SfP aq IIrMs~f~sfJa~~t!lt!q~ oq~a uf put! suof~fpuo~ 1t!~f8010loa~aw Uf sa~ualallfP 'la~t!l'IIt!luft!l aAf~~aAuo~ t!PfJold q~nos 10 s~f~sfla~~t!mq~ It!laua8 aq~ At!ldsfP o~paufqwo~ uaaq aAt!q t!~t!p AJO"~sfq oq~a a~ 'saf~fJt!lfUIfS asaq~ 10 MafA uI

'sf,.t!p ;)q~ 10 q~t!a uo maddt! sla8law laplo puo~as pUt! 'SJa8law laplo

~SlY 'saoq~a a{8ufS 'uoowa~lt! put! 8ufwowa~t!1 aq~ 8ufJnp SJn~~o A~fAf~~t!aAf~~aAuo~ uf wnwfufw t! 'SJa~t!M 8UfpUnOJJns a~ laAO '.LSl O£8 I put!

O££I uaaM~aq t!lnsufuad aq~ laAO Sln~~o f,.~fAf~~t! IIt!lUft!l 10 wnwfxt!w Vuof~t!ln~lf~ azaalq t!as a~ Aq paZfut!8lo sf IIt!luft!l aAf~~aAuo~ 'f,.t!p a~ 8uflna

'[LS] [_~as w S"L put! S'Z uaaM~aq sf paads PUfM aq~ 't!dq OOS o~ dO

"aAoqt! ~q8faq ~fM 8uPI~t!q pUt! slaAt!1 JaMal aq~ Uf 8ufJaaA q8no~ '~st!aaq~ woll AIIt!laua8 alt! SPUfM aq.L 'punol sf uofSJaAuf a~t!llns 8ufwOW f,.lma

It!~fdf,.~ V 'slaAal alPpfw put! Mol aq~ uf ~uasald a8pfl t! q~fM paqln~sfP lOUpassalddns laq~fau alt! suof~fpuo~ ~t!q~ a~t!~fpuf s8Ufpunos (awf.L plt!pUt!~S1t!~01 OOLO) .LJD OOZ I aq.L 'SAt!p asaq~ uo s~~adsal It!laAas Uf It!lfwfs aJt

Sl;)51;)W snrnwn:> UO 6

Joanne Simpson et at.10

Table 2. Combined Days -Properties of Unmerged and Merged Showers

Standard Deviation Standard ErrorMeanSingle echoes (615 cases):

Duration (min)Mean area (krn2)Max. area (krn2)Acc. rain (105 m3)Mean rain (105m3)Max. rain (105m3)

Depth (cm)

23.522.240.9

3.380.280.59

0.950.901.67

.14

.01

.02

243144

1

4.8615.4024.252.590.210.31

First order mergers (60 cases):

Duration (min) 58.4Mean area (km2) 183.5Max. area (km2) 266.6Acc.rain(105m3) 14.7Mean rain (105m3) 1.4Max. rain (IOSm3) 2.2Depth (cm) .07

Second order mergers! (11 cases):

Duration (min)Mean area (km2)Max. area (km2) ]

Acc. rain (105m3)Mean rain (105m3)Max. rain (105m3)

Depth (cm)

37.7119.3187.820.7

1.62.4

49.7697.3

1040.3434.0

12.817.9

14.98210.26313.66131.0

3.875.40

132.5851.8[415.3

302.09.5

17.211

Underestimates, see text.

..The total area was derived from the numbers in Table 2 by multiplying themean area (km2) by the mean duration (min) by the mean number of echoesin that category and dividing by 5. The area had been recorded at5-minute intervals and is then summed approximately every 5 minutes. Thisis a rough estimate of the total area covered per day. Single echoes and first-order mergers contribute similar proportions of total area and of total rain-fall. The total accumulated rainfall was derived simply by multiplying themean accumulated rainfall, summed every 5 minutes, by the mean numberof echoes in each category. Second-order mergers contribute about 68%of the rainfall during these 3 days and account for 53% of the area coveredby echo. The outstanding result is that 86% of the rain volume fell frommerged systems (first or second order) while only 14% was produced by non-merged showers; echo area is 80% produced by mergers. The opposite is

.2

.9

.5.13

.14

.26

.05

'j,S'1 00£1 }~ (zill)[ 90(:)

~al~ pu~ ([wsOI x Z£'I) OSZI }~ gu~ad n~JU!~l q}!:JI\ (j,WD SZLI)

j,S'1 S I Z I }~ Sln~~o sq}aldos! I-Jq-WW I Jo laglaw aqj, 'z og!d U! pa}uasald

S! lP.p~l LS-"MSM aq} Aq pa}~!dap s~ laglaw laplo }Sl!J ~ Jo aldw~xa uy

'~aw aq} wall AlaP!M

ssal a}~!Aap salq~!lP.A laq10 aq} pu~ 'san~A ~aw aq} u~q} lagl~1 al~ q~!qM

SUO!}~!Aap Pl~P~}S aA~q u!t!g~ sa!}ladold n~JU!~l aqj, .oq~a a~U!s aq} Jo

asoq} ~q1la}~a~ apm!gu~w Jo laplo u~ al~ Wa}SAS laglgW 19p1O }Slg ~ JoS~!}S!lg}~~l~q~

n~JU!~l ag~lgA~ aqj, 'oq~a a~u!s ~ Jo asoq} u~q} aA!SUa}Xa alOW X!S Jo

lO}~~J ~ q}oq al~ s~al~ wnW!x~w pu~ ~aw aqj, °oq~a a~u!s ~ Jo }~q} a~!:JI\}

'lnoq auo Jo UO!}~lnp ~aw ~ aA~q O} punoJ S! laglaw laplo }Sl!J aqj,

'slaglaw laplo puo~as I I u~ laplO}Sl!J 09

'saoq~a a~U!s S I 9 wall paA!lap al~ s~!}s!la}~~l~q~ oq~a ag~laA~ aql

'Alap!M AlP-A pu~q laq}O aq} uo sa!}ladOld n~JU!~l aqj, 'sanl~A ~aw aq1

u~q} ssal alP. salq~!l~A ~alP. pu~ UO!}~lnp aq1l0J SUO!}~!Aap plP.p~}S aqj,

°san~A lagl~1 aq1 Pl~MO} paMa)[S 'Uo!}nq!l}s!p pal!t!} AA~aq ~ Aq }!J }saq S!

salq~!lP.A aA!}d!l~Sap X!S aq} JO q~~H ° [w sO I x £ I' I 'n~JU!t!l pa}~lnwn~~~

ag~laA~ aq} p~ '[w sO I x St'O S! po!lad a}nu!w S ~ laAO pa}~~a}u! I~J

-U!~l u~aw ag~laA~ aqj, 'pasodw! S! z ill)[ L' £ I JO Ploqsalq} ~al~ wnW!u!W

~ }~q} palaqwawal aq }snw }I ° zill)[ S'tt '~al~ wnw!x~w pu~ 'zW)[ Z£ S!

~al~ ~aw ag~laA~ aqj, o[LZ] ~}}~g pu~ [L] UffiqRlg pu~ SlaAg Aq sa!pmS

la!lma q}!:JI\ }UalS!SUO~ S! q~!qM 'sa}nu!w tz S! u~ds aJ!1 agRlaA~ aq} }~q}

punoJ S! }! 'z alq~j, U! oq~a algU!S aq} JO sa!}ladold u~aw aq} gU!U!UffiXa uI

°SA~p paU!qwo~

aq1l0J Wa}SAS JO adAj q~~a JO aldw~s aq} uo ~}~P Aa)[ aq} SaA!g Z alq~j,

'paglaw %0 I

}noq~ AluO pu~ paglaUlUn alaM %06 AIlP.aU }~q} U! 'Slaqwnu oq~a Jo aru}

.iJD SZLl10 .is! szzr~1!srnJJO (UA\Oqs srno~uoJ 11!p1!1 a~Jo AU1! o~ SUJPuodSallOJ ~Ou) ~ajdosJ I_lq UlUll a~ Jo

laSlaw aq.i "l1!p1!l LS-~SA\ a~ Aq pa~JJdap S1! laSlaw laplO ~SlU 1! JO ajdUl1!xa uY"Z "SJd

9ZPL ZLPL 69EL E9EL

£J 6) rtj) r;rtj)09EL OPEL PEEL 6ZEL

@ ~ (j) f9;SlEL

~Lt£L

~iSl 9 ~ z

D()W'I £6

LL£L

~~, !illU 9 ,

EL6l '17 lSn9nV 'H39H3W H30HO lSHI:! V

S13813W snrnwnJ UO

Joanne Simpson et aI.12

In the example of a second order merger outlined in Fig. 3, it is easier toenvision the evolution of cell interaction. The total estimated rainfall derivedfrom this second order merger which began at 1230 LST (1730 GMT) is368.8 x 1 OS m;1. The 5 minute rainfall maximum, 20.5 x 1 OS m3, occurs at1335 LST when the system also reaches its largest areal coverage, 2068.3 km2At 1545 LST, this system remerges with 2 other second order mergers tothe west.

The duration of the average second order merger is presented as 132.5minutes (Table 2). This is an underestimate of the actual echo life span,as the data for 2 of the 11 second order mergers were truncated at 1930 LSTwhen the radar digitizer was shut off for the day. A particularly largesystem on 1 July 1973 which lasted for more than 4 hours was artificiallyterminated two hours prior to complete dissipation. The maximum in rain-fall and areal coverage appear to have occurred within the first two hoursof its existence. On 17 July a small system which had been in existence for3 hours was terminated 45 minutes early. The mean duration for the secondorder merger should be approximately 150 minutes. The mean area andmean 5 minute rainfall are overestimated, and the accumulated rainfallfor the second order merger is underestimated by perhaps 15 percent [65].Nevertheless, it is clear that the average second order merger extends over4 to 5 times more area than the first order merger. In a 5 minute period,8 to 10 times more rain is yielded by a second order merger. More than anorder of magnitude difference is found between its total rainfall and thatof the first order merger.

Three statistical tests have been applied to the data and its log transforma-tions. The F test is applied to analyze for differences in variance. At aprobability level better than 0.001, the variances of all tabulated propertiesare different for the single echo and first-order merger. Except for duration,the same result holds for first-order versus second-order merger. This resultmeans that to test for differences in means, we must use the modified t orWelch test which allows for different variances between samples [56, 63].This test shows that for the means between single echoes and first-ordermergers the null hypothesis (that the means do not differ) can be rejectedat probability levels of 10-7 to 10-11. In comparing mean values for firstand second-order mergers, the probability level ranges from .012 for maxi-mum rain to .0004 for duration.

Since the data are skewed and thus far from normally distributed, theseresults need confirming with similar tests on a log-transformation, whichrender the distributions very nearly normal. The F test shows that whenthe data are transformed, the variances of the area and rainfall propertiesof single and merged echoes satisfy the null hypothesis, i. e. they can beassumed equal, as is the case comparing first and second-order mergers.

IJa O£L I lO IS! O£ZI JI1 p~lln:J:Jo l~gl~W

I~plO-pUO:J~S 'll1pl1l LS-~SA\ ~q:I Aq P~J:Jfd~p SI1 l~gl~W l~plO puo:Jas 11 Jo ~Idumx3 '£ ,gfd

9179Ll£9L

titZL9L

£:f:-~ ~..

lYC)

9E;9t

~0O9~Bv9L

~ll9~

&°;2)

~t!:?

909l()VvL 6vvL~S 90v L

OL9L

i(g)3f;9ZvL

~ ljj>0 SLVL

i~1ffJ ti~

9L£L

@)

'~r9lZL

o@"".P'

~

Ov£t

~!4

8l£L() ,J

L£lL

~@ oO~oQ

lO£~

"~0i~~i;~1~1 Z ~ ~ ~

d>@ 0

Of)

w~ C'6

!wu-S

OSZl

.c ~~~ r...

~(9a

£L6 L 'tllSn~n'v' 'iN31SAS 03~H3iN H30HO ONO:J3S 'v'

Sl;lgl;lW snrnwn3 uQ

Joanne Simpson et al.14

A graphical type of "analysis of variance" is presented for the untransfonneddata in Fig. 4. Plotted are the sample means, plus or minus 2 standard errorsfor the single, merged and doubly merged echo systems. These dramaticallyillustrate the difference in the means of the three population samples.Similar graphs (not shown) were plotted for the log transfonnations, withsimilar results.Actual one-way analyses of variance calculations were also perfonned usingthe transfonned data (since the test assumes equal sample variance). Themeans of all the echo characteristics for each echo type differ to a p levelbetter than 0.001. The duration is again the least significant variable.'Since the means (but not the variances) differ significantly for the log-transfonned data, it can be concluded that the differences in populationmeans are multiplicative rather than additive (when logarithms of numbersare added, the numbers are multiplied, so a scale difference in the log trans-fonn of a variable implies a multiplicative difference in the untransfonnedvariable). In other words, there is a synergistic increase in precipitationresulting from the more organized convective systems. The difference induration means, however, seem additive perhaps because several of thedouble mergers were artificially truncated.Comparing the rainfall depths per echo we see that they also increasewith merger level but only by about a factor or two (between single echoesand second-order mergers) rather than an order of magnitude.

4. Results Stratified by Day and Merger Level

4.1

Characteristics of the Three Days Studied

According to the half hourly sample, August 4 yielded about double andJuly 1 triple the total amount of rainfall produced over the area on 1,. July.There were also differences in the 0700 LST (1200 GCT) soundings, in thetime, location and intensity of convective activity and in cirrus coveragebetween and three days, which are summarized briefly.July 1: This was an ideal seabreeze day, although showers developed toolate for the FACE experiment. The University of Virginia Mesoscale Modelreceived intensive successful testing on this day, as reported by Pielke andMahrer [46] who also show the synoptic charts and soundings. At 0700 LSTthere was drying between 900 hPa and 700 hPa, and above 500 hPa. Theprofile of 6e showed the convectively unstable lower portion of the cloudlayer (hereafter called "lower cloud layer") to extend to the 785 hPa level.Both 17 July and 4 August were more convectively unstable. The windswere light on 1 July, at 2.5 m sec-l or less up to 700 hPa increasing to7 m sec-l at 500 hPa, and vacillating between 2.5 and 7.5 m sec-l

16 Joanne Simpson et at.

above. The winds veered from 3600 at the surface to 800 at 500 hPa, backedto 3050 at 400 hPa and again became more northwesterly above.There was little echo activity until 1400 LST, with a large system developingafter 1630 LST due west of Miami. A maximum of rainfall occurred overthe peninsula at 1800 LST. This was the wettest of the 3 days, though the0700 LST sounding indicated the most suppression.Small variable amounts and thicknesses of cirrus were reported along theeast coast of Florida from 0700 LST (1200 GCT) on. No cirrus was foundon western portion of peninsula. Satellites showed little cirrus over t~e peninsulasouth of Lake Ok~echobee up to 1500 LST, increasing to about 50 percentcoverage by 1604 LST particularly in northern part of the area. No mergersoccurred after about 1600 LST. The northwest winds aloft blew earlymorning coastal cirrus out to sea. The cirrus which covered the northern partof the area by late afternoon consisted of blow-offs from a cloud clusternorth of Lake Okeeschobee.July 17: This day, the only one of our three selected for the FACE experi-ment, had relatively strong upper winds, producing substantial cirrus anvilcoverage by midafternoon. In testing the University of Virginia MesoscaleModel on this day, Pielke and Cotton [43] present the synoptic situationand model results. They show that feedback from active convection, cirrusand rain had some effect upon the seabreeze convergence patterns. The 0700LST moisture profile indicated there was drying around 850 and 600 hPa.The 8e profile showed the lower cloud layer reached to 585 hPa, and that17 July was slightly more convectively unstable than 1 July. The winds werelight, 3-4 m sec-l up to 500 hPa, with a steady increase of speed up to16.5 m sec-l at 200 hPa. The winds veered from 360u at the surface to 950at 850 hPa,'-and became more north-easterly above.Relative to the other FACE 1 days of 1973, an average amount of rain fellon July 17 though it is the least convectively active of the three days studiedhere. At 0800 LST a second order merger was already present south of theFlorida mainland which dissipated at 1100 LST and was not included in theecho-history analysis. Two other second order mergers occurred over theAtlantic late in the afternoon. These were the only two which occurred overwater during the three study days. Convective activity began over thepeninsula at 1130 LST, with a maximum at 1530 LST and a substantialdecrease in activity over land at 1730 LST.Cirrus was reported at 1000 LST along the east coast of Florida. Both theMiami 1200 and 1800 GCT (0700 and 1300 LST) soundings show strongnortheast (10-15 m sec-l ) winds from 400 hPa up. The DAPPS satellitepicture (Fig. 8) showed the southeastern quarter of the area covered byanvils by 1237 LST. The A TS satellite series showed the area virtuallyentirely cirrus covered by 1445 LST; however comparison with aircraftand ground photographs from the FACE 1 project showed this satellite

6-J oR '66 °PH °V "[,!O!H °qdo"D °'l"W °qOJV 6

'URjU!Rl {1!~0~ aq~ jO ~ua~lad£'89 pa~npold pUR 'saoq~a Aq palaAO~ R~lR aq~ jO ~ua~lad I '09 pas!ldwo~Sla~law laplo puo~as wall ~u!~InSal saoq~3 .AlO~a~R~ oq~a a(B'U!s aq~ jO

asoq~ o~ aIqRlRdwo~ alaM spo!lad a~nu!w S Apnoq j{1!q aq~ U! paplo~al UO!~-R~!d!~ald pUR a~RlaAo~ {1!alR {1!~0~ l!aq~ ~nq 'slaqwnu JaMal U! punoj alaMsla~law laplo ~Sl!d 'paIdWRS URjU!Rl {1!~0~ aq~ jO ~ua~lad I '9 I ~U!PIa!A pUR

'saoq~a q~!M RalR aq:ljO ~ua~lad 6' I l ~u!laAO~ 'saoq~a jO laqwnu {1!~0~ aq~ jO~ua~lad 8'99 dn apRW saoq~a a(B'U!s 'AInf I uo .is. 0£6 I pUR 0£80 uaaM~ag

,(£ aIqR.i) SSRI~ oq~a q~Ra Aq URjU!Rl aIdwRs IR~O~aq~ o~ uo!~nq!l~uo~ ~ua~lad aq~ pUR 'adA~-oq~a UR Aq a~RlaAO~ oq~a IR~O~ jO

~ua~lad aq~ 'AlO~a~R~ q~Ra U! saoq~a jO a~R~ua~lad aq~ 'ARP lRIn~!~lRd R UopaldWRs saoq~a jO laqwnu {1!~0~ aq~ alR alaq pa~uasald 'lnoq jlRq auo AlaAapa~ou uaaq aARq a~RW!~Sa URjU!Rl a~nu!w S pUR RalR 'UO!~R~OI 'adA:}-oq~a

l!aq~ 'RalR Apn~s aq~ U! saoq~a jO laqwnu aq~ 'SARp aalq~ aq~ jO q~Ra lad

s,{va,{q sl/nsa"H VIva pawwns ,{/JnoH-J/vH 'l'p

"UOOwa~JB a~BI I..q Sn.J.I!:> JO pBaJds aq~l..q paqS!U!W!P I..I~BaJS uaaq aABq I..BUIq:>!q/t\ a:>UaSJaAUO:> aZaaJqBas aq~ UBq~ Jaq~BJ a:>UaSJaAUO:> aU!1 JBaqs aq~ I..q

pasodU1!ladns aJa/t\ .is. 0£9 I -O£~ I uaa/t\~aq paJJn:>:>o q:>!q/t\ O/t\~ aq~ ~Bq:J

alq!ssod S! ~I" .is. O£~I-O£tl u~a/t\~~q p~JJn:>:>o SJaSJaUI OU 't ~sn8nv UQ

"[ZtJ .is. OO~II..q B~JB ~q~ JO ~SOUI paJ~AO:> Sn.J.I!:> UIn!p~UI O~ U!q.i " .iJD 008 I I..q p~SB~J:>

-ap SPU!/t\ J~ddO l~A~1 Bdq OOZ ~q~ I!~un aSB~J:>U! ou pa/t\oqs spu!/t\ .iJDOOZ I !UIB!W ..is. OOZ I I..q BlnsU!u~d ~q~ Jo B~JB p~!pmS aq~ Jo q~Jn°J-~uo ~noqB

p~J~AO:> snqU1!uolnUIn:> ~U!I m~qs q~!/t\ P~~B!:>OSSB ~S~/t\q~JOU pUB ~sa/t\ O~SJJo-/t\°lq Sn.J.I!J "BlnSU!uad aq~ J~AO .is. OOL I ~noqB ~B UO!~BU!UJJa~ B pUB

, .is. OOt I ~B UInW!~BUI B q~!/t\ ' .is'l O£Z I ~B ~SBaJ:>U! O~ UBS~q 1..~!A9:>B oq:>H

"~AOqB I..p~~SB~ p~U!BUIaJ pUB 'Bd1J OO~ ~B 006 o~ ){:>Bq '00£1 o~ oOZI UIQJJ'Bd1J 0~8 o~ ~:>BJJnS aq:J UIOJJ 1..1~q8!IS p;}J~~A SPU!/t\ aq.i ' J _:>~S UI ~'t I Jo

Bd1J O~ I ~B UInW!XBUI B o~ ~AOqB paSBaJ:>U! pUB 'Bd1J O~Z 6~ dn J-:>~S UI L pUB

~'Z uaa/t\~aq '~lqB!J1!A aJa/t\ SPU!/t\ ~q.i 'Bd1J O~~ SU!q:>B~J J~I..BI pnol:> J~/t\°lB q~!/t\ '1..lnf JO q~L I JO ~S I ~q:J J~q~!~ UBq~ alqB~sun I..I~A!~:>aAUO:> ;}JOUI q:>nUI

~q O~ ~snSnv t p~/t\oqs ~IYOJd ae ~q.i 'Bdq OO~ ~AOqB aSBaJ:>ap ~SJBI B q:J!/t\'Bdq 0~9 O~ dn aJn~S!OUI JO ~UnOUIB alqBJ~P!SUO:> B p~~B:>!PU! SU!punos (.iJD

OOZ I) .is. OOLO aq.i "UO!~Bln:>J!:> aZaaJqB~s ~q~ uo paSOdUI!l~dns (SasI..JBUB

JBUO!~U~AUO:> I..q ~lqB~:>a~~p ~OU) ~U!I m~qs ~JB:>s-:>!~doul..s p~~U~!l° ~sa/t\q:Jnos-q:Jnos O~ ~SB~q~JOU-q}JOU B p~JBaAaJ [ZtJ UO!~BUJJOJU! ){Jo/t\~au ~:>BJJnS pUB

I~POUI '~~!n~~BS '~JBJ:>I!B SU!sn I..Bp SJ"q~ JO UO!~BS!~S~AU! p~J!B~~a :t ~snSnv'p~J~AO:> Sn.J.I!:> I..UABaq SB/t\ q:>!q/t\ 'B~JB ~q~ JO

SPI!q~-O/t\~ UJa~sB~q~nos aq~ J~AO p~JBaddBSW I..IJBn~J!A pBq sooq:>~ ~A9:>~AUO:>aUI!~ S!q~ J~~JB OSIV " .iSH Ot~ I Ja~JB p~JJn:>:>o BlnsU!uad ~q~ JaAO SU!8JaUI 0 N

"SnlnUIn:> pUB Sn.J.I!:> U~~/t\~~q qS!nSU!~S!P O~ ~JnI!BJ O~ anp 1..[~U~JBddB'SI..Bp I..pn~s ~aJq:J IJB UO S~SBJaAO:> pnol:> pa~BJ~SSBX~ I..pB~J'B f..JaSBUI!

sJa8J~W snlnwn;>uo Ll

18 Joanne Simpson et at.

Table 3. Half Hour Data Sample Results by Days

Area (km2)Amount

Rain (105m3)Amount %% %

6973.25199.9

18367.730540.8

22.817.060.1

100.0

75.373.05

320.0468.35

25.334.540.2

100.0

72.119.18.8

100.0

11408.29871.55

10214.6

31494.35

36.231.332.5

100.0

40.455.264.2

159.8

Echo-type EchoesNumber

1 July 73 (0830-1930 LST):Single 1251st order merger 212nd order merger 41Total 187

17 July 73 (0800-1930 LST)Single 2711st order merger 722nd order merger 33Total 376

4 August 73 (1030-1730 LST)Single 2191st order merger 692nd order merger 48Total 336

11058.311418.527227.349704.1

22.223.054.8

100.0

40.362.9

218.4321.6

12.519.667.9

100.0

65.220.514.3

100.0

On 1 July, only 187 echoes were observed, compared with 336 on 4 Augustand 376 on 17 July. The proportions of areal coverage and rainfall yieldcontributed by each echo-type were quite similar on 1 July and 4 August,the two largest rain producing days. August 4 was sampled from1030-1730 LST.The half hourly data results reveal that single echoes played a larger rolein rainfall pr0ductio~ on drier 17 July, than on. either wetter 1 July or4 August. Single echoes on 17 July (1) were found in larger nQmbers,(2) covered the largest proportion of area and (3) contributed the greatestpercentage of rainfall. The proportion of echo coverage and rainfall yieldwas most evenly divided between the 3 echo categories on 17 July, the dayleast productive of rainfall. The half hourly sample on 17 July included thehours of 0800 through 1930 LST.On the wetter days, 17 July and 4 August, single echoes and first-ordermergers produced similar total amounts of rainfall, as well as coveringnearly the same total area. Second order mergers on 4 August, however,yielded more than 3 times more precipitation and covered nearly 3 timesmore area than on 17 July. The total echo coverage was smallest for eachecho category on 1 July, though the total amount of rain produced by singleechoes and echoes resulting from first and second order mergers was largeston this day, a feature which is clarified below.

16.115.668.3

100.0

66.811.321.9

100.0

.;;'~st?:) q:)t?~ uI 0 Alnf L I Aq P~""'°lIoJ s! wm U! q:)!q, '~sn~nv 17 Aq P~""'°lIoJ

'AJO~~~t?:) oq:)~ q:)t?~ U! U!t?J ~sU~~U! ~sOW ~q~ p~:)npoJd s~oq:)~ Alnf I

~t?q~ ~~t?:)!PU! Alm~l:) ~s~q.l... Alnf I Jo s~nlt?A ~q~ Jo ~u~:)J~d Of AI~~t?Ul!xOJddt?~J~, ~s~nv 17 uo ~soq.l .J~~J~W J~pJO pUo:)~s o~ ~~U!s WOJJ ~Z!s U! ~lI!st?~J:)

-U! '~S~~Jt?1 ~J~, Alnf I uo s~d~p lI!t?J Ut?~w ~q.l 'SAt?p f ~q~ uo ~u~s~Jd

A~!SU~~U! ~A!~:)~AUO:) U! ~:)u~J~JJ!P ~q~ ~Z!st?qdw~ J~qpnJ s~d~p Ut?~w ~q.l°q~~u~1 ~~t?J~At? Jo st?, uo!~t?Jnp J!~q~ q~noq~lt?

'~s~nv 17 JO Alnf L I J~q~!~ UO ut?~ U!t?J ~JOW p~:)npoJd put? 't?~Jt? J~~Jt?1 Jo~J~, (At?p ~s~~~~, ) Alnf I uo oq:)~ p~~J~W J~pJO ~SJ!J ~q~ put? oq:)~ P~~t?IOS!

~q~ ~t?q~ ~U~P!A~ AI~~t?!P~WW! S! ~! 'SAt?p ~~Jq~ ~q~ Jo q:)t?~ UO s:)!~S!~t?~s f.Jo~S!qoq:)~ ~q~ ~U!""'~!A uI 0 AI~~t?Jt?d~s At?p q:)t?~ JoJ ~d~:)x~ 'z ~Iqt?l Jo s~olt?ut? ~Jt?

9-17 s~lqt?l put? t?~t?p p~wwns AIJnoq-JI'I1q Aq SAt?p f ~q~ S~Jt?dwo:) f ~Iqt?l

tfvU tfq sJ/nsaN a/dUlvs If.ioJS!H ol{.J:![ Eop

-L.I£L.tZ

.8£8

.OItI

.6tIIL.£t

1xa1 a;)8 'pa1~U!UUa1 AI{l!!J9!11~ la81aW laplO-pUOJaS aUa I

Z6I' (WJ) tpdaQ

L'~Z ([WsOI) U!Rl'XI1W

Z'LI ([WSOI)U!~llJ1!aw

'OP~ ([WsOI) U!Rl 'J:JY'OPZI (tUJ:JI) ~al~ 'XUW

L'~68 (tUJ:JI)~aJe u~aw

L"9I I (u!W) UOn~lnQ

:(sas~J £) Isl;l81aw laplo puoJas

PPI" (WJ) tpd;lQ

~O"~ ([WsOI) U!~l "XUW

O~'£ ([WsOI) U!~l U~;lW

L'9Z ([wSOr)U!~l'JJY

~8"IP£ (tUJ:JI)~aJe 'XI1W

P"£PZ (tUJ:JI)~al~uBaw

~8'£P (U!w) UOn~lna

:(S;)8~J zr) Sl;l81;lW l;lplO 1S1!d

6r£6rZ

v"6Z

6"91Z

S"9Z1

£"1£

(lli:» ~d~a(Elli~or) U!el .xew

(Ellisor) U!el ue~w(Ellisor) U!1!l .:>:>v

(zill}[) e~Ie 'X1!W(zill}[) e~le ue~W

(U!lU) UOj1elna

(s~se:> zzr)s~oq:>~ ~I'BU!S

[6()'

v69"v9£"

~O"£6"6~

['Ov~~"9Z

-

Lr'r9£S'LL'9O'Z9O'Z£P'£t

UE~W UO!~1!!AO}a pl1!pU1!~S

saolJ.Jg pa3.1aUlUn PUD pa3.1aw jo sap.lado.ltf -(lSanaM) EL6 [ ,(tnr [ 'v alq1!.L

Sl~Sl~W SnrnWn;) UO 61

Joanne Simpson et al.20

Table 5.17 July 1973 (Driest) -Properties of Merged and Unmerged Echoes

Mean Standard DeviationSingle echoes (243 cases):

Duration (min)Mean area (km2)Max. area (km2)Acc. rain (105m3)Mean rain (105m3)Max. rain (105m3)

Depth (cm)

29.3530.3543.0

.867

.098

.166

.032

27.020.437.2

1.60.120.221

First order mergers (21 cases):

Duration (min) 67.95Mean area (krn2) 159.3Max. area (krn2) 228.3Acc. rain (105m3) 13.9Mean rain (105m3) .830Max. rain (105m3) 1.31Depth (cm) .052

Second order mergersl (4 cases):

Duration (min) 115.5Mean area (km2) 622.2Max. area (krn2) 789.75Acc. rain (105m3) 109.0Mean rain (105m3) 4.02Max. rain (105m3) 6.46Depth (cm) .065

lOne second-order merger artificially terrilinated.

37.9133.1182.7520.0

.9751.46

59565599119

35

the mean depth of the rain produced by the single echo is 40 to 50 percentthat of the second order merger, and the mean rain depth from the firstorder merger is 67 to 80 percent that from the second order merger.It is important to note that the number of single and first order mergedechoes of 1 July was approximately half that found on each of the otherdays. It appears that wetter days are characterized by fewer, larger echounits. Ulanski and Garstang [61] have shown a similar difference betweenwet and dry seasons in a smaller portion of the same area.Within each day, the same statistical tests were performed as for the com-bined days of Table 2 with essentially the same results (for details see [65]).The differences in rainfall means between single echoes and first-ordermergers are significant. Only on August 4, which has the largest sample ofboth merger types, are means significantly different between first andsecond-order mergers.

.6

.3.1

.0

.82

.16

JO s:)I~Spa~:)BJBq:) IIBJUIBJ pUB BaJB UBaW aq.L '1:' ~s~nv JO I AInf Jaq~Ia

uo UBq'J Ja~Ba.I'B aJB oq:)a pagJaw JapJo ~SJIJ aq~ pUB oq:)a a(3U!S aq~ q~oq

JO UO!~BJnp UBaW aq.L ,(S aIqB.L) guIIBaAaJ aJB S:)!~S!~B~S AJO~S!q oq:)a (~uaw

-padxa 3:)Vd aq~ JOJ guIAJ!IBnb ABP AIUO aq~) AInf LI aq~Jo S~InSaJ aq.L

.saI~JadoJd

oq:)a £ asaq~ JOJ SJagJaW JapJO puo:)as aq'J pUB ~SJIJ aq~ JO SUBaW aq~ UaaA\~

-aq a:)uaJaJJIP aAI~B:)IId!~InW B SI aJaq.L .s:)I~Spa~:)BJBq:) oq:)a JagJaW JapJO

puo:)as aq~ JO aIqBIlaJ ~SOW aq~ aJB asaq.L '~UB:)gIugIS aJB UBaW UI sa:)uaJaJJIP

IIBJUIBJ a~nuIw S WnWIXBW pUB pa~Blnwn:):)B 'BaJB WnWIXBW agBJaAB

aq'J '~sa~ J ~uapn~s aq~ O~ pa~:)arqns aJB B~Bp pauuoJsUBJ~-goI aq~ uaqA\

'~UaWaJ:)uI aAI~IPpB UB guIgBJnO:)Ua AIdwIS

UBq~ Jaq~BJ 'JO~:)BJ B Aq IfBJUIBJ saIIdI~Inw gu~JaW -SABp U~~!A\ aIqB:)

-!IddB snq~ SI ~InSaJ ~uBpodwI sIq.L .aAI~B:)IIdI~InW aJB (UOI~BJnp JOJ ~d~:)xa)

s~!padoJd oq:)~ UI S~:)U~J~JJIP ~q'J ~Bq'J punoJ SI ~I 'SABp ~aJq~ lIB U!q~IA\

(W:» Ipd3a

(tWSOI)U!1!l"X1!W(tWsOI) U!1!l U1!3W

(tWsOI)U!1!l":>:>Y(tW)j) 1!311! "X1!W

(tW)[) 1!311! U1!3W

(UJW) UO!~1!rna

(S3S1!:> p) Sl3813W 13plO PUO:>3S

(w:» Ipd3a

(tWsOI) U!1!l 'X1!W

(tWsOI) U!1!l U1!3W

(tWsOI)U!1!l":>:>Y( t W)j) 1!3m 'X1!W

(tW)j) 1!311! U1!3W

(U!w) UO!~1!rna

:(S3S1!:> LU S13813W 13plO ~Sl!d

III.617"

91.fl.rp'

f.

8"01

Of"S

'ZOZZ"68L

Z'S17S

6"017

PLO"

SS"IS£S"

96"6S" 'l9'lL"SLIS"9S

-

Lt'l

fOL'

6'11I'SLI

t'866'Lf

(W:J) q-.d;)Q

(EWsOI) UfBJ "Xl1W

(EWsOI) U!t!J Ut!;)W

(EWsOI)U!t!J":J:JV

(tW)[) t!;)Jt! "Xl1W

(tW)[) t!;)Jt! Ut!;)W

(UJW) uopt!JnQ

(S;)S1!:J OSz) S;)oq:J;) ;)(a'U!S

SSPO'

9£1'P8Q'

SLSP'P"S£

S'SZ

L'LI

96[.00[.

£0.[9.LZv.9[LOL[

UOp\!!Aaa Pl\!pUl!~Sueawsaol{:JH

paa.laZUUn PUD paa.law]o sap.lado,#J -(ssauJaM iJJDJpauuaJu/) EL6 [ JSnanv '" '9 ~lq1!!

Sl:l81:lW snrnwn:) UO IZ

[Z6

9[£S9[Z8W[

[9[

22

Joanne Simpson et al.

these two echo-types are larger than on 4 August, though of comparablesizes. The accumulated rainfall values of the single and merged echoes arealso larger on 17 July. The maximum area and rainfall properties are larger,however, on 4 August. Duration is a critical factor in the larger accumulatedrainfalls of 17 July. Second order mergers are considerably smaller than oneither I July or4 August.The most important result of this section concerns the relationships be-tween echo merger and rain production, which goes up with organization.July I was the rainiest and most convectively intense of the 3 study days,though it appeared to be the most severely suppressed at 0700 LST(1200 GCT). Rainfall activity began and ended later in the day than oneither July 17 or August 4. Fewer but more intense echoes of each echo-type were found. The echoes are of average duration, as compared with17 July and 4 August. Both the average area and rainfall characteristicswere larger for single and first order merged echoes, and the mean rainfallof the second-order mergers was also larger than found on the other twodays.Single echoes developing on 17 July were of longer duration than singleechoes on I July and 4 August, and contributed a larger proportion of thetotal rainfall on this day which was least convectively intense. The singleechoes on I July, however, were larger and more intense. The percent echocoverage and total rainfall contribution was rather evenly divided amongthe 3 echo types on July 17.On I July and 4 August, the larger rain producing days, 50 to 60 percentof the echo coverage is of echoes resulting from second order mergerswhich produce 68 percent of the rainfall. Single and first-order mergedechoes covered nearly the same percent of area and yielded the same pro-portion of precipitation on these two days. Both single echoes and first-order mergers played a iarger role in rainfall generation on 17 July; however,second order mergers still contribute the largest proportion of rainfall.,Statistical results further indicate that not only in combining the days,but also on each individual day, there is a multiplicative difference in areaand rainfall property means in going from single echoes to the larger moreorganized first and second order mergers.The differences noted here between organization on wet versus dry con-ditions have been supported by other evidence, to be cited in Section 7.Comparisons have been made of merger characteristics over the Floridapeninsula versus those over the surrounding waters. These results are re-ported elsewhere [66] together with a comparison of those echoes whichdissipate without merger versus those which merge. The relevant resultsto this study are that merging systems have, class for class, about 50-100percent larger echo area and 2-3 times the rainfall of nonmerging systems(the lower figure for single echoes; the high figure for first-order mergers).

ApmS QSB:) B uI 'lS. OOLI-O09I ~noqB ~B 3u!Z1W!~do 'SUOOWQ~JB Qq~ 3u!lnp

SQAOJdw! AIIBn~:)B SUo!~nq!l~SWJQA'!ooqs pUB SQUOZ Q:)UQfuQAUO:) PQ~:)!PQJd

UQQA'!o~Qq ~UQWQQJ3B po03 Qq~ ~Bq~ S! [9v 'Zv 'Iv] SUO!~BAJQSqO JBpBJ q~!A'!o

SUO!~:)!PQJd S~! 3U!lBdwo:) Jo s~InsQJ ~uB:)Y!u3!s ~sow Qq~ Jo QUO 'IQPOW Qq~

U1 SUO!SS!WO QSQq~ Q~!dsQa 'SQ!~!:)BdB:) QJn~s!ow pUB IBUJJQq~ I10S U! SUO!~B1JBA

pUB SI!AUB SnJJ1:) Aq QPBW Qq ABW SWQ~~Bd Q:)UQ3JQAUO:) uodn s~:)Bdw! JOfBW

~Bq~ lQPOW Qq~ JO' UO!SJQA IBU01SUQW!P-Z B q~!A\ UA'!ooqs SBq [OZ] UOUUB9

'UOP~!P~l

UO S~:>~JJ~ pnop pU~ s~5m!t{:> ~set{d ~:>u~~sqns l~~~M 's~s~:>Old snlnUln:> jO UO!SS~O (8

'PU!M :>!t{d01~so~5 ~tp jO UO!~:>~l!P pu~ p~~ds ~tp tpoq o~ ~A!~!SU~

~J11 s~lns~~ 'PI~!J ~mss~ld :>!~dOUAS ~tp tp!M 1~tp~50~ 5u!punos ~~tp Ul01j P~~UlJ~s~

s~ PU!M :>!t{d01~so~5 ~tp Aq pu~ ~PUOSO!P~l .LJD OOZI JlU1!!W ~tp Aq UOP~!~!UI (L

'p~pnpu! PU!M J1!~uoZJlot{ jO 1~~1lS J1!:>!~1~ A (9

'SUll~~ ~A!~:>~Ap~ ~~~ln:>J1!:> o~ p~sn pOtp~Ul ~U!lds :>!qnJ (S

's~xnu ~AP~!P~l ~A~M-~lO1lS pm!

-5uOI 5u!pnpu! '~~5pnq ~~~t{ Aq p~lq~u~ ~m~~l~dUl~~ ~:>~jms 10j uo!~~nb~ :>!~sou5~!a (t

'tpd~p l~A~1 A1~punoq 10j uo!~~nb~ :>!~SOU501d '~pm!~I~ pm! A:lmq~~s uodn

~u~pu~d~p s~u~P!JJoo:> l~jSU~l~ App~ tp!M 'UO!~~ZJl~~~lU1!l~d l~A~1 fupunoq p~I!~~a (£

'SUO!~~A~I~ Mol ~~ 1~tp~50~ l~Op '8 'SI~A~1 J1!:>!P~A (z

's~u!od 9£ Aq ££ '5up~ds UD[ 1 [ P!1'B J1!~uOZ!lOH ([

:QJB SQJn~BQJ IQPOW ~UBAQIQJ Qq~ 'uos!lBdwo:) ~uQJJn:)

Qq~ u1 PQsn SQZQQJqBQS BP!l°Id q~nos Qq~ Jo Suo!~BInw!s Qq~ JOd '[Sv 'vv '0£

'6Z 'II] U1BJJQ~ All!q 3U1pnl:)u1 'SBQJB JQq~o o~ PQ!lddB pUB PQ~SQ~ 'PQAOJdUl!

UQQq Q:)U1S SBq '[ 1 v] vL61 U! Q){IQ!d Aq PQdOIQAQP AIItJU18'1JO 'BP!l°Id q~nos

JQAO MOUJ!B Qq~ Jo IQPOW QIB:)sOSQW ~uQPuQdQP-Qw!~ ItJUO!SUQW!P-QQJq~ s1ql

(WWA/1) /apow a/lJ:Jsosaw lJ!U!.1'.l!A]o IfJ!s.lalt!u/1 al{J]o sa.lnjlJa,!! JulJlta/aH ['S"

.uOS!ll!dwo" ~q~ 10J [117 '0 £ 'I I '0 I] (WWAfl)I~poW ~Il!"SOS~W l!1U1811A Jo A~1Sl~A1ufl ~q~ ~sn ~A\ '~Iql!lnSl!~W AI1pl!~1

~OU s1 s"1~S!l~~"l!1l!q" PI~1J A~1"oI~A Jo ~Il!"S sM ~"u1S 'S~uoz ~"U~Sl~A.UO"

~Il!"SOS~W I~A~I-A\OI o~ SU01~l!"OI pUll s~Ul1~ l~Sl~W ~~l!I~l o~ s1 SU181~W Jo

s~ss~"old pUll JoJ su01~1puO" ~q~ pUll~Sl~pun o~ d~~s ~ul!~10dw1 uY '[2; I '8]S"1W1!UAP 11~q~ U1 s~8ul!q" p~snl!:)-~:JU~Sl~AUO" o~ OSIl! AIq1ssod ~nq 'spnoI"p~"l!ds AI~SOI" ~lOW o~ AIuO ~OU ~np '~"U~81~AUO" ~Il!"SOS~W Aq p~lOAl!JOSIl! S1 Su181~W ~l!q~ ~~l!Imsod ~h\ 'S~uoz ~"U~Sl~AUO" p~"np01d-~z~~lq

-l!~S ~q~ q~1A\ AI{1!"1~~10~q~ pUll [L I] AIIl!U01~l!Al~sqo P~~l!1"OSSl! u~~q ~Al!q

l!P110Id q~nos U1 Sl~A\OqS Jo q~A\o.tB pUll U01~l!WlOJ ~q~ 'SAl!p p~q1n~s1pun uQ

SUOS!JRdwoJ Iapow aIR;)Sosaw -8u!;)Jo~ J!aq.L pUR SJagJaw 'S

.suo!~~as OA\~ ~xau aq~ U! paU!WBXa aleSWS!UBq~aw laglaw pUB SlO~~BJ gU!~lOJ aql .U!Of O~ spnoI~ asnB~ q~!qA\ sassa

-~old {Bwa~xa aq~ pUB gu~law uaaA\~aq d!4suO!~BIal B s~saggns ~Insal s!4l

sl~81~W Sn{nwn;) UQ £Z

Joanne Simpson et aI.24

Table 7 .Model, Analysis andEchoMotion Parameters

Geostrophic wind Model start timeSpeed Directionm sec-1 degrees LST

July 1, 1973 4.3 120 1850 June 30July 17,1973 6.0 100 0640August 4,1973 6.2 135 0700

Analysis period Echo motion

LST

Date

0830-19300800-19300130-1730

no motionmotionmotion

of July 1, 1973, model-predicted moisture flux through cloud base levelprecedes the occurrence of rain by about 4 hours during morning and earlyafternoon, while fluxes and rainfall are more in phase in the late afternoon[46]. This may explain in part the apparent increased control with timeexerted on showers by model-predicted convergence. Also mechanisms forpositive feedback between convection and convergence have been proposed[.19,43].Table 7 gives information on model initiation, analysis periods and echomotion for the three study days.

5.2 Purpose and Method of Analysis

This analysis was designed to determine the degree to which mergerscoincide in time and space with updraft zones at 1.22 kIn elevation predictedby the University of Virginia Mesoscale Model. Updrafts are calculated fromthe predicted horizontal convergence by the continuity equation. Agreementis measured by the areal percent of merger echo falling within a hierarchy ofmodel-predicted vertical velocity isopleths. At each time the PEAKSprogram defined a merger event, the echo was traced on a scaled Florida mapfrom the projected PPI radar photograph. This map was then enlargee to thescale of the vertical velocity field maps generated by the model, on whichthe echoes were outlined. Each merger echo was plotted on the hourlyvertical velocity diagram closest in time to its occurrence. The percent ofeach merger echo within a specified vertical velocity range was determinedby the weight-area ratio method.

5.3 ResultsThe main results are shown in Figs. 5-7 and in Table 8. On July 17 andAugust 4, some mergers occurred over or downwind from the offshoreBahama islands, or over water. These are not treated by the model andshould be ignored in the comparisons. With this omission, the parentheticfigures in the right-hand column in Table 8 shows excellent coincidence ofmergers with model-predicted mesoscale ascent (regions with vertical

~a-cn<~ '-' '-' (D ., _.,.,...OQ --0 ~ .

~W~(DVI N~'" .~ .!...!..Q~o

Rj~~a~ O,~... '" - 0 (D'O

~ t""' ~ "'1; -ocn... -~ """' '"'i OQ -_.---(D _.,., N ---;h0'" c:.0- 0NOO~'2.~ -N...(D'"I -(D g.~N I '" '" 0N \O.a' ~ <ON'O-.~ C) 0 ...~ c:.C")C)~(D'" dC")' ~~-'"'i~~a (D,-, "'0 '-'- -0 -,., N ..., _.

0\'-'N008 N__,."" -I~ I a ~N- --W'"

--JI Ng~NO_O IN

VI _N

t""'Nt""'.~ cnocn~

'"'i '"'i-'

~~---a~ ,~ -0 -(D-"""'--J°<N---Na.~ ---(DC:.I \0 I ...0

NN-a~N-OON I N ~ 0'ONO08'"

~O '"'i'C5~~2',-,C)'"'i(D-<

("}:-'a- '"'i -- '-' ~\O -~--J.W

~Zsla81aw snynwnJ UO

n

'-c~0:0

co..., w

...'"

C.11'"0:0

f;; -.

26 Joanne Simpson et at.

Fig. 6 a-f

;}q prno:J';J:Ju';JP~:JU~O:J ;}q:J 'r';JpOW ';Jq:J U~ :Juno:J:Je O:Ju~ u';J){e:J ';JJ';JM 17 :Jsn~ny

uo ';J:JU;}~J';JAUO:J ';Jre:Js-:J~:JdOUAS p';JsodW! ';Jq:J rue s:J~:Js!l';J:J:JeJeq:J r~os 'J';JAO:J

sruJ~:J JI 'uo!:Je:Jor J';J~J';JW WOJJ p';J:Jerds~p u';J:JJo s~ sq:J';Jldos~ :Ju';J:Jse p';J:J:J~p';JJd

Jo J';J:JU';J:J ';Jq:J :Jeq:J ';J';JS ';JM '8 ';Jlqe.L U! s';Jpm~u~ew :Ju';J:Jse Jo Aq:JJeJ';J!q ';Jq:J

q:J~M J';Jq:J';J~o:J sweJ~e~p ';Jq:J ~U~U~Wl1X';J uI 'SJ';J~J';JW J';JpJo-pUO:J';JS JoJ ~UOJ:Js

ArJern:J~:JJed s';J:JueApe Aep ';Jq:J se ';J:Ju';Jp~:Ju~o:J J';J:J:J';Jq pJeMo:J PU';JJ:J e SMOqS

(p';J:JnpoJd';JJ :JOU s';Jlqe:J) UMOp){e';JJq Jnoq-Aq-Jnoq uy '(pJeMdn A:J~:JoI';JA

(.iJD OtZZ-ItIZ) .is! OtL I-It9I U '(.iJD OtIZ-IWZ) .is! Ot9I-It5I (q

'(.iJD OWZ-It6I) .is! Ot5I-IVtI (8 '(.iJD Ot6I-It8I) .is! OVtI-It£I {J

'(.iJD Ot8I -ItL I) .is! Ot£I -ItZI (~ '(.iJD OtLI -It9I) .is! OtZI -It I I (p

'(.iJD Ot9I-It5I) .is! OtII-IWI (:> '(.iJD Ot5I-IVtI) .is! OWI-It60 (q'(.iJD OttI-It£I) .is! Ot60-It80 (11 'P~Idd!~s ~J1!' sl~8l~W l~plO puo:>~S

)j:>1IIq ~l1l sl~8l~W l~plO ~Sl!d' I-:>~ w:> 8 JO sjl!Al~~U! ~11 sq:I~Idos!' I-:>~ w:> U! s~njl!A

'£L6I 'hInf L I lOJ UO!~1IA~I~ W)j ZZOI ~11 SUonow jl!:>!~l~A lOJ suon:>!p~ld I~poW'9 'S!d

LZsl0}810}W snlnwnJ uQ

AUG 04.19731431.1530 lST AUG 04.19731531.1630 LSTe f

Fig. 7. Model predictions for vertical motions at 1.22 kIn elevation for August 4,1973.Values in cm sec-l , isopleths at intervals of 8 cm sec-1 .First order mergers are black.Second order mergers are stippled. a) 1031-1130 LST (1531-1630 GCT),b) 1131-1230 LST (1631-1730 GCT), c) 1231-1330 LST (1731-1830 GCT),d) 1331-1430 LST (1831-1930 GCT), e) 1431-1531 LST (1931-2030 GCT),f) 1531-1630 LST (2031-2130 GCT)

U! u~aq SRq SWa'JSAS 1ag1RI O'JU! s'Jalpnol:) asaq'J ]0 1ag1aw pUR UO!'JRZ!URg10SnO!Aqo uoou IR:)°1 Aq 'JRq'J OS 'U! s'Jas azaa1q RaS aq'J AI{t!npR1D 'Sa!IRWOUR

a:)RJlnS IR:)°1 Aq pa'JRlnpow ApRal:) 'RlnSU!uad aq'J 1aAO nnwn:) IIRWS ]0

UO!'Jnq!l'JS!p papURq 10 1RI~all! gU!WOW ApRa UR SMOqS [Lv] APn'JS S,){URld

'!Inwn:)gU!U!R1 AI!ARaq a10W pUR paA!I-1aguoI 'la'J'JR] 'lal{t!'J O'J as!l SaA~ a:)Uag1aA

-UO:) 'JRq'J MOqS [Z 1 '8] nnwn:) IRnp!A!pU! ]0 slap ow IRUO!SUaw!p aa1q'J

pUR OM'J 'laAoa10W .SUO!ga1 'Juag1aA!p 10 IR1'Jnau U! URq'J 1aq'Jago'J 1asol:)pa'JR:)°1 aq UR:) spnol:) aA!'JR1'Jauad sn010g!A a10w snq.L fua:)SR 'JURAonq

q'J!/'\ paIlY aq UR:) Ra1R aq'J]O UO!'J:)R1]lag1RI R 'JRq'J OS 'JU!R1'JSUO:) [£1 'S]

poq'Jaw a:)!IS aq'J ]0 asRala1 aq'J pUR 'Jua:)SR 'JURAonq paU!R'Jsns 10] a:)lnos aq'J

gU!P!A01d l!R 'JS!OW UURM ]0 xnuu! laAal-MOI AlaUlRU 'SnO!Aqo a1R slag1aw10] sa'J!S alqR10AR] a1R SRa1R 'Juag1aAUO:) alR:)sosaw 'JRq'J SUOSt!a1 aq'J]O awos

S"iJa"iJW puv iJ:;UiJa"iJttUO;) iJ/V:;SOSiJW UiJiJMjiJEl sd!lfsuo!Jv/iJ~ ['9

SWS!URq:>aw Ja8Jaw .9

.In:>:>o SJa~Jaw q:>!qM Aq sassa:>oJd asoq~ pUB SJa~JaW

Sa~eJno:>ua a:>Ua~JaAUO:> q:>!qM Aq SWS!Ueq:>aw aq~ O~ paa:>oJd O~ A.IeSsa:>a~

~xau S! ~I .SUO!~aJ ~Ua~JaAUO:> aq~ JO SUO!~e:>°1 aq~ s~:>!paJd flaM lapow ale:>s-osaw e!u!'BJ!A JO A~!SJaA!Ufl aq~ ~eq~ pUB ~u!'BJaw JaMoqs JOJ a:>ua!qwe A.Ies-sa:>au aq~ sap!AoJd a:>ua~JaAuo:> ale:>sosaw ~eq~ Jeal:> S! ~! s~lnsaJ asaq~ WOld

'[9v '£v 'LV] sAepaq~ Jo q:>ea uo saJn~eJadwa~ pUB spu!M 'saoq:>a repel JO SUo!~eAJasqo pUB

SUo!~:>!paJd lapow aq~ uaaM~aq sa!:>uedaJ:>s!p JoJ suoseaJ alq!ssod l!e~ap U!

pau!Wt1xa aAeq sJo~eJoqeIl°:> pUB a){la!d '[OZ] Alpa){JeW aAoJdw! o~ pa~:>adxa

pa~~!wo SlaSlaW la~I!A\.la~O ~!A\ S~lnsal all! s;)Sa~uall!d U! slaqwnN I

9~£~ ~snHnv p

~Z9£ Alnf L [

8£O~ Alnf [:sl:l81:lW

l:lplO PUO:J:lS

£6~Z[ ~snHnv p

PPP9 Alnf L [

86L£ Alnf [

:sl:l81:lW l:lplO ~Sl!d

06

I(I6)IS£8

816PI

018PLl

L£6

8ZLOZ

L£Z£Ot

JO6)£L\(£S)PS

OZZI6Z

9IIg

L17l..'l

LS

LZ9P9

17

(Z£-PU (PZ-91) (91-8) (8-0) (-)(t_:>as ill:> s~!un)

:sauoz /J,polaA {1J:>!~JaA u! 1!aJ1! {1J~0~ Jo ~ua:>Jad

(tW}j) 1!al1! J1!~°.L 0<~}1!a

sauoz JjlJ.lpdn paJ:JJpa.IJ-/apow PUlJ s.la3.law uaaMJag dJlfSuOJJ1J!aN .8 ~IqB.l

~l;}gl;}W snrnwn:) UO ;'{1!};} uosdW!S ;}uueof 6'l

Joanne Simpson et at.30

Fig. 8. DAPP Satellite photograph of the Florida peninsula at 1237 LST (1737 GCT)on July 17, 1973. The black region is Lake Okeechobee

the convergent zones, with suppression outside: Fig. 8 shows a satellite viewof this process in progress on July 17, 1973. Fritsch [18] and Fritsch andChappell [19] have suggested and modelled positive convective feedback tothe mesoscale convergence by means of pressure gradient forces created bythe convection. We believe cumulus organization by merger plays animportant role in this feedback, as postulated below in a preliminary fashion.

6.2 Postulate Concerning Merger Mechanisms of Showering Cumuli

The merging of small non-precipitating trade cumuli, especially along linesroughly parallel to the shear, has been documented photographically and

P~:JBU!WOP-:JJBJpdn 8UnOA B ~:)U!S 'J~q:J~80:J J~soI:) spnoI:) 8u!Jq UB:) U09B8Bd-old SB II~M SB UO!:J°w ~A!:JBI~J '~SB:) p~IP.~qs ~q:J U! 'snq.l ":Ju~wdOI~A~P

J!~q:J P~:JB!:J!U! 8U!ABq 'spnoI:) JOfBW ~q:J U~~M:J~q spu~:Jx~ AIUOWWO:) q:)!qM~U!I ~:)U~8J~AUO:) ~[1!:)sos~w ~q:J Aq P~P!B S! UO!:JBWJOJ ~8P!Jq ~q.l "pnoI:)

J~8UnOA ~q:J 0:J ~8P!Jq B ~WO:)~q ABW q:)!qM SJ~MO:J M~U JJO 8u!:J:J~s (I I "8!d

U! :Jq8!J) ~P!S JB~qSUMOp ~q:J UO AIU!BW :Jno spB~Jds :JUOJJ :Jsng ~q:J snq.l

"pu!fI\ :JU~!qWB ~q:J uBq:J J~MOIS s~wo:)~q UO!:J°w ~A!:JBI~J s,pnoI:) ~q:J PI~Upu!fI\ 8u!Jt1~qs AI~A!:JB8~u B U! :JBq:J os [Sf 'LZ 'f) ~:JBU!wop~Jd s~xnu UMOp'S~8B snqw!uoInwn:) B sY "~8B:JS s~:J :JB ~SBq pnoI:) MoI~q AIIB:)!J:J~WWAs

!.P!BJ spB~Jds :JUOJJ :Jsng ~q.l"[ff 'Zf 'If] ~P!S JB~qsdn ~q:J uo SMOJ8 pUB

SP~~J:JI "PU!M J~ABI pnoI:) ~q:J UBq:J J~:JSBJ (pJBM:JJ~{) pJBM:JS~M S~AOW pUBs:JJBJpdn AIU!BW SU!B:JUO:) (:Jq8!J) pnoI:) 8UnOA Y l~A~I nAUB :JB S~llJ~q:JJOU

J~SUOJ:JS O:J SUp(:)Bq q:J!M 'J~WWnS BP!J°Id B 10 IB:)!dA:J ~JB q:)!qM pJBMdn

SU!SB~J:)~p S~!P~:JSB~ ~JBSpU!fI\ ~q.l "I I "S!d S! Uo!:Jro:JsnII! :)!:JBw~q:)S p~sodoJdJno "S~:JSAS pnoI:) 8U!Z1UBSJO pUB SU!U1'Of U! ~A!:J:)~JJ~ ~JOW AIq!SSOd pUB

:JU~J~JJ!P ~q PInoqs ss~:)OJd J~SJ~W ~q:J 'IP.~qs PU!M q:J!!t\ "SJ~MOqS 'AIP.UO!:JB:JS

O:J :JSBJ:JUO:) U! 'SU!AOW q:J!M P~:JB!:)OSSB ~J~M S:JUOJJ :JsnS J~SUOJ:JS :JBq:J punoJ

')[JOM:J~UOS~W IBUO!:JBAJ~sqo ~WBS ~q:J U! SU!)[JOM '[09] SUB:JSJBD pUB P(SUBill

"(B6 "S!d) qdBJSO:Joqd :JSJU ~q:J SU!fI\OIIoJs~:Jnu!w vIp~JJn:):)o ~J~q p~uU~P SB J~SJ~W :JBq:J SMOqS [vZ] SUO!:JBAJ~SqO :)~dBJSO:Joqd

pUB JBpro ~:)BJJnS q:J!fI\ UO!:JBm!S s~:J Jo ApmS ~SB:) P~I!B:J~P Y "SU1':JS!x~-~Jd~soq:J U~~M:J~q SJ~M°:J M~U SU1'Jds q:)!qM WOJJ ~Sp!Jq ~q:J J~SS!J:J O:J P~SBS!AU~

UO!:J:)BJ~:JU! :JJBJpUMOp ~q:J SU1':JBJ:JsnII! WBJS!P :)!:JBW~q:)S B S! 0 I "S!d "JB~qS)[B~M pUB PU!M )[B~M q:J!fI\ UO!:JBm!S B s:J:)!d~p 6 "S!d "~P!II°:) pUB q:)BOJddB

S:JJBJpUMOp ~q:J SB 'dBS ~q:J SU!II!J ~SP!Jq ~q:J WOJJ dn ~SJnS SJ~MO:J M~N"J~SJ~W oq:)~ IP.pBJ S~p~:)~Jd SABMIB AIIBmJ!A q:)!qi.\ SJ~M°:J pnoI:) U~~M:J~q

"~SP!Jq,, JoSJn:)~Jd ~q:J SMOqS 6 "S!d U! qdBJ80:Joqd :JSJU ~q.l "I 1-6 "SS!d U!

P~:JBJ:JsnII! ~JB ss~:)OJd 8u!SJ~w ~q:J U! S:JJBJpUMOp Jo ~IOJ ~q:J O:J s~nI:) [1!!:)QJJ

"[6f 'LZ] ~J~qM~sI~ P~II~POW pUB p~ssn:)S!p u~~q ~ABqS:JUOJJ :JsngJO S:)!WBUAP ~q.l"[SZ] J~!BW pUB ~IIOH Aq p~:Ju~wn:)op u~~q SBq

OpBWO:J B JO UO!:J:)npoJd q:J!fI\ S!q:J SU!MOqS ApmS ~SB:) :JU~II~:)X~ uy "~IqB:Jsun

AI~A!:J:)~AUO:) pUB AIIBUO!:J!PUO:) q:Joq S! S~SSBW J!B IB:)!dOJ:J U! q:)!qM J!B:JS!OW WJBM pJBMdn ~:)JOJ UB:) spnoI:) :Ju~:)BfpB WOJJ S:JJBJpUMOpnUOJJ :Jsng

JO UO!S!II°:) JO q:)BOJddB ~q.l "SJ~MOqS IBJmBU JO WS!UBq:)~W J~8J~W ~q:J ~q O:J

P~A~!I~q OSIB :J! ~S:J:)~JJ~ SU!P~~S :)!WBUAP O:J UO!:JBI~J U! [I S] uosdw!S Aq I!B:J~P~JOW U! p~doI~A~P u~~q SBq ~:JBImsod s~.l "J~SJ~W J~MOqS Jo WS!UBq:)~W

AJBw!Jd ~q:J S! UO!:J:)BJ~:JU! :JUOJJ :Jsng JO :JJBJpUMOp ~q:J :JBq:J ~:JBImsod ~!t\

"room JO J~:J~W-On)[ B Jo J~pJO ~q:J Jo sq:JP!fl\ J~M°:J q:J!fI\ '~AOqB JO W)[ V O:J sdo:J s~J!nb~J

AIUOWWO:) S!q:J BP!J°Id U! ~~:JB:J!d!:)~Jd O:J q8nou~ ~SJBI !Inwn:) Jo S:)!'WBUAP~q:J q:J!M p~W~:)UO:) ~q :Jsnw ~:)U~q pUB 'SJ~Moqs JO SJ~8J~W ~q:J 8u!J~P!S-UO:) ~JB ~M J~dBd S~:J UI "IP.~qs :Jnoq:J!M SU!SJ~W !Inwn:) IIBWS s~:JBInw!s

[fZ] II!H JO I~POW ~q.l "[9f] Iq~!"M pUB sn)[IBW Aq P~U!BIdx~ AIIB!:JJBd

sla81aw snrnwnJ UO

32 Joanne Simpson et at.

p.u"'~r- "

O'I"'C-""--oU

.N '"0'10.--'-"'-0

+-E--",",mo~~ N

;3"'0.--<",E--~~~O+-o~ '"~""".~ ...;30""-"-'-' '"

~ 0 "

-5~P;3"Uo,.:~moo'"~ " "'"

.~ ~ 0I;::N...,,0.--

~ 00 E--~ ~ ~

.8 ~ '"~bI)","

~'"O~;:,'" ..0.2 ~ ...."pp1A~uu.~ ~ ~ ~,.:,u"""~~~'8~OONNo~o.--o.--o~E--E--f]~~..~ -'"0'1+-","'""""bO~--.~ .~~~'-;;':;-

H '6(; 'PH 'V '[J!O!H 'qdoeD "Iew 'qOJV I:

}u~wdOI~A~p ~8PJlq S~JU1!qu~ S}J1!lpUA\Op JoUO!}J1!l~}UI "l~q}O qJ1!a pl1!A\O} a}1!81!dold pUll aAOW SpnOIJ OS PU!A\ U1!q} laA\OIS SaAOW

'SUO!}OUlUA\Op a}1!u!wopald S1!q }J~I uo snqUIJuoInwnJ lapIO "PU!A\ aq} U1!q} la}S1!J

S~AOW 'suo!}owdn a}1!u!wop~ld S1!q }q8Jl uo snqUIJuoInwnJ la8unoA "la!.1!I pnoIJ Jo

}ua}xa {1!J!}laA aq} JO }SOW q8nOlq} UO!}Jal!p PU!A\ O} a}!soddo rnaqs a}1!l~pOW Jo as1!J U!la8law pUll 8uj8PJlq O} UO!}J1!la}U! }J1!lpUA\Op 8u!}1!Ial UO!}1!l}Snm J!}1!waqJS "II "8!d

::;\,," S!j3MOHS 3:>1S.LNO!j~ .LSn~ : 3.LON

-NOI.LOW anal:> '13!j'!j:>NI 'S0'113!jdS xm~ NMOO l'

H.LMO!j~ !j\13HSNMOa .S!j3MOHS AA\13H .

sneWINolnwro !j3alO .

lR3l{S :JIl!3A\ pm! PU!A\ ~ l{8!1 Jo 3SRJ U!13S13W pUR SU18P!lq O~ UO!~JR13~U! ~JRlpUA\Op SU~RI31 UO!~Rl~Snrn J~Rw3qJS "01 "S!d

~ SJ.NO~.,I J.Sn9

1--);--:-1--: I_; -~-W>lI---,

\J

390/~8

I

/(

I .~to-i

lY GNIM 1/19/1 ")I 01 ij~3HS inOHilM SS3~Qijd ij3eij3~

sla81aw sn(nmn.) no ££

34 Joanne Simpson et a1.

cloud has opposite relative motion to that of an older downdraft-dominatedcloud. Looking at surface fields, investigators using the Florida mesonetworkdata [25, 59, 60] have commonly detected large cumulus-scale coupledcenters of surface convergence and divergence associated with cumulonimbiin the stages of Figs. 9-11 ; these are probably the "seeds" of meso-high andmeso-low pressure areas since they are seen enlarge to the meso-scale asthe cloud systems organize by combined growth and merger to the second-order merged complex stage [25]. Since three-dimensional effects probablycannot be ignored, pursuit of the simplified hypotheses proposed here mustbe carried out using multi-doppler radars and three-dimensional simulations,together with detailed surface field observations. Among the first importantpoints to follow up are the role of downdrafts in merging, the differencesin merger processes as a function of wind and windshear and criteria forcontinued merging to the mesoscale system.

7. Context, Relevance and Conclusions of This Research

7.1 Research Results in Context of Related Work

A hint has come from our results, particularly the tables in Section 4, thatheavier convective rainfall is produced not by more shower elements butby fewer, larger and more organized elements. However, a sample of threedays is inadequate proof, so that other evidence must be examined.Ulanski and Garstang [61] compared two whole summer seasons of showerstructure using densely spaced raingauges in the mesonetwork of Fig. I.The very dry summer of 1971 was contrasted with the three:timeswettersummer of 1973. Total duration and intensity of rainfall was about thesame in both years. Days With few well-organized large storms prodbcedmore rain than those With more, smaller showers. The summer of 1973was wetter by virtue of larger showers, which processed water more effi-ciently. We have shown that merger is an important factor in producinglarge organized showers; rainy days Will be those With conditions forcingor permitting the large showers.The above deduction receives further support from use of more of thesouth Florida radar data with the same computer programs described here,adding the statistical program STATS (Section 2). Wiggert et al. [68] madea statistical merger study of 16 summer days from the seasons of 1973,1975 and 1976. All 16 days were experimental days in the randomizeddynamic seeding program (FACE I). The main purpose of the study wasto identify differences in echo structure and merging behavior as a functionof echo motion and Windspeed. Differences in these variables appear to be

.f:

.s:J!doJ"J ~q"J U! AIJRln:J!"JJRd 'SuO!"JRln:JJ!:J ~IR:JS-~~JRI ~q"J ~U!A!Jp U! pUR 'SUJJO"JS ~A!"J:J~AUO:J ~J~A~S JO UO!"JRWJOJ ~q"J U! ss~:JOJd

IR!"JU~SS~ UR ~q 1Snw ~U!'BJ~W .pnoI:J MoI~q SJ~ARI ~q"J uo s"J:JRdW! J~"JR~J~ ~ARq

OSIR pUR 'SI~A~I J~qg!q O"J A~j~U~ pUR WmU~WOW 'JOdRA J~"JRM ~JOW "JJOdSURJ"J

spnoI:J J~IIR"J 'J~~JR'l .~U!'BJ~W Aq P~J~"JIR ~JR "JRq"J SW~"JSAS pnoI:J ~A9:J~AUO:J JO

s"J:JRdW! J~q"JO ~qi JO SUO!"JRl~"JIR ~Iq!SSOd ~JR "JuRpOdW! OSJR "Jnq SnO!Aqo SS~

.JO!ARq~q ~U!~J;!W J~"JIR P~~PU! "Jq8!W SUO!"JRJ~"JIR UO!"J:JunJ ~U!:JJOJ "JRq"J

s"Js;!83'ns 5 UO!"J:J~S .:J"J~ s~~URq:J ~JmS!OW pUR "JR~q puno~ 'S~~URq:J UO!"JR"J~~~A

'J;!AO:J SnJJ!:J Aq p~:JnpoJd ~q "Jq8!W q:J!qM SUO!"JRJ~"JIR UO!"J:JunJ ~U!:JJOJ

~U!JOIdX~ ;!JR I;!POW ;!IR:JSOS~W R!u!'BJ!A JO A"J!SJ~A!Ufl ;!q"J q"J!/t\ ARA\J~pUn

S"Ju~W!J;!dX~ IR:J!.I;!WnN .p~SR~J:J~p ~q PInoM IIRJU!RJ 'P~ARI~P JO P~"Ju~A~Jd

;M;!M ~U!'BJ~W JI .S"J:J~fOJd 3JV d ;!q"J U! AIJR"JU~w!.I~dx~ "Jno P~!JJR:J ~U!~q S! SR

'J~~J;!W ;!"JoWOJd O"J"JdW~"J"JR O"J ~U!S!WOJd SJP.~ddR"J! 'U!RJ snInwn:J ~SR~J:JU! O"J

J~pJO UI '"JU~"JJ~ApRU! pile ~"JRJ~q!I~P q"Joq 'UO!"JR:J!J!POW U!RJ pUR A20IOJPAq'"JU~W~~RURW ~:JJnOS~J J~"JRM 'spooU qSRU 'SI~poW U!RJ O"J "JURA~I~J S! J~~J~W

"JRq"J OS J~8J~W Aq UO!~RZ!UR8JO S~!IdUJ! IIRJU!RJ ~A!"J:J~AUO:J I..AR~H .SUO!J

-nq!.I"Js!p U!RJ U! "I!R"J AAR~q" ;!q"J ~U!"JR~J:J ss~:JOJd JOfRW R S! S!q"J ~:JU!S 'IIR]

-U!RJ ;!A!"J:J~AUO:J Jo S~:J~dSR A.I~A~ O"J "JuRA~I~J ~JR S~!pmS J~~J~W Jo s"JIns~J ~ql.

s11nsaN Jo a:JulJltalaN £"L

'~U!:>JOJ ~U~~J~A-UO:> I~A~I-MoI R ~U!AldUI! '( I I -6 'S~!d) !InUIn:> J~IIRUIS ~Iq!S!A Jo "~~P!Jq,,

R Aq p~p~:>~Jd S! SJ~MOqS ~A!~:>~AUO:> Jo ~U!'ilJ~UI ~q.l 'UIS!URq:>~UI A~)[ R SR

UO!~:>RJ~~U! ~JRJpUMOp p~SOdOJd pUR (UO!~RlnUI!S IR:>!J~UInu R UIOJJ p~~Rln:>IR:>

~:>U~SJ~AUO:> ~Z~~JqR~S) UO!~:>unJ ~U!:>JOJ R O~ ~U!'ilJ~UI P~~RI~J ~ARq ~M 'pOO~S

-J~pUn AnnJ ~OU S! ss~:>OJd ~U!'ilJ~UI ~q~ ~I!qM. 'S~X~IdUIo:> J~MOqS P~Z!UR~JO

~~JRI ~u!:>npoJd U! JO~:>RJ JOfRUI R S! ss~:>OJd ~U!~J~UI ~q.l '~J~qM~sI~ AlqRqOJd

pUR RP!JOld q~nos J~AO uo!~:>npoJd UO!~R~!d!:>~Jd ~Ap:>~AUO:> U! JO~:>RJ IR!:>fU:>

~q~ S! UO!~RZ!UR~JO pUR ~Z!S J~MOqS ~Rq~ S! uo!snI:>uo:> ~UR~odUI! ~SOUI Jno

SUo!sn/.Ju°.J 'l'L

'(}Z(}(}Jq~(}S (}q~ uodn p(}sodw!l(}dns W(}~SAS ~U(}g.J(}AUO~ (}I~~S-J(}gJ~I ~ Jo 'M~S (}M S~ '(}~U(}P!A(} P(}MOqS '~~~J U! 'to ~sngnv 'SUO!~

-!PUO~ (}Z(}(}Jq~(}S p(}qJn~S!pUn JOJ UO!~~Z!U~gJO pnoI~ pu~ SS(}U"J(}M U! (}g~J(}A~

(}AOq~ (}J(}M (}J(}q p(}!pn~S SA~p (}qj, 'SJ(}gJ(}W J(}pJo-pUO~(}S pU~ ~SJ!J U(}(}M~(}q

(}P~W S~M UO!~~U!~S!P oN 'SJ(}MOqS P(}gJ(}wun P!P s~ (}wnIoA U!~J (}q~ S(}W!~

U(}A(}S o~ JnoJ ~noq~ AIuO p(}~nq!l~uo~ SW(}~SAS P(}gJ(}W (}qj, 'II~JU!~J AI!~PI~~o~ (}g~J(}A~ o~ SW(}~SAS P(}gJ(}W Aq uo!~nq!l~uo~ (}g~~u(}~J(}d J(}II~WS ~ q~!A\

" 'punoJ (}J(}M S(}oq~(} J(}II~WS Jo J(}qwnu (}g~J(}A~ J(}~~(}Jg V '(}J(}q p(}!pmS SA~p

(}(}Jq~ (}q~ u~q~ Ja!lp (}J(}M 'suo!~d(}~x(} (}(}Jq~ JO OM~ ~noq~ q'J!A\ 'SA~p 9 I

(}qj, 'suo!~nq!l~s!p II~JU!~J P(}P(}(}S pu~ I~Jn~~u ~U(}J(}JJ!P q~!A\ P(}~~!~OSS~

SJ;!~J;!W snlnwn:) uO Sf

36 Joanne Simpson et aI.

7.4 RecommendationsImprovements in model and remote sensing capability offer opportunity tomake vast advances in understanding, predicting and even in beneficiallymodifying cloud merger. Remote sensing is a necessary component, since themotions in and around cumuli must be documented to understand theirinteraction. A flat heated peninsula like south Florida is an ideal laboratoryto study cumulus growth and organization because I) the daily forcingfactor, the seabreeze, has been identified, successfully simulated and relatedto cloud organization 2) the mesoscale forcing ends each night and beginsagain next morning, so that early, less complex, more readily measurablestages of cloud interaction and merging are available for study in a limitedtarget and 3) relatively light winds and wind shears keep the systems in aehosen study area long enough for their life cycles to be encompassed bya limited number of sensors and platforms. Experimentation, jointly withmodelling, should be pursued in Florida and in similar sea-breeze-dominatedlocations elsewhere, focussing attention on motion fields which can now bemeasured over substantial volumes as a function of time.

AcknowledgementsThis research has been supported by Grants DES-75-03984, ATM-78-10087 andATM-78-21763 from the National Science Foundation. We are deeply grateful to thedirectors and scientists of NOAA's Florida Area Cumulus Experiment (FACE) for data,discussions, help and constructive criticism, especially P. Gannon, R. L. Holle, R. I. Sax,V. Wiggert and W. L. Woodley. Ron Holle kindly provided Fig. 9. We also thankW. R. Cotton for valuable model information, a synoptic analysis of August 4, 1973and for providing Fig. 8.Our University of Virginia colleagues R. Biondini, H. Cooper, G. D. Emmitt, W. Frank,M. Garstang, R. H. Simpson and C. Warner provided valuable discussions, ideas andcriticisms which we greatly appreciate.Sandy Smith, Gloria Adams and Carol Wagner prepared the many drafts of the..manu-script. Robert Clerman, Stephen Garstang and Tom Adams drafted the diagrams. Weare grateful for their patience and competence.

References

1. Austin, P. M., Mason, C. K., Kraus, M. J.: Mesoscale Precipitation Patterns in NewEngland and Their Relation to Macroscale Parameters. 12th Conf. on Radar Met.,pp. 234-240, Norman, Oklahoma (1966).

2. Battan, L. J.: Duration of Convective Radar Cloud Units. Bull. Amer. Met. Soc. 32,227-228 (1953).

3. Betts, A. K.: A Composite Mesoscale Cumulonimbus Budget. J. Atmos. Sci. 30,597-610 (1973).

0(vL60 £L9-9v9' lE O!:>S °so~y of °S}u;}llip;}dX3 IR:>p;}wnN AqP;}IR;}A;}~ Sl! spnoIJ snlnwnJJo Su!:>l!dS PUl! ;}Z!S;}tp SUmOl~UOJ SlO~:>l!d :°3 °0 'ffiH o£Z

.0(£L6I)OPl!lOIoJ 'l;}Plnog '81-00 'nI3

°OW;}w °q:>;}.L YYON '~U;}W;}lnSl!;}W UO!~l!~!d!:>;}ld ;}ArJ:>;}AUOJ Jo spotp;}W ll!pl!~ PUl!

;}Sl!OJo uos!IP.dwoJ :oH 'Ul;}S '"V '~;}W1!S 'oH °Y 'l;}ffiW '°'1 °ft\ 'A;}IPooft\ '"V 'UOPW;}H °U"(S96I) A;}Sl;}f I\\;}N 'tpnoUlUow ~lOd 'osql!'1 0:>;}I3 AUllY"S on odd £9' L "~d;}~ °S:>!dQl.L

;}tp U! SPU!ft\ PUl! SUl;}~~l!d A:lmql!~SUI Jo s;}!pn~s ;}IR:>SOS;}W :° ft\ "H 'l;}S!H 'o~ 'qspl;}O o IZ

0(8L6I) °Pl!lOIoJ 'l;}Plnog ';}:>l;}WWOJJo O~d;}O oS on 'odd 16 'z 'IW3HN ZOv '1~3 pod;}~ °q:>;}.L WON O;}Z;};}lql!;}S

l!PPOld tpnos ;}tp uo S;}W;}dOld pnoIJ PUl! ;}:>l!JlnS tpIP.3 Jo ;}:>u;}nguI :°.L ° d 'UOUUl!O om

0(8L6I) L8-LL odd 'O:>OS O~;}W °l;}WY'ASoIOlO;}~;}W UO!~l!!AY PUl! S!SAIRUY

PUl! SU!~Sl!:>;}lOd l;}tpl!;}ft\ uo "JuoJ tpln°d "{oA ~Upd;}ld °SW;}~SAS ;}lnsS;}ld ;}IR:>S

-OS;}W U;}APO Ar;}A!~:>;}AUOJJO uorJ:>!P;}ld IR:>p;}wnN :od oJ 'II;}ddl!qJ 'ow of 'q:>S~Pd °61

0(SL6I) L98-IS8 'Elloqdo;}Sl!d °u°rJl!zp;}~;}W1!ll!d snlnwnJ lOJ SUO!~-l!:>ndWI S~I PUl! ;}:>u;}p!sqns SurJl!su;}dwoJ IR:>O'1 :s:>!W1!uAQ snlnwnJ :oW ° f 'q:>S~Pd "81

0(L96I) 91 £-60£'9 O~;}W "{ddy Of °l!~l!0 IP.pl!~ P;}Z!~!8!O wold p;}:>np;}o Sl! l!InSU!U;}d l!PPOld

;}tp l;}AO u°rJnqp~s!o l;}I\\OqS l;}WWns :°3 ° 0 'l;}qs!d '°'1 ° d ';}lOOW '°'1 ° N '}[Ul!ld ° L I

0(9L6I)uo~uj"qsl!ft\ ';}P~l!;}S '9SI-IS1 odd 'O:>OS °l;}WY °lO;}~;}W ll!pl!~ "JuoJ tpLI °UllO~S

-l;}punq.L l!PPOld tpnos l! U! l;}Sl;}W PUl! UO!~:>l!l;}~UI II;}J :oW o~ ';}~~!UU;}q'1 'oH '}[Ul!ld °91

'(vL6I) °Pl!lOIoJ 'l;}Plnog'odd L I I 'v I -OdWA\ 'nI3 WnpUl!lOW;}W °q:>;}.L WON °S}u;}W!l;}dx3 SU!P;};}S snlnwnJl!PPOld Jo S!SAIRUY IR:>rJsnl!~s ;}tp U! p;}Sn SW1!18old l;}~ndwoJ o~ ;}p!no :oJ ° f 'U;}P3 os I

0(LL6I) l!}{Sl!lq;}N 'l!q11wO 'Z£I-9Z1 odd 'O:>OS '~;}W °l;}WY'SUllO~S IR:>°'1 ;}l;}A;}S uo "JuoJ tpU;}.L "{o A ~Upd;}ld ° Apms ;}Sl!J l!-U°rJ:>;}AUOJ o~ ~U;}W

-uolIAu3l!PPOld ;}tpJo ;}Suods;}~ ;}IR:>SOS;}W :'d 'UOUUl!O 'of 'Sl!woq.L 'of 'Su!UunJ "vI

0(9v6I) 88-S8 'E O~;}W of °ss;}u!pnoIJ;}A!~:>;}AUOJ uo ;}:>U;}Sl;}A!O IR~uozpoHJo PI;}!d ;}tpJo ;}:>u;}nguI;}q.L :"d °0 'Ul!WSS;}lJ o£I

0(6L6I) O!:>S °so~Y of o~ P;}~~!wqns °spnoIJ snlnwnJ ;}3IP.'1Jo suorJl!Inw:IS IR-UO!SU;}W!O-;};}lq.L uo ;}:>U;}3l;}AUOJ ;}IR:>SOS;}WJo s~:>;}JJ3 :° f °0 'nodp.L 'o~ o ft\ 'uo~~oJ :ZI

(9L6I) I9Z-ZSl 'EE O!:>S °so~Y"f O;}IR:>S snlnwnJ;}tp uo UO!~l!m:>l!J ;}IR:>SOS;}W ;}q~Jo;}:>u;}nguI ;}tp uo S~u;}W!l;}dx3 IR:>p;}wnN :° .L ° d 'UOUUl!O 'oy "~ ';})(I;}!d 'o~ o ft\ 'uo~~oJ o I I

0(9L6I) 96L-88L' LS" o:>°S O~;}W 'l;}WY °Img °SI;}POW;}IR:>SOS;}W IRuO!SU;}W!O-;};}lq.L PUl! UO!~l!:>Y!POW l;}tpl!;}ft\ :oY o~ ';}}[I;}!d 'o~ o ft\ 'uo~~oJ °01

0(SL6I) 8Vt-6Iv 'EloSAqdo;}O °A;}~ °S:>!W1!UAO snmwnJ IR:>rJ;}lO;}q.L :o~ °ft\ 'uo~~oJ °6

'(6L6I) O~;}W °Iddy Of o~ p;}~~!Wqns°UOrJ:>;}AUOJ pnoIJ uo ;}:>U;}Sl;}AUOJ ;}IR:>SOS;}WJo S}:>;}JJ3 :°0 °H ';}ffiAlO 'oH_oJ 'U;}qJ °8

°6v6I ;}:>YJO SU!~UPd ~U;}UlUl;}AOO oS on :oJ °0 'uo~3u!qsl!ft\ odd L8Z '~:>;}fOldUllo~si;}punq.L;}tp Jo ~lod;}~ :UllO~Sl;}punq.L;}q.L :olf 'o~ o~ 'W1!q11lg 'o~ °H 'Sl;}Ag o L

"(LL6I) "SSl!W 'uo~sog '£t?-I odd

'":>OS ~;}W °l;}WY °8£ °oN '9l sqdl!18ouoW O~;}W °Uo!ss;}lddns {!l!H pUll ;}:>U;}!:>S {!l!H

Jo I\\;}IA;}~ Y :U11H °sUllo~sU11HJo SWS!Ullq:>;}W PUl! ;}lm:>nJ~S;}q.L :oY °)l'SU!I\\Olg °9

°(8£61) O££-SZ£ '/7'9 ':>°S O~;}W"~"f o~ll!nO 0~U;}UlUOl!AU3 3u!pu;}:>

-S;}O AIIR:>!~l!ql!!PY AlO q8nolq.L l!Y JO ~U;}:>SY :>!~l!ql!!PY p;}~l!lml!S :Of 's;}mJl;}fg os0(8L6I) PUl!t8U3 'II;}U)(:>l!lg 'lEI -SOl odd '°:>oS "~;}W AO~

°SUl!;}:>O IR:>!dOl.L ;}tp l;}AO ;;goIOlO;}~;}W °S:>!dOl.L ;}tp U! UOrJ:>;}AUOJ :°)1 "Y 'S~~;}g °v

Sl~~l~W snInwnJ uO

38 Joanne Simpson et al.

24. Holle, R. L., Cunning, J., Thomas, J., Gannon, P., Teijeiro, L : A Case Study ofMesoscale Convection and Cloud Merger Over South Florida. 11 th Tech. Conf. onHurricanes and Tropical Meteorology, Miami Beach, Florida, Amer. Met. Soc.,pp. 428-4235 (1977).

25. Holle, R. L., Maier, M. W.: Cloud Interaction and the Formation of the 15 June 1973Tornado in the FACE Mesonetwork. NOAA Tech. Memo.ERL-WMPO 33,55 pp.(1976).

26. Leary, C. A., Houze, R. A., Jr.: The Structure and Evolution of Convection in aTropical Cloud Cluster. J. Atmos. Sci. 36, 437-457 (1979).

27. Lilly, D. K.: Dynamical Structure and Evolution of Thunderstorms and Squall Lines.Ann. Rev. Earth Planet Sci. 7, 117-161 (1979).

28. Ludlam, F. H., Scorer, R. S.: Reviews of Modern Meteorology 10: Convection in theAtmosphere. Quart. J. R. Met. Soc. 79,317-341(1953).

29. Mahrer, Y., Pielke, R. A.: The Effects of Topography on Sea and Land Breezes inTwo-Dimensional Numerical Model.Mon.Weath. Rev. 105, 1151-1162 (1977).

30. Mahrer, Y., Pielke, R. A.: A Test of an Upstream Spline Interpolation Techniquefor the Advective Terms in a Numerical Mesoscale Model. Mon. Weath'. Rev. 106,818-830 (1978).

31. Malkus, J. S.: Effects of Wind Shear on Some Aspects of Convection. Trans. Amer.Geophys. Union 30, 19-25 (1949).

32. Malkus, J. S.: Recent Advances in the Study of Convective Clouds and Their Inter-action With the Environment. Tenus 4,71-87 (1952).

33. Malkus, J. S.: The Slopes of Cumulus Clouds in Relation to External Wind Shear.Quart. J. R. Met. Soc. 78,530-542 (1952).

34. Malkus, J. S.: Some Results of a Trade Cumulus Clouds Investigation. J. Met. 11,220-237 (1954).

35. Malkus, J. S.: On the Formation and Structure of Downdrafts in Cumulus Clouds.J. Met. 12, 350-357 (1955).

36. Malkus, J. S., Riehl, H.: Cloud Structure and Distributions Over the Tropical PacificOcean, 229 pp. Univ. of California Press, Berkeley (1964).

37. Malkus, J. S., Scorer, R. S.: The Erosion of Cumulus Towers. J. Met. 12, 43-57

(1955).38. Malkus, J. S., Williams, R. T.: On the Interaction Between Severe Storms and Large

Cumulus Clouds. Met. Monographs 5, 59-64 (1963).39. Moncrieff, M. W., Miller, M. J.: The Dynamics and Simulation of Tropical Cumulo-

nimbus and Squall Lines. Quart. J. R. Met. Soc. 102, 373-394 (1976).40. National Center for Atmospheric Research: Report of the U. S. GATE Central

Program Workshop, 723 pp. Ed. R. Greenfield (1977).41. Pielke, R.: A Three-Dimensional Numerical Model of the Sea Breezes Over South

Florida. Mon. Weath. Rev .102, 115-139 (1974).42. Pielke, R. A., Cotton, W. R.: A Mesoscale Analysis Over South Florida for a High

Rainfall Event. Mon. Weath. Rev. 105, 343-362 (1977).43. Pielke, R. A., Cotton, W. R.: The EvolutionarY Characteristics of Sea and Lake-

Breeze Generated Convective-Mesoscale Systems Over South Florida. Submitted toMon, Weath. Rev. (1979).

44. Pielke, R. A., Mahrer, Y.: The Numerical Simulation of the Airflow Over Barbados.Mon. Weath. Rev. 104, 1392-1402 (1976).

"(8£6[)6S£-oS£ '62' (PURl'B'U3 '~HppqurnJ)II}(!rJ~mo!s °{1lnb~un ~lV ~JuepllA uoflelndod~~ u~1JA\ sue~w Otn.L U~~~~S ~JU~laJJ!a ~~ Jo ~JueJ!J!~!S ~q.L :"1 oS 'qJl~A\ 0£9

°e!U~l!A '~mAS~~~opeqJ'e!u~l!A Jo 4!Sl~A!Un odd 06 'S~JU~!JS {1I~U~UlUOl!AU3 Jo o~d~a °l~Ae, fJ1Ipunos

~~ ~!A\ suo!~Jel~~ul l!~q.L pue suo!~eJndod pnolJ 'v °oN ~lod~'M °qJ~.L °3.LVDJo[9Z Aea :UO!~J~AUOJ d~~a pue tn°J11lqS :oD '~l!OAl~H ueA 'of 'uosdUI!S '"J 'l~UleA\ °Z9

"(8L6[) 6£[ [-££[ [ 'fr{ qJle;}S~'M s~Jrnos~'Ml~~eA\ °1{1lJu!11'M ~A!~J~AUOJ eppold Jo s~J~dsV ~UlOS :ow 'Hue~sleD 'oS '!)jsuem ° [9

"(8L6[) 690[-£90['f[ 1JS °so~V Of l~poW ~A!~dp:>s~a ~II ~red °I{11Ju!11'M ~AflJ~AUOJ Jo ~IJAJ

~Jl' ~~ U! 4!JfllOA pUR ~JU~Hl~A!a ~JeJrnSJo ~1°'M ~q.L :'W '8ue~sleD 'oS '!)jSuem °09

'(8L6[) Z90[-LtO['f[ 1JS °sO~V Of °SISA{1IUV pue uo!~eAl;}Sqo :1 ~led 'J11IJu!e'M ~A!~J~AUOJJO ~IJAJ

~J!' ~~ ul 4!J!~lO A pue ~Jua8l~A!a ~JeJrns Jo ~1°'M ~q.L ;"W 'Hue~sleD 'oS '!)jSuem ° 6S

"(6L6[) epeueJ 'e~l~q1V'JJues "JOS '~~W °l~WV'UO!~eJ!J!pow l~~e~A\ uo "juoJ ~L loA ~Jel~sqv 'e~lV

~~8le.L 3JVd ~~ U!~IA\ I{11Ju!11'M ~A!~J~AUOJ Jo ~U~W~lns1l~W :Of 'ueplof" f 'sewoq.L "8S"(vL6[) opeloloJ 'l~PJn°S 'odd vSZ 'Z[-OdWA\

"M3 °ow~W °uqJ~.L WON '/Jewwns fJeu1UI!l~ld pue {1Iuo!~el~do (3JVd) ~u~w-p~dx3 snJnwnJ e~lV epPold £L6[ :/Jo~eloqe, A8010l0~~~W {1I~u~Ul!l~dX3 'JJII~S 'LS

"(L96[) etn°l 's~wV 'ss~ld4!Sl~A!Ufl ~~e~s etn°l ~q.L °spo~~W {1IJ!~s!~e~s :oD °A\ 'uelqJoJ '0A\ °D 'lOJ~p~US '9S

"(£96[)eURqlfl'A~Alns l~~eA\ ~~e~s S!OU!llI 'oqe, o~~W 'odd LZ '£96[ o~d~S 0£-£9 AJnf [ 'od~'M

°qJ~.L '~len~ 's~u~w~rnse~w oqJ3 repe'M Aq UO!~e~ld!J~ld {1I~lV pue ~U!Od Jo UO!~-eu!UU~~~a ~Al~e~flURnO Jo suofleHfls~Aul :'3 'D '~no~s 'oV.3 'l~n~nw '°, °v 'SUI!S .SS

0(SL6[) vvL-v£L 'fr{ "~~W lddV of °s~Jns~'MI{11Ju!l!'M £L6[-oL6[ ~u~UI!l~dx3 snJnwnJ e~lV eppold :°'° A\' A~lpoOA\ 'of 'uosdUI!S °vS

0([L6[)9Z[-L[[ '2'L{~JU~!JS°s~Jns~'M OL6[ tn~N -eppold u! snJnwnJ 8u!p~~S :"'.A\ 'A~lpoOA\ 'of 'uosdUI!S "£S

°vL6[ A~nA\ :)jlO}" tn~N "(op~ 'oN ° A\ 'ss~H) 08Z-6ZZ odd '9 "deqJ 'uo!~eJ!J

"!poW l~~e~A\ °uo!~eJ!J!pow l!~q.L pue spnolJ snlnwnJ :'S °v 'S!UU~a 'of 'uosdUI!S °ZS"(6L6[) "~~W lddV of o~ p~~!\U

-qns °S~J~JJ3 8u!p~~S snJnwnJ J!Ul1!UAa U! s~8e)ju!, se S~JelpUtnOa ;. f 'uosdUI!S o [S

i£S6[)£0[-v6'6L °JOS"~~W"'M'f '~len~ 'UO!~J~AUOJ ~A!~el~~u~dJo /Jo~q.L ~Iqqns :oH o d 'Ul1!lpn, 'oS °'M 'l~lOJS °OS

"(8L6[) £[L-o69 'f[ 1JS°so~V o f °le~qs PU!A\ ~U~!qwV ~Iqepe A lOJ s~u~UI!l~dx3 ~A!~eledwoJ °1 ~led °UllO~S

-l~punq.L p~~elosl ue Jo l~poW {1IJp~wnN {1IUO!Su~UI!a-~~lq.L V :°3 °'M 'l~8u!s~~JS °6v

"([96[) L9v-[ Sv '8{ o~~W of 'snJnwnJJo Apms {1Iuo!~eAl;}Sqo uv ;'W °d 'sl~punes °8v0(696[) L9-9v '8 O~~W °lddV Of

°suo!~eJndod eppold ~A!~e~U~S~ld~'M U! spnolJ snJnwnJJo ~Z!S ~q.L :oD o A ')jueld o Lv

"(8L6[) 68S[-89S['90{ 'A~'M o~e~A\ °uow 0£L6[ AJnf [ lOJ eppold ~nos l~AO UOflJ!P~ld l~poW ~{1IJS-OS;}W e!U!8l!AJO A~!Sl~A!Ufl ~~ Jo S!SA{1IUV uo!~eJ!JP~A ;o}" 'l~lqeW '"V "M '~)jl;}!d "9v

"(LL6[) £[ [-86 'Of 'so~V )j!SAqd °l~!~S°U!l!ll;}.L rel~~lll l~AO tn°Ul!V ~~Jo Apms {1IJp~wnN V :o}" 'l~l{{1lW "V.'M '~)jlald "Sv

Sl:l81:lW snrnwn:) UQ 6£

40 Joanne Simpson et aI.: On Cumulus Mergers

64. Westcott, N. E.: Radar Characterization of South Florida Convective Rainfall. Proc.Sixth Conf. on Planned and Inadvertent Weather Modification, pp. 190-193.Champaign-Urbana"Illinois. Amer. Met. Soc. (1977).

65. Westcott, N. E.: Radar Characterization of South Florida Rainfall, 74 pp.M. S. Thesis, Dept. of Environmental Sciences, University of Virginia, Charlottesville,Virginia (1977).

66. Westcott, N. E., Simpson, J.: Population Study of Radar Echoes Over South Florida.Submitted to J. Appl. Met. (1979).

67. Wiggert, V., Andrews, G. F.: Digitizing, Recording, and Computer ProcessingWeather Data at EML. NOAA Tech. Memo. ERL WMPO-17, pp. 1-25 (1974).

68. Wiggert, V., Lockett, G. J., Ostlund, S.: Radar Rainshower Growth Histories andTheir Variation With Wind Speed and Echo Motion Over South Florida. Submittedto Mon. Weath. Rev. (1979).

69. Wiggert, V., Ostlund, S.: Computerized Rain Assessment and Tracking of SouthFlorida WSR-57 Weather Radar Echoes. Bull. Amer. Met. Soc. 56,17-26 (1975).

70. Wiggert, V., Ostlund, S., Lockett, G. J., Stewart, J. V.: Computer Software forthe Assessment of Growth Histories of Weather Radar Echoes. NOAA Tech.Mem. ERL WMPO-35 , 85 pp. Boulder, Colorado (1976).

71. Wilson, J. W.: Evaluation of Precipitation Measurements With the WSR-57 WeatherRadar. J. Appl. Met. 3,164-174 (1964).

72. Woodley, W. L., Jordan, J. A., Simpson, J., Biondini, R., Flueck, J.: NOAA's FloridaArea Cumulus Experiment Rainfall Results: 1970-1976. In press

73. Woodley, W. L., Norwood, J., Sancho, B.: Some Aspects of South Florida Showersand Thunderstonns. Weatherwise 24, 106-113 (1971).

74. Woodley, W. L., Olsen, A., Herndon, A., Wiggert, V.: Optimizing the Measurementof Convective Rainfall in Florida. NOAA Tech. Mem. ERL WMPO-18, 9? pp.Boulder, Colorado (1974).

75. Woodley, W. L., Olsen, A. R., Herndon, A., Wiggert, V.: Comparison of Gage andRadar Methods of Convective Rain Measurement. J. Appl. Met. 14,909-928(1975).

76. Woodley, W. L., Sax, R. I.: The Florida Area Cumulus Experiment: Rationale, Design,Procedures, Results and Future Course. NOAA Tech. Rept. ERL 354-WMPO 6,204 pp. (1976).

77. Woodley, W. L., Simpson, J., Biondini, R., Berkeley, J.: Rainfall Results, 19.70-1975:Florida Area Cumulus Experiment. Science 195, 735-742.

78. Woodley, W. L., Simpson, J., Biondini, R., Jordan, J.: NOAA's Florida Area CumulusExperiment Rainfall Results 1970-1976. Sixth Conf. on Inadvertent and PlannedWeather Modification, pp. 206-209. Champaign-Urbana, Illinois, Amer. Met. Soc.(1977).

Authors' addresses: Dr. Joanne Simpson, Goddard Laboratory of Atmospheric Sciences,National Space and Aeronautics Administration, Greenbelt, MD 20771, U.S.A.;R. A. Pielke, Department of EnvirOtlrnental Sciences, University of Virginia;Charlottesville, VA 22903, U.S.A.; Nancy E. Westcott, Atmospheric Sciences Section,Illinois State Water Survey, Urbana, IL 61801, U.S.A.; R. J. Clerman, The MitreCorporation, McLean, VA 22101, U.S.A.

PrintRd in Austria