19
PART 2, SECTION 5 References

PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Embed Size (px)

Citation preview

Page 1: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

PART 2, SECTION 5

References

Page 2: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

15. Hollmann, F., Schmid, A., oxidoreductases for cell-free Biotransform. 22: 63-88.

Part 2, Section 5, References

(2004) Electrochemical regeneration of biocatalytic redox reactions. Biocatal.

16. Steckhan, E., Herrmann, S., Ruppert, R., Thommes, J., and Wandrey, C., (1990) Kontinuierliche Erzeugung von NADH aus NAD+ und formiat mit einem molekulargewichtsvergroBerten homogenkatalysator in einem membran reaktor. Angew. Chem. 102: 445-447 (also in Angew. Chem. Int. Ed. Engl. 29: 388-390).

17. Steckhan, E., Herrmann, S., Ruppert, R., Dietz, E., Frede, M., and Spika, E., (1991) Analytical study of a series of substituted (2,2'-bipyridyl) (pentamethylcyclopentadienyl) rhodium and -iridium complexes with regard to their effectiveness as redox catalysts for the indirect electrochemical and chemical reduction ofNAD(Pt. Organometallics 10: 1568-1577.

18. Yuan, R., Watanabe, S., Kuwabata, S., and Yoneyama, H., (1997) Asymmetric electroreduction of ketone and aldehyde derivatives to the corresponding alcohols using alcohol dehydrogenase as an electrocatalyst. J. Org. Chem. 62: 2494-2499.

19. Schroder, I., Steckhan, E., and Liese, A., (2003) In situ NAD+ regeneration using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. J. Electroanal. Chem. 541: 109-115.

20. Degenring, D., Schroder, I., Wandrey, C., Liese, A., and Greiner, L., (2004) Resolution of 1 ,2-diols by enzyme-catalyzed oxidation with anodic, mediated cofactor regeneration in the extractive membrane reactor: gaining insight by adaptive simulation. Org. Process. Res. Dev. 8: 213-218.

21. Jones, J.B., Sneddon, D.W., Higgins, W., and Lewis, A., (1972) Preparative­scale reductions of cyclic ketone and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amoudts of NAD. J. Chem. Soc. Chem. Commun. 1972: 856-857.

22. Raunio, R., and Lilius, E.M., (1971) Effect of dithionite on enzyme activities in vivo. Enzymologia 40: 360-368.

23. Abril, 0., and Whitesides, G.M., (1982) Hybrid organometallic/enzymatic catalyst systems: regeneration of NADH using dihydrogen. J. Am. Chem. Soc. 104: 1552-1554.

24. Wagenknecht, P.S., Penney, J.M., and Hembre, R.T., (2003) Transition metalcatalyzed regeneration of nicotinamide coenzymes with hydrogen. Organometallics 22: 1180-1182.

25. Bhaduri, S., Mathur, P., Payra, P., and Sharma, K., (1998) Coupling of catalyses by carbonyl clusters and dehydrogenases: reduction of pyruvate to 1-lactate by dihydrogen. J. Am. Chem. Soc. 120: 12127-12128.

26. Julliard, M., Le Petit, J., and Ritz, P., (2004) Regeneration of NAD+ cofactor by photosensitized electron transfer in an immobilized alcohol dehydrogenase system. Biotechnol. Bioeng. 28: 1774-1779.

27. Willner, I., Maidan, R., and Shapira, M., (1990) Thermal and photochemical regeneration of nicotinamide cofactors and a nicotinamide model Compound Using a water-soluble rhodium phosphine catalyst. J. Chem. Soc. Perkin. Trans. 2: 559-564.

197

Page 3: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

28. Rickus, J.L., Tobin, A.J., Zink, J.I., and Dunn, B., (2002) Photochemical enzyme co-factor regeneration: towards continuous glutamate monitoring with a sol-gel optical biosensor. Mater. Res. Soc. Symp. Proc. 723: 155-160.

29. Millership, J.S., (1993) Commonly used chiral drugs : a survey. Chirality 5: 573-576.

30. Cheetham, P. S. J., (1987) Screening for novel biocatalysts. Enz. Microh. Techno/. 9: 194-213.

31. Elander, R.P., (1987) In Basic Biotechnology, ed J. Bu'Lock, B. Kristiansen, London: Academic press. 127.

32. Hummel, W., Weiss, N., and Kula, M. R., (1984) Isolation and characterization of a bacterium possessing L-phenylalanine dehydrogenase activity. Arch. Microhiol. 137: 47-52.

33. Hummel, W., Schmidt, E., Wandrey, C., and Kula, M. R., (1986) !­Phenylalanine dehydrogenase from Brevibacterium sp. for production of !­phenylalanine by reductive amination of phenylpyruvate. AppL Microhiol. Biotechnol. 25: 175-185.

34. Hummel, W., Schutte, H., Schmidt, E., Wandrey, C., and Kula, M. R., (1989) Isolation of !-phenylalanine dehydrogenase from Rhodococcus sp. M4 and its application for the production of !-phenylalanine. AppL MicrohioL Biotechnol. 26: 409-416.

35. Hummel, W., Wendel, U., and Sting, S., (1992) In Biosensors: fundamentals, technologies and applications ed. F. Scheller and R. D. Schmid, Weinheim : VCH publisher, 381.

36. Schneider, K. H., Jakel, J., Hoffmann, R., and Giffhom, F., (1995) Enzyme evolution in Rhodobacter sphaeroides: Selection of a mutant expressing a new galactitol dehydrogenase and biochemical characterization of the enzyme. Microbiology 141: 1865-1873.

37. Ammendola, S., Raja, C. A., Caruso, C., Camardella, L., Dauria, S., Derosa, M., and Rossi, M., (1992) Thermostable NAD+-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases. Biochemistry 31: 12514-12523.

38. Jomvall H., Persson, B., and Jeffery, J. (1987) Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur. J. Biochem. 167: 195-201.

39. Persson, B., Zeigler, J. S., and Jomvall, H. (1994) A super-family of medium­chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT -1 and other proteins. Eur. J. Biochem. 226: 15-22.

40. Aronson, B. D., Somerville, R. L., Epperly, B. R., and Dekker, E. E.(1989) The primary structure of Escherichia coli L-threonine dehydrogenase. J. BioL Chem. 264: 5226-5232.

41. Karlsson, C., and Hoog, J. 0. (1993) Zinc coordination in mammalian sorbitol dehydrogenase. Replacement of putative zinc ligands by site-directed mutagenesis. Eur. J. Biochem. 216: 103-107.

198

Page 4: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

42. Bright, J. R., Byrom, D., Danson, M. J., Hough, D. W., and Towner, P. (1993) Cloning, sequencing and expression of the gene encoding glucose dehydrogenase from the thermophilic archaeon Thermoplasma acidophilum. Eur. J. Biochem. 211: 549-554.

43. Amy, C. M., Witkowski, A., Naggert, J., Williams, B., Randhawa, Z., and Smith, S., (1989) Molecular cloning and sequencing of cDNAs encoding the entire rat fatty acid synthase. Proc. Nat[. Acad. Sci. USA. 86: 3114-3118.

44. Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J., and Kartz, L. ( 1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675-679.

45. Villarroya, A., Juan, E., Egestad, B., and Jomvall, H. (1989) The primary structure of alcohol dehydrogenase from Drosophila lebanonensis. Extensive variation within insect 'short-chain' alcohol dehydrogenase lacking zinc. Eur. J. Biochem. 180: 191-197.

46. Taylor, S. S., Rigby, P. J. W., and Hartley, B. S., (1974) Ribitol dehydrogenase from Klebsiella aerogenes. Purification and subunit structure. Biochem. J. 141: 693-700.

47. Dothie, J. M., Giglio, J.R., Moore, C. B., Taylor, S. S., and Hartley, B. S. (1985) Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains. Biochem. J. 230: 569-78.

48. Pauly, H. E., and Plleiderer, G. (1975) D-glucose dehydrogenase from Bacillus megaterium M 1286: purification, properties and structure. Hoppe. Seylers. Z. Physiol. Chem. 356: 1613-23.

49. Jany, K. D., Ulmer, W., Froschle, M., and Pfleiderer, G. (1984) Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium. FEBS Lett. 165: 6-10.

50. Conway, T., Sewell, G. W., Osman, Y. A., and Ingram, I. 0. (1987) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J. BacterioL 169: 2591-2597.

51. Williamson, V. M., and Paquin, C. E. (1987) Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol. Gen. Genet. 209: 374-81.

52. Chou, P. Y., and Fasman, G. D., (1974) Prediction of protein conformation. Biochemistry. 13: 222-45.

53. Jomvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J. and Ghosh, D. (1995). Short-chain dehydrogenases/reductases (SDR). Biochemistry. 34: 6003-13.

54. Kozma, E., Brown, E., Ellis, E. M. and Lapthom, A. (2002) The crystal structure of rat liver AKR 7 A 1. A dimeric member of the aldo-keto reductase superfamily. J. Bioi. Chem. 277: 16285-93.

55. Yokoyama, S. I., Suzuki, T., Kawai, K., Horitsu, H., and Takamizawa, K. (1995) Purification, characterization and structure analysis of NADPH­dependent D-xylose reductases from Candida tropicalis. J. Ferment. Bioeng. 79: 217-23.

199

Page 5: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

56. Khurana, S., Powers, D. B., Anderson, S. and Blaber, M. (1998) Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1A resolution. Proc. Nat/. Acad. Sci. USA. 95 : 6768-73.

57. Hur, E., and Wilson, D. K. (2000) Crystallization and aldo-keto reductase activity of Gcy1 p from Saccharomyces cerevisiae. Acta. Crystallogr. D. Bioi. Crystallogr. 56: 763-5.

58. Sanli, G., and Blaber, M. (2001) Structural assembly of the active site in an aldo-keto reductase by NADPH cofactor. J. Mol. Bioi. 22: 1209-18.

59. Kaluzna, W. A., Matsuda, T., Sewell, A. K., and Stewart, J. D., (2004) Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J. Am. Chem. Soc. 126: 12827-12832.

60. Li, F., Cui, J. N., Qian, X. H., and Zhang, R., (2004) A novel strategy for the preparation of arylhydroxylamines: chemoselective reduction of aromatic nitro compounds using bakers' yeast. Chem. Commun. 2338-2340.

61. Spain, J. C., (1995) Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49 : 523-555.

62. Koder, R. L., Haynes, C. A., Rodgers, M. E., Rodgers, D. W., and Miller, A. F., (2002) Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry 4: 14197-14205.

63. Barbieri, C., Caruso, E., D'Arrigo, P., Fantoni, G.P., and Servi, S., (1999) Chemo enzymatic synthesis of (R)- and (S)-3,4-dichloro-phenylbutanolide intermediate in the synthesis of Sertraline. Tetrahedron. Asymmetry 10: 3931-3937.

64. Eder, U., Sauer, G., and Wiechert, R., (1971) New type of asymmetric cyclization to optically active steroid CD partial structures. Angew. Chem. Int. Ed. Engl. 10: 496-497.

65. Fuhshuku, K.-I., Funa, N., Akeboshi, T., Ohta, H., Hosomi, H., Ohba, S., and Sugai, T., (2000) Access to Wieland-Miescher ketone in an enantiomerically pure form by a kinetic resolution with yeastmediated reduction. J. Org. Chem. 65: 129-135.

66. Hioki, H., Hashimoto, T., and Kodama, M., (2000) Efficient kinetic resolution of 4-methyl-Hajos-Parrish ketone by baker's yeast reduction. Tetrahedron. Asymmetry. 11: 829-834.

67. Buisson, D., Baucherel, X., Levoirier, E., and Juge, S., (2000) Baker's yeast reduction of a-alkyl-a-hydroxy-~-keto esters. Tetrahedron. Lett. 41:1389-1392.

68. Mandai, D., (2004). Enantioselective bioreduction of acetophenone and its analogous by the fungus Trichothecium sp. J. MoL Catal. B. : Enzym. 27 : 61-63.

69. Curt, W., Bradshaw, Hong, Fu., Gwo-Jenn, Shen., and Chi-Huey, Wong, A., (1992) Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis J. Org. Chem. 57 : 1526-1532.

200

Page 6: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

70. Ema, T., Moriya, H., Kofukuda, T., Ishida, T., Maehara, K., Utaka, M., Sakai, T., (2001) High enanatioselectivity and broad substrate specificity of a carbonyl reductase: toward a versatile biocatalyst. J. Org. Chem. 66: 8682-8684.

71. Yadav, J.S., Nanda, S., Thirupathi Reddy, P., and Bhaskar Rao, A., (2002) Efficient enantioselective reduction of ketones with Daucus carota root. J. Org. Chem. 67: 3900-3903.

72. Speicher, A., Roeser, H., and Heisel, R., (2003) Stereoselective oxidoreductase type bioconversion of exogenous substrates by cell suspension cultures of bryophytes. J. Mol. Catal. B. Enzym. 22: 71-77.

73. Haberland, J., Hummel, W., Daussmann, T., and Liese, A., (2002) New continuous production process for enantiopure (2R,5R)-hexanediol. Org. Process. Res. Dev. 6: 458-462.

74. Matsuyama, A., Yamamoto, H., Kawada, N., and Kobayashi, Y., (2001) Industrial production of (R)-1 ,3-butanediol by new biocatalysts. J. Mol. Catal. B. Enzym. 11: 513-521.

75. Filho, M.V., Stillger, T., Muller, M., Liese, A., and Wandrey, C., (2003) Is logP a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions? Angew. Chem. Int. Ed. Engl. 44: 2993-2996.

76. Groger, H., Hummel, W., Buchholz, S., Drauz, K., van Nguyen, T., Rollmann, C., Husken, H., and Abokitse, K., (2003) Practical asymmetric enzymatic reduction through discovery of dehydrogenase compatible biphasic reaction media. Org. Lett. 5: 173-176.

77. Groger, H., Hummel, W., Buchholz, S., Drauz, K., Nvan Nguyen, T., Rollmann, C., Hiisken, H., and Abokitse, K., (2003) Practical asymmetric enzymatic Reduction through discovery of a dehydrogenase-compatible biphasic reaction media. Org. Lett. 5: 173-176.

78. Villela Filho, M., Stillger, T., Muller, M., Liese, A., and Wandrey, C., (2003) Is log P a Convenient criterion to guide the choice of solvents for biphasic enzymatic reactions? Angew. Chem. Int. Ed. 42: 2993-2996.

79. Eckstein, M., Filho, V, M., A., Liese, and Kragl, U., (2004) Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction. Chem. Commun. 1084-1085.

80. Bruce, N.C., and Walker, A.J., (2004) Cofactor-dependent enzyme catalysis in functionalized ionic solvents. Chem. Commun. 2570- 2572.

81. Liese, A., Seelbach, K., and Wandrey, C. Industrial Biotransformations; Wiley­VCH: Weinheim, Germany, 2000: 103-106.

82. Kruse, W., Hummel, W., and Kragl, U., (1996) Alcohol-dehydrogenase catalysed production of chiral hydrophobic alcohols. A new approach leading to nearly waste free process. Reel. TraY. Chim. Pays-Bas 115: 239- 243.

83. Hummel, W., (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. TIBTECH. 17: 487- 492.

84. Abokitse, K., and Hummel, W., (2003) Cloning, sequence analysis and heterologous expression of the gene encoding a (S)-specific alcohol dehydrogenase from Rhodococcus erythropolis DSM 43 297. Appl Microbiol. Biotechnol. 62: 380-386.

201

Page 7: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

85. Grunwald, J., Wirz, B., Scollar, M.P., Klibanov, A.M., (1986) Asymmetric oxidoreductions catalyzed by alcohol dehydrogenase in organic solvents. J. Am. Chem. Soc. 108: 6732-6734.

86. Stampfer, W., Kosjek, B., Kroutil, W., Faber, K., (2003) On the organic solvent and thermostability of the biocatalytic redox system of Rhodococcus ruber DSM 44541. Biotechnol. Bioeng. 81: 865-869.

87. Geueke, B., Riebel, B., Hummel, W., (2003) NADH oxidase from Lactobacillus brevis: A new catalyst for the regeneration of NAD. Enz. Microb. Techno[. 32: 205-211.

88. Lamed, R. J., and Gregory, J., (1981) Novel NADP-linked alcohol­aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Zeikus. Biochem. J. 195: 183-190.

89. Korkhin, Y., Kalb (Gilboa), A. J., Peretz, M., Bogin, 0., Burstein, Y., and Frolow, F., (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J. Mol. Bioi. 278: 965-979.

90. Peretz, M., and Burstein, Y., (1989) Amino acid sequence of alcohol dehydrogenase from the thermophilic bacterium Thermoanuerobium brockii. Biochemistry. 28: 6549-6555.

91. Keinan, E., Hafeli, E.K., Seth, K.K., and Lamed, R., (1986) Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. J. Am. Chem. Soc. 108: 162-169.

92. De Amici, M., De Micheli, C., Gianferrara, T., and Stefancich, G., (1997) Chemoenzymatic synthesis of chiral biologically active heterocycles. Farmaco 52: 307-309.

93. Velonia, K., and Smonou, I., (2000) Dismutation of aldehydes catalyzed by alcohol dehydrogenases. J. Chem. Soc. Perkin Trans. 1: 2283-2289.

94. Peretz, M., Bogin, 0., Keinan, E., and Burstein, Y., (1993) Stereospecificity of hydrogen transfer by the NADP-linked alcohol dehydrogenase from the thermophilic thermophilic bacterium Thermoanaerobium brockii. Int. J. Pept. Protein Res. 42: 490-495.

95. Alkassim, L.S., and Tsai, C.S., (1990) Studies of NADP+-Preferred secondary alcohol dehydrogenase from Thermoanaerobium brockii. Biochem Cell Bioi·· Biochimie Et Biologie Cellulaire 68: 907-913.

96. Kleifeld, 0., Frenkel, A., Bogin, 0., Eisenstein, M., Brumfeld, V., and Burstein, Y., (2000) Spectroscopic studies of inhibited alcohol dehydrogenase from Thermoanaerobacter brockii: proposed structure for the catalytic intermediate state. Biochemistry 39: 7702-7711.

97. Chenault, H.K., and Whitesides, G.M., (1987) Regeneration of nicoti-namide cofactors for use in organic synthesis. Appl. Biochem. Biotechnol. 14: 147-197.

98. Yang, H., Joensson, A., Wehtje, E., Adlercreutz, P., and Mattiasson, B., (1997) The enantiomeric purity of alcohols formed by enzymatic reduction of ketones

202

Page 8: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

can be improved by optimisation of the temperature and by using a high co­substrate concentration. Biochim. Biophys. Acta 1336: 51-58.

99. Demirjian, D.C., Moris-Varas, F., and Cassidy, C.S., (2001) Enzymes from extremophiles. Curr. Opin. Chem. Bioi. 5: 144.

100. Iyer, R. B., and Leonidas, G., (2004) Bachas Enzymatic recycling ofNADPH at high temperature utilizing a thermostable glucose-6-phosphate dehydrogenase from Bacillus stearothermophilus. Journal of Molecular Catalysis B : Enzymatic 28: 1-5.

101. Okuno, H., Nagata, K., and Nakajima, H., (1985) Purification and properties of glucose-6-phosphate dehydrogenase from Bacillus stearothermophilus. J. Appl. Biochem. 1: 192-201.

102. Syldatk, C., Muller, R., Siemann, M., Krohn, K., and Wagner, F., (1992) Biocatalytic Production of Amino Acids and Derivatives. Eds.: J. D. Rozzell, F. Wagner, Hanser, Miinchen. 75.

103. Syldatk, C., Muller, R., Pietzsch, M., Wagner, F., and Rozzell, D., (1992) Biocatalytic Production of Amino Acids and Derivatives. Eds.: J. D. Rozzell, F. Wagner, Hanser, Miinchen. 129

104. Drauz, K., and Waldmann, H., (1995) Enzyme Catalysis in Organic Synthesis. VCH, Weinheim. 409.

105. Ware, E., (1950) The Chemistry of the Hydantoins. Chem. Rev. 46 (3): 403-470.

106. Spinks, A., and Waring, W. S., (1963) Anticonvulsant drugs Prog. Med. Chem. 19:261-331.

107. Brouillete, W. J., Jestkov, V. P., Brown, M. L., Akhtar, M. S., DeLorey, T. M., and Brown, G. B., ( 1994) Bicyclic hydantoins with a bridgehead nitrogen. Comparison of anticonvulsant activities with binding to the neuronal voltage­dependent sodium channel. J. Med. Chem. 37: 3289-3293.

108. Nefzi, A., Giulianotti, M., Truong, L., Rattan, S., Ostresh, J. M., and Houghten, R. A., (2002) Solid-phase synthesis of linear ureas tethered to hydantoins and thiohydantoins. J. Comb. Chem. 4: 17 5-178.

109. Mizuno, T., Kino, T., Ito, T., and Miyata, T., (2000) Synthesis of aromatic urea herbicides by the selenium-assisted carbonylation using carbon monoxide with sulphur. Synth. Commun. 30: 1675-1688.

110. Mappes, C. J., Pommer, E. H., Rentzea, C., and Zeeh, B., (1980) (BASF A.-G., Fed. Rep. Ger.). US Patent 4,198,423. Chem. Abstr. 1980,93:71784.

111. Chezal, J. M., Delmas, G., Mavel, S., Elakmaoui, H., Metin, J., Diez, A., Blache, Y., Gueffier, A., Rubiralta, M., Teulade, J. C., and Chavignon, 0., (1997). Solid-Supported Heterocumulenes: Preparation and Crystal Structure of Azaaplysinopsins. J. Org. Chem. 62: 4085-4087.

112. Selic, L., Jakse, R., Lampic, K., Golic, L., Golic-Grdadolnik, S., and Stanovnik, B. (2000) A simple stereoselective synthesis of aplysinopsin analogs. Helv. Chim. Acta 83: 2802-2811.

113. Pettit, G. R., Herald, C. L., Leet, J. E., Gupta, R., Schaufelberger, D. E., Bates, R. B., Clewlow, P. 1., Doubek, D. L., Manfredi, K. P., Rutzler, K., Schmidt, J. M., Tackett, L. P., Ward, F. B., Bruck, M., and Camou, F., (1990)

203

Page 9: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

Antineoplastic agents. 168. Isolation and structure of axinonydantoin. Can. J. Chem. 68: 1621-1624.

114. Inaba, K., Sato, H., Tsuda, M., and Kobayashi, J., (1998) Spongiacidins A-D, new bromopyrrole alkaloids from Hymeniacidon sponge. J. Nat. Prod. 61: 693-695.

115. Sosa, A. C. B., Yakushijin, K., and Horne, D. A., (2002) Synthesis of axinohydantoins. J. Org. Chem. 67: 4498- 4500.

116. Crews, P., Clark, D. P., and Tenney, K., (2003) Variation in the alkaloids among Indo-Pacific Leucetta sponges. J. Nat. Prod. 66: 177-182.

117. Uemoto, H., Tsuda, M., and Kobayashi, J., (1999) Mukanadins A-C, new bromopyrrole alkaloids from marine sponge Agelas nakamurai. J. Nat. Prod. 62: 1581-1583.

118. Nakajima, N., Matsumoto, M., Kirihara, M., Hashimoto, M., Katoh, T., and Terashima, S., (1996) Novel synthesis of ( + )-hydantocidin based on the plausible biosynthetic pathway. Tetrahedron 52: 1177-1194.

119. Mio, S., Ichinose, R., Goto, K., Sugai, ,S. and Sato, S., (1991) Synthetic studies on (+)-hydantocidin (1): A total synthesis of(+)-hydantocidin, a new herbicidal metabolite from microorganism. Tetrahedron 47: 2111-2120.

120. Mio, S., Shiraishi, M., Sugai, S., Haruyama, H., and Sato, S., (1991) Synthetic studies on ( + )-hydantocidin (2): Aldol addition approaches toward the stereoisomers of ( + )-hydantocidin. Tetrahedron 47: 2121-2132.

121. Renard, A., Lhomme, J., and Kotera, M., (2002) Synthesis and Properties of Spiro Nucleosides Containing the Barbituric Acid Moiety. J. Org. Chem. 67: 1302-1307.

122. Walter, M. W., (2002) Structure-based design of agrochemicals. Nat. Prod. Rep. 19: 278-291.

123. Smith, P. W., Lai, 1. Y. Q., Whittington, A. R., Cox, B., Houston, J. G., Stylli, C. H., Banks, M. N., and Tiller, P. R., (1994) Synthesis and biological evaluation of a library containing potentially 1600 amides I esters. A strategy for rapid compound generation and screening. Bioorg. Med. Chem. Lett. 1994, 4, 2821-2824.

124. Carell, T., Wintner, E. A., Sutherland, A. 1., Rebek, 1., Dunayevskiy, Y. M., and Vouros, P., (1995) New promise in combinatorial chemistry: synthesis, characterization, and screening of small-molecule libraries in solution. Chem. Bioi. 2: 171-183.

125. Cheng, S., Tarby, C. M., Comer, D. D., Williams, J.P., Caporale, L. H., Myers, P. L., and Boger, D. L., (1996) A solution-phase strategy for the synthesis of chemical libraries containing small organic molecules: A universal and dipeptide mimetictemplate. Bioorg. Med. Chem. 4: 727-737

126. Kaldor, S. W., Siegel, M. G., Fritz, 1. E., Dressman, B. A., and Hahn, P. 1., (1996) Use of solid supported nucleophiles and electrophiles for the purification of non-peptide small molecule libraries. Tetrahedron Lett. 37: 7193-7196.

204

Page 10: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

127. Studer, A., Hadida, S., Ferrito, R., Kim, S.Y., Jeger, P., Wipf, P., and Curran, D. P., (1997) Fluorous Synthesis: A Fluorous-Phase Strategy for Improving Separation Efficiency in Organic Synthesis. Science 275: 823.

128. Beller, M., Eckert, M., Moradi, W. A., and Neumann, H., (1999) Palladium­Catalyzed Synthesis of Substituted Hydantoins- New Carbonylation Reaction for the Synthesis of Amino Acid Derivatives. Angew. Chem. Int. Ed. 38: 1454-1457.

129. Knifton, J. F., (1996) Applied Homogeneous Catalysis with Metal Complexes (Eds.: B. Cornils, W. A. Herrmann), VCH, Weinheim: 159

130. Kiihlein, K., and Geissler, H., Transition Metals for Organic Synthesis (Eds.: M. Beller, C. Bolm), WILEY-VCH, Weinheim: 79.

131. Blagoeva, I. B., Pojarlieff, I. G., and Kirby, Anthony J., (1984) Intramolecular nucleophilic attack on carboxylate by ureide anion. General acid-base catalysis of the alkaline cyclisation of 2,2,3,5-tetramethylhydantoic acid. J. Chem. Soc. Perkin Trans. 2 745-751.

132. Blagoeva, I. B., (1987) General acid-base catalysed cyclisation reactions of a strained m-phenylhydantoic acid. J. Chem. Soc. Perkin Trans. 2: 127-134.

133. Blagoeva, I. B., Pojarlieff, I. G., Tashev, D. T., and Kirby, A. J., (1989) Intramolecular nucleophilic attack by urea nitrogen. Reactivity-selectivity relationships for the general acid-base catalysed cyclisations of ureido acids and esters. J. Chem. Soc. Perkin Trans. 2: 347-353.

134. Stella, V., and Higuchi, T., (1973) Kinetics of the acid-catalyzed closure of hydantoic acids. Effect of 2-aryl and 2-alkyl substituents J. Org. Chem. 38: 1527- 1534.

135. Giiler, F., and Moodie, R. B., (1980) Kinetics and mechanism of cyclisation of N-(methylaminocarbonyl)glycine to 3-methylimidazolidine-2,4-dione. J. Chem. Soc. Perkin Trans. 2: 1752-1756.

136. Eckert, H., and Forster, B., (1987) Triphosgene, a crystalline phosgene substitute. Angew. Chem., Int. Ed. Engl. 26: 894- 895.

137. Muccioli, G. G., Poupaert, J. H., Wouters, J., Norberg, B., Poppitz, W., Scriba, G. K. E., and Lambert, D. M., (2003) A rapid and efficient microwave­assisted synthesis of hydantoins and thiohydantoins. Tetrahedron 59: 1301-1307.

138. Muccioli, G. G., Wouters, J., Poupaert, J. H., Norberg, B., Poppitz, W., Scriba, G. K. E., and Lambert, D. M., (2003) Versatile access to benzhydryl­phenylureas through an unexpected rearrangement during microwave-enhanced synthesis ofhydantoins. Org. Lett. 5: 3599- 3602.

139. Paul, S., Gupta, M., Gupta, R., and Loupy, (2002) A microwave assisted synthesis of 1,5-disubstituted hydantoins and thiohydantoins in solvent-free conditions. Synthesis, 75-78.

140. Ishii, A., Kotani, T., Nagaki, Y., Shibayama, Y., Toyomaki, Y., Okukado, N., Ienaga, K., and Okamoto., K. (1996) Highly selective aldose reductase inhibitors. 1. 3-( arylalkyl)-2, 4, 5-trioxoimidazolidine-1-acetic acids. J. Med. Chem. 39: 1924-1927.

205

Page 11: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

141. Sarges, R., Bordner, J., Dominy, B. W., Peterson, M. J., and Whipple, E. B., (1985) Synthesis, absolute configuration and conformation of the aldose reductase inhibitor sorbinil. J. Med. Chem. 28: 1716-1720.

142. Martarello, L., McConathy, J., Camp, V. M., Malveaux, E. J., Simpson, N. E., Simpson, C. P., Olson, J. J., Bowers, G. D., and Goodman, M. M., (2002) Synthesis of syn- and anti-1-amino-3-C 8F]fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC), potential PET ligands for tumor detection. J. Med. Chem. 45: 2250-2259.

143. J. Li., L. Li., T. Li., H. Li., and J. Liu., (1996) An efficient and convenient procedure for the synthesis of 5,5-disubstituted hydantoins under ultrasound. Ultrasonics Sonochem. 3: 141-143.

144. Uhrich, K., Olson, E., and Worman, J., (1986) Aqueous, Room Temperature Synthesis of a 3(N) Substituted Hydantoin. Synth. Commun. 16:1387-1392.

145. O'Brien, R. A., Worman, J. J., and Olson, E. S., (1992) Carbon dioxide in organic synthesis: preparation and mechanism of formation ofN-(3)-substituted hydantoins. Synth. Commun. 22: 823-828.

146. Edmunds, J. J., Klutchko, S., Hamby, J. M., Bunker, A.M., Connolly, C. J. C., Winters, R. T., Quin III, J., Sircar, 1., Hodges, J. C., Panek, R. L., Keiser, J. A., and Doherty, A. M., (1995) Derivatives of 5-[[1-4(4 carboxybenzyl)imidazolyl]methylidene ]hydantoins as orally active angiotensin II receptor antagonists J. Med. Chem. 38: 3759-771.

147. Reitz, A. B., Baxter, E. W., Bennett, D. J., Codd, E. E., Jordan, A. D., Malloy, E. A., Maryanoff, B. E., McDonnell, M. E., Ortegon, M. E., Renzi, M. J., Scott, M. K., Shank, R. P., Sherrill, R. G., Vaught, J. L., and Wustrow, D. J. (1995) N-Aryl-N'-benzylpiperazines as potential antipsychotic agents. J. Med. Chem. 38: 4211-4222.

148. Smith, R. J., Bratovanov, S., and Bienz, S., (1997) Synthesis of silicon­containing a-amino acids and hydantoins. Tetrahedron 53:13695-13702.

149. Ravindranathan, T., Hiremath, S. V., Gosavi, K., and Reddy, D. R., (1989) A Convenient synthesis of 1,3-Dibenzyl-5-methylenehydantoin. Synthesis 38-39.

150. Evindar, G., and Batey, R. A., (2003) Peptide heterocycle conjugates: A diverted Edman degradation protocol for the synthesis of N-terminal 2-iminohydantoins. Org. Lett. 5: 1201-1204.

151. Ryczek, J., (1994) A new method of synthesis of 3-monosubstituted-2-thiohydantoins and 3-monsubstituted-2-hydantoins. Polish J. Chem. 68:2599-2604.

152. Ryczek, J., (2002) Synthesis of 3-!1-aminohydantoins. J. Heterocyclic Chem. 39: 997-1000.

153. Sim, M. M., and Ganesan, A., (1997) Solution-phase synthesis of a combinatorial thiohydantoin library. J. Org. Chem. 62: 3230-3235.

154. Charton, J., Delarue, S., Vendeville, S., Debrue-Fontaine, M.A., Girault-Mizzi, S., and Sergheraert, C., (200 1) Convenient synthesis of tetrahydroisoquinoline­hydantoins. Tetrahedron Lett. 42: 7559-7561.

206

Page 12: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

155. Gong, Y. D., Sohn, H. Y., and Kurth, M. J., (1998) Microwave-mediated intramolecular carbanilide cyclization to hydantoins employing barium hydroxide catalysis. J. Org. Chem. 63: 4854-4856.

156. Ley, S. V., Massi, A., Rodriguez, F., Horwell, D. C., Lewthwaite, R. A., Pritchard, M. C., and Reid, A. M., (2001) A new phase-switch method for application in organic synthesis programs employing immobilization through metal-chelated tagging. Angew. Chem. Int. Ed. 40: 1053-1055.

157. Evindar, G., and Batey, R. A., (2003) Peptide heterocycle conjugates: A diverted Edman degradation protocol for the synthesis of N-terminal 2-iminohydantoins. Org. Lett. 5: 1201-1204.

158. Fraser, W., Suckling, C. 1,. and Wood, H. S.C., (1990) Latent inhibitors. Part 7. Inhibition of dihydro-orotate dehydrogenase by spirocyclopropanobarbiturates. J. Chem. Soc. Perkin Trans. 1: 3137-3144.

159. Talaty, E. R., Yusoff, M. M., Ismail, S. A., Gomez, J. A., Keller, C. E., and Younger, J. M., (1997) Preparation of substituted imidazolidinones and hydantoins by ring-expansion of aziridinones. Synlett 683-685.

160. Giitschow, M., Hecker,T., and Eger, K., (1999) A new one-pot synthesis of 5, 5, disubstituted hydantoins from diethyl acetamidomalonates and ureas. Synthesis 41 0-415.

161. Meusel, M., Ambrozak, A., Hecker, T. K., and Giitschow, M., (2003) The aminobarbituric acid-hydantoin rearrangement. J. Org. Chem. 68: 4684-4692.

162. Mui Mui Sim and Arasu Ganesan (1997) Solution-phase synthesis of a combinatorial thiohydantoin libraryl. J. Org. Chem. 62: 3230-3235.

163. DeWitt, S. H., Kiely, J. S., Stankovic, C. 1., Schroeder, M. C., Reynolds Cody, D. M., and Pavia, M. R., (1993) Diversomers: An approach to nonpeptide, nonoligomeric chemical diversity. Proc. Natl. Acad. Sci. USA 90: 6909- 6913.

164. Huang, W., Cheng, S., and Sun, W., (2001) 2-Polystyrylsulfonyl ethanol supports for the solid-phase syntheses of hydantoins and ureas. Tetrahedron Lett. 42: 1973-1974.

165. Park, K. H., and Kurth, M. J., (2000) Hydantoin formation by cyclo­elimination: reactivity difference between Merrifield and Wang-derived resins. Tetrahedron Lett. 41: 7 409-7 413.

166. Kim, S. W., Ahn, S. Y., Koh, J. S., Lee, J. H., Ro, S., and Cho, H. Y., (1997) Solid phase synthesis of hydantoin library using a novel cyclization and traceless cleavage step. Tetrahedron Letters 38: 4603-4606.

167. Nefzi, A., Ostresh, J. M., Giulianotti, M., and Houghten, R. A., (1998) Efficient solid phase synthesis of 3, 5-disubstituted hydantoins. Tetrahedron Lett. 39: 8199-8202.

168. Bhalay, G., Cowell, D., Hone, N. D., Scobie, M., and Baxter, A. D., (1998) Multiple solid-phase synthesis of hydantoins and thiohydantoins. Mol. Divers. 3: 195-198.

169. Gupta, P., Singh, S. K., Pathak, A., and Kundu, B., (2002) Template-directed approach to solid-phase combinatorial synthesis of furan based libraries. Tetrahedron 58: 10469-10474.

207

Page 13: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

170. Heine, N., Germeroth, L., Schneider-Mergener, J., and Wenschuh, H. A., (2001) Modular approach to the SPOT synhesis of 1, 3, 5- trisubstituted hydantoin on cellulose membranes. Tetrahedron Lett. 42: 227- 230.

171. Syldatk, C., May, 0., Altenbuchner, J., Mattes and Siemann, M., (1999) Microbial hydantoinases - Industrial enzymes from the origin of life. Appl. Microbiol. Biotechnol. 51: 293-309.

172. Arcuri, M. B., Antunes, 0. A. C., Sabino, S. J., Pinto, G. F., and Oestreicher, E. G., (2000) Resolution of DL-hydantoins by D-hydantoinase from Vigna angularis: Production of highly enantioemiched N-carbamoyl-D-phenylglycine at 100% conversion. Amino Acids 19: 477-482.

173. Tellier, F., Acher, F., Brabet, I., Pin, J. P., and Azerad, R., (1998) Aminobicyclo[2.2.1.]heptane dicarboxy1ic acids (ABHD), rigid analogs of ACPD and glutamic acid: synthesis and pharmacological activity on metabotropic receptors mGluR1 and mGluR2. Bioorg. Med. Chem. 6: 195-208.

174. Kie' c-Kononowicz. K., Stadnicka, K., Mitka, A., Pekala, E., Filipek, B., Sapa, J., and Zygmunt, M., (2003) Synthesis, structure and antiarrhythmic properties evaluation of new basic derivatives of 5,5-diphenylhydantoin. Bur. J. Med. Chem. 38: 555-566.

175. Edmunds, J. J., Klutchko, S., Hamby, J. M., Bunker, A.M., Connolly, C. J. C., Winters, R. T., Quin III, J., Sircar, I.,. Hodges, J. C., Panek, R. L., Keiser, J. A., and Doherty, A. M., (1995) Derivatives of 5-[[1-(4'­carboxybenzyl)imidazolyl]methylidene ]hydantoins as orally active angiotensin II receptor antagonists. J. Med. Chem. 38: 3759-3771.

176. Alcaraz, L., Baxter, A., Bent, J., Bowers, K., Braddock, M., Cladingboel, D., Donald, D., Fagura, M., Furber, M., Laurent, C., Lawson, M., Mortimore, M., McCormick, M., Roberts, N., and Robertson, M., (2003) Novel P2X[7] receptor antagonists. Bioorg. Med. Chem. Lett. 13: 4043-4046.

177. Sankhavasi, W., Kohmoto, S., Yamamoto, M., Nishio, T., Iida, I., and Yamada, K., (1992) Chiral Hydantoin; A new dienophi1e for Diels-Alder reaction. BulL Chem. Soc. Jpn. 65: 935-937.

178. Bakalova, A., Buyukliev, R., Tcholakova, I., Momekov, G., Konstantinov, S., and Karaivanova, M., (2003) Synthesis, physicochemical investigation and cytotoxic activity of new Pt(II) complexes with hydantoin ligands. Bur. J. Med. Chem. 38: 627-632.

179. Vessieres, A., Kowalski, K., Zakrzewski, J., Stepien, A., Grabowski, M., and Jaouen, G., (1999) Synthesis of CpFe(CO)(L) Complexes of hydantoin anions (Cp = rr -CsHs, L = CO, PPh3), and the use of the 5,5-dipheny1hydantoin anion complexes as tracers in the nonisotopic immunoassay. CMIA of this antiepileptic drug. Bioconjugate Chem. 10: 379-385.

180. Chowdhry, M. M., Burrows, A. D., Mingos, D. M. P., White, A. J. P., and Williams, D. J., (1995) Synthesis and crystal structure of 5-(2-pyridylmethylene)hydantoin (Hpyhy) and complexes of pyhy with nickel(Il) and copper(Il). J. Chem. Soc., Chem. Commun. 1521-1522.

181. Pezeshk, A., and Pezeshk, V., (1991) Drug-metal interactions: Spectroscopic studies of copper hydantoin complexes. J. Inorg. Biochem. 42: 267-272.

208

Page 14: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

182. Akitsu, T., Komorita, S., Kushi, Y., Li, C., Kanehisa, N., and Kai, Y., (1997) Structures of bis( 5 ,5-diphenylhydantoinato )copper(II) complexes with primary amines involving square pyramidal CuN40 chromophores. Bull. Chem. Soc. Jpn. 70: 821-827.

183. Suzuki, T., Igarashi, K., Hase, K., and Tuzimura, K., (1973) Optical rotator dispersion and circular dichroism of amino acid hydantoins. Agr. Bioi. Chem. 37: 411-416.

184. Shahi, P., (2004) Characterization of a thioesterase from Alcaligenes faecalis and a dehydrogenase from Penicillium funiculosum and applications of the dehydrogenase in the preparation of pharmaceuticals and fine chemicals.

185. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M., and Stackebrandt, E., (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 46: 1088-1092.

186. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.

187. Thompson, J.D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., (1997) The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.

188. Saitou, N., and Nei, M., (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Bioi. Evol 4: 406-425.

189. Kimura, M., (1980) A simple method for estimation of evolutionary rate of base substitutions through comparative studies of nucleotode sequences. J. Mol. Evol 16: 111-120.

190. Felsenstein, J., (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.

191. Marino, J. P., McClure, M. S., Holub, D. P., Comasseto, J. V., Tucci, F. C., (2002) Stereocontrolled synthesis of (-)-Macrolactin A. J. Am. Chem. Soc. 124: 1664.

192. Song, C.E., Lee, J.K., Lee. S.H., Lee, S., (1995) New method for the preparation of (R)-camitine. Tetrahedron: Asymmetry 5: 1063-66.

193. Kitamura, M., Ohkuma, T., Takaya, H., Noyori, R., (1988) A practical asymmetric synthesis of camitine. Tetrahedron Letters 29: 1555-56.

194. Kolb, H.C., Bennani, Y.L., Sharpless, K.B., (1993) Short and practical syntheses of(R)-(-)-camitine and (R)-(-)-y-amino-~-hydroxybutyric acid (GABOB). Tetrahedron: Asymmetry 4: 133-141.

195. Davies, S.G., Ichihara, 0., (1996) Asymmetric synthesis of (+)-negamycin. Tetrahedron: Asymmetry 7: 1919-1922.

196. Jiang, B., Liu, J. F., Zao, S.Y., (2001) Enantioselective synthesis for the antipodes of Slagenins B and C: Establishment of absolute stereochemistry. Organic Letters 25: 4011-4013.

209

Page 15: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

197. Karanewsky, D. S., Badia, M.C., Ciosek Jr., C. P., Robl, J. F., Sofia, M. J., Simpkins, L. M., DeLange, B., Harrity, T.W., S Biller, A., Gordon, E. M., (1990) Phosphorus-containing inhibitors of HMG-CoA reductase. I. 4-[ (2-Arylethyl)hydroxyphosphinyl]-3-hydroxybutanoic acids: a new class of cell selective inhibitors of cholesterol biosynthesis J. Med. Chem. 33: 2952-2956.

198. Kita, K., Kataoka, M., Shimizu, S. J., (1999) Diversity of 4-chloroacetoacetate ethyl ester-reducing enzymes in yeasts and their application to chiral alcohol synthesis. Bioscience and Bioengineering 88: 591-598.

199. Miyoshi, T., (1990). A novel NADPH-dependent aldehyde reductase, catalyzing asymmetric reduction of P-keto acid esters, from Sporobolomyces salmonicolor: purification and characterization. FEMS MicrobiaL Lett. 70: 45-48.

200. Kataoka, M., Sakai, H., Morikawa, T., Katob, M., Miyoshi, T., Shimizu, S., and Yamada, H., (1992) Characterization of aldehyde reductase of Sporobolomyces salmonicolor. Biochim. Biophys. Acta 1122: 57-62.

201. Wada, M., Kataoka, M., Kawabata, H., Yasohara, Y., Kizaki, N., Hasegawa, J., and Shimizu, S., (1998) Purification and characterization ofNADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from Candida magnoliae. Biosci. Biotech. Biochem. 62: 280-285.

202. Shimizu, S., Kataoka, M., Morishita, A., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H., (1990) Microbial asymmetric reduction of ethyl-4-chloro-3-oxobutanoate to optical active ethyl 4-chloro-3-hydroxybutanoate. Biotechnol. Lett. 12: 593-596.

203. Shimizu, S., Kataoka, M., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H. (1990) Stereoselective reduction of ethyl-4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system. AppL Environ. Microbial. 56: 2374-2377.

204. Kataoka, M., Rohani, L. P. S., Yamamoto, K., Wada, M., Kawabata, H., Kita, K., Yanase, H., and Shimizu S. (1997) Enzymatic production of ethyl-(R)-4-chloro-3-hydroxybutanoate: asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an Escherichia coli transformant expressing the aldehyde reductase gene from yeast. Appl. Microbial Biotechnol. 48: 699-703.

205. Kataoka, M., Rohani, L. P. S., Wada, M., Klta, K., Yanase, H., Urabe, I., and Shimizu, S. (1998) Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaferium, as a cofactor regenerator in a chiral alcohol production system. Biosci. Biotech. Biochem. 62: 167-169.

206. Shimizu, S., Kataoka, M., and Kita, K. (1998) Chiral alcohol synthesis with yeast carbonyl reductases. J. Catalysis B: enzymatic 5: 321-325.

207. Shimizu, S., Kataoka, M., and Kita, K. (1998) Chiral alcohol synthesis with microbial carbonyl reductases in a water-organic solvent two-phase system. Ann. N.Y. Acad. Sci. 864:87-95.

208. Kataoka, M., Yamamoto, K., Kawabata, H., Wads, M., Kita, K., Yanase, H., and Shimizu, S., (1999) Stereoselective reduction of ethyl-4-chloro-3-oxobutanoate by Escherichia coli transforrnant cells coexpressing the aldehyde

210

Page 16: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

reductase and glucose dehydrogenase genes. Appl. Microbial. Biotech no/. 51: 486-490.

209. Wang, G., and Hollingsworth, R. I., (1999) Synthetic routes to L-carnitine and L-gamma-amino-beta-hydroxybutyric acid from (S)-3-hydroxybutyrolactone by functional group priority switching. Tetrahedron: Asymmetry 10: 1895-1901.

210. Zhou, Y.G., Tang, W., Wang, W.B., Li, W., and Zhang, X., (2002) Highly effective chiral ortho-substituted BINAPO ligands (o-BINAPO): Applications in Ru-catalyzed asymmetric hydrogenations of ~-aryl-substituted ~­(acylamino)acrylates and ~-keto esters. J. Am. Chern. Soc. 124: 4952-4953.

211. (a) Wada, M., Kawabata, H., Yoshizumi, A., Kataoka, M., Nakamori S., Yasohara, Y., Kizaki, N., Hasegawa, J., and Shimizu, S. 1., (1999) Occurrence of multiple ethyl-4-chloro-3-oxobutanoate-reducing enzymes in Candida magnolia. Bioscience and Bioengineering 87: 144-148. (b) Molinari, F., Gandolfi, R. R., Occhiato, E.G., (1999) Lyophilised yeasts: easy-to-handle biocatalysts for stereoselective reduction of ketones. Tetrahedron: Asymmetry 10: 3515-3520.

212. Garcia-Urdiales, E., Rebolledo, F., and Gotor, V., (1999) Enzymatic ammonolysis of ethyl (±)-4-chloro-3-hydroxybutanoate. Chemoenzymatic syntheses of both enantiomers of pyrrolidin-3-ol and 5-( chloromethyl)-1 ,3-oxazolidin-2-one. Tetrahedron: Asymmetry 10:721-726.

213. Yadav, J. S., Nanda, S., Thirupathi Reddy, P., Bhaskar Rao, A., (2002) Efficient Enantioselective reduction of ketones with Daucus carota Root. J. Org. Chern. 67: 3900-3903. (b) Yasohara, Y., Kizaki, N., Hasegawa, J., Wada, M., Kataoka, M., and Shimizu, S., (2001) Stereoselective reduction of alkyl 3-oxobutanoate by carbonyl reductase from Candida magnolia. Tetrahedron: Asymmetry 12: 1713-1718.

214. Rotthaus, 0., Kruger, D., Demuth, M., and Schaffner, K., (1997) Reductions of keto esters with baker's yeast in organic solvents - a comparison with the results in water. Tetrahedron 53: 935-938.

215. Ushio, K., Hada, J., Tanaka, Y., and Ebara, K., (1993) Allyl bromide, a powerful inhibitor against R-enzyme activities in Bakers' yeast reduction of ethyl 3-oxoalkanoates. Enzyme Microb. Techno!. 15: 222-228.

216. Dahl, A.C., and Madsen, J., (1998) Baker's yeast: production of d- and 1-3-hydroxy esters. Tetrahedron: Asymmetry 9: 4395-4417.

217. Nakamura, K., Inoue, K., Ushio, K., Oka, S., and Ohno, A., (1987) Effect of allyl alcohol on reduction of ~-Keto esters by Bakers' yeast. Chemistry Letters 679. (b) Nakamura, K., Kawai, Y., Oka, S., Ohno, A., (1989) Stereochemical control in microbial reduction. 8. Stereochemical Control in Microbial Reduction of ~-Keto Esters. Bull. Chern. Soc. Jpn. 62: 875.

218. Houng, J.Y., Hsu, H.F., Liu, Y.H., and Wu, J.Y., (2003) Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl-4-chloro acetoacetate by bakers' yeast. J. Biotechnol. 100: 239-50.

219. Cheng, C., and Ma, J.H., (1996) Enantioselective synthesis of S-(-)-1-phenylethanol in Candida uti/is semi-fed-batch cultures. Process. Biochem. 31: 119-24.

211

Page 17: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

220. Harrington Jr, E.C., (1965) The desirability function. Ind. Qual. Control 21: 494-498.

221. Derringer, G., and Suich, R., (1980) Simultaneous optimization of several response variables. J. QuaL Techno/. 12: 214-219.

222. Houng, J.Y., Liao, J.H., Wu, J.Y., Shen, S.C., and Hsu, H.F., (2007) Enhancement of asymmetric bioreduction of ethyl 4-chloroacetoacetate by the design of composition of culture medium and reaction conditions. Process Biochemistry 42: 1-7.

223. Yasohara, Y., Kizaki, N., Hasegawa, J., Takahashi, S., Wada, M., Kataoka, M., and Shimizu, S., (1999) Synthesis of optically active ethyl-4-chloro-3-hydroxybutanoate by microbial reduction. Appl. Microbiol. Biotechnol. 51:.84 7-851.

224. Wada, M., Kawabata, H., Kataoka, M., Yasohara, Y., Kizaki, N., Hasegawa, J., and Shimizu, S., (1999a) Purification and characterization of an aldehyde reductase from Candida magnoliae. J. Mol. Catal. B Enzymatic 6: 333- 339.

225. Wada, M., Kawabata, H., Yoshizumi, A., Kataoka, M., Nakamori, S., Yasohara, Y., Kizaki, N., Hasegawa, J., and Shimizu, S., (1999b) Occurrence of multiple ethyl 4-chloro-3-oxobutanoate-reducing enzymes m Candida magnoliae. J. Biosci. Bioeng. 87: 144-148.

226. Yasohara, Y., Kizaki, N., Hasegawa, J., Wada, M., Kataoka, M., and Shimizu, S., (2000) Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl-4-chloro-3-oxobutanoate, from Candida magnoliae. Biosci. Biotechnol. Biochem. 64: 1430-1436.

227. Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., and Shimizu, S., (1999) Stereoselective reduction of ethyl-4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase. Appl. Microbiol. Biotechnol. 51: 486-490.

228. Shimizu, S., Kataoka, M., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H., (1990) Stereoselective reduction of ethyl-4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphase system. Appl. Environ. Microb. 56: 2374-2377.

229. Shimizu, S., Kataoka, M., and Kita, K., (1998) Chiral alcohol synthesis with microbial carbonyl reductases in a water-organic solvent two-phase system. Ann. NYAcad. Sci. 864: 87-95.

230. Liu, Y., Xu, Z.N., ling, K.J., Jiang, X.X., Lin, J.P., Wang, F., and Cen, P.L., (2005) Asymmetric reduction of ethyl-4-chloro oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate with two coexisting, recombinant Escherichia coli strains. Biotechnol. Lett, 27(2):119-125.

231. Bertau, M., and Burli, M., (2000) Enantioselective microbial reduction with baker's yeast on an industrial scale. Chimi. 59: 503-507.

232. Chin-Joe, I., Straathof, A.J.J., Pronk, J.K., Jongejan, J.A., and Heijnen, J.J., (2001) Influence of the ethanol and glucose supply rate on the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast. Biotechnol. Bioeng. 75: 29-38.

212

Page 18: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

233. Forni, A., Caselli, E., Prati, F., Bucciarelli, M., and Torre, G., (2002) Highly enantioselective reduction of ethyl 4-chloro-3-oxobutanoate to L- and D-3-hydroxyesters with baker's yeast. Arkivoc (xi): 45-53.

234. Yu, M., Wei, Y.M., Zhao, L., Jiang, L., Zhu, X., and Qi, W., (2007) Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer's yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biotechnol. 34: 151-156.

235. Kataoka, M., Sakai, H., Morikawa, T., Katoh, M., Miyoshi, T., Shimizu, S., and Yamada, H., (1992) Characterization of aldehyde reductase of Sporobolomyces salmonicolor. Biochim. Biophys. Acta. 1122: 57-62.

236. Yamada, H., Shimizu, S., Kataoka, M., Sakai, H., and Miyoshi, T., (1990) A novel NADPH-dependent aldehyde reductase, catalyzing asymmetric reduction of ~-keto acid esters, from Sporobolomyces salmonicolor: purification and characterization. FEMS Microbiol. Lett. 70: 45-48.

237. Shimizu, S., Kataoka, M., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H., (1990a) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system. App. Environ. Microbiol. 56: 2374-2377.

238. Shimizu, S., Kataoka, M., Morishita, A., Katoh, M., Morikawa, T., Miyoshi, T., and Yamada, H., (1990b) Microbial asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to optically active ethyl-4-chloro-3-hydroxybutanoate. Biotechnol. Lett. 12: 593-596.

239. Kita, K., Matsuzaki, K., Hashimoto, T., Yanase, H., Kato, N., Chung, M.C.M., Kataoka, M., and Shimizu, S., (1996) Cloning of the aldehyde reductase gene from a red yeast, Sporobolomyces salmonicolor, and characterization of the gene and its product. Appl. Environ. Microbiol. 62: 2303-2310.

240. Kataoka, M., Rohani, L.P.S., Yamamoto, K., Wada, M., Kawabata, H, Kita, K., Yanase, H., and Shimizu, S., (1997) Enzymatic production of ethyl (R)-4-chloro-3-hydroxybutanoate: asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an Escherichia coli transformant expressing the aldehyde reductase gene from yeast. Appl. Microbiol, Biotechnol. 48: 699-703.

241. Kataoka, M., Rohani, L.P.S., Wada, M., Kita, K., Yanase, H., Urabe, I., and Shimizu, S., (1998) Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a co-factor regenerator in a chiral alcohol production system. Biosci. Biotech. Biochem. 62: 167-169.

242. Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., and Shimizu, S., (1999) Stereoselective reduction of ethyl-4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51: 486-490.

243. Kita, K., Kataoka, M., and Shimizu, S., (1999) Diversity of 4-chloroacetoacetate ethyl ester-reducing enzymes in yeasts and their application to chiral alcohol synthesis. J. Biosci. Bioeng. 88: 591-598.

244. Langer, R.S., Hamilton, B.K., Gardner, C.R., Archer, M.C., and Colton, C.K., (1976) Enzymatic regeneration of ATP. Am. Inst. Chem. Eng. J. 22: 1079-1085.

213

Page 19: PART 2, SECTION 5 References - Shodhganga : a …shodhganga.inflibnet.ac.in/bitstream/10603/29814/18/19_section 5.pdf · Part 2, Section 5, References ... dehydrogenase from the thermophilic

Part 2, Section 5, References

245. Lixin, S., Dongzhi, W., Siliang, Z., and Erli, W., (2001) Studies on synthesis of glutathione by E. coli Bl21(pTrc-gsh) coupled with Saccharomyces cerevisiae. Chinese J. Biotechnol. 17: 452-455.

246. Liu, Y., Xu, Z., Jing, K., Jiang, X., Lin, J., Wang, F., and Cen, P., (2005) Asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate with two co-existing, recombinant Escherichia coli strains. Biotechnology Letters 27: 119-125.

247. Bergeron, S., Chaplin, D. A., Edwards, J. H., Ellis, B. S. W., Hill, C. L., Holt­Tiffin, K., Knight, J. R., Mahoney, T., Osborne, A. P., and Ruecroft, G., (2006) N itrilase-catalyscd desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org. Process Res. Dev. 10: 661-665.

248. Greenberg, W. A., Varvak, A., Hanson, S. R., Wong, K., Huang, H., Chen, P., and Burk, M. J., (2004) Asymmetric catalysis special feature part II: Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc. Nat/. Acad. Sci., USA. 104: 5788-5793.

249. Guo, Z., Chen, Y., Goswami, A., Hanson, R. L., and Patel, R. N., (2006) Synthesis of ethyl and t-butyl (3R,5S)-dihydroxy-6-benzyloxy hexanoates via diastereo- and enantioselective microbial reduction. Tet. Asymm., 17: 1589-1602.

250. Maurer HR (1968) Disk-Electrophorese: Theorie und Praxis der diskontinuierlichen Polyacrylamidgelelectrophorese, Walter de Gruyter, Berlin

251. Shaw, C. R., and Prasad, R., (1970) Starch gel electrophoresis of enzymes: a compilation of recepies. Biochem. Genet. 4: 297.

252. Lanyi, B. (1987) Classical and rapid identification methods for medically important bacteria (Colwell, R. Rand Grigorova, R. Eds.) London: Academic press In Methods In Microbiology, 19.

253. Locci, R. (1989) Streptomyces and related genera Section 29 In Bergey's Manual of Systematic Bacteriology (Stanley T. Williams. Eds.) Baltimore: Williams & Wilkins, 4: 2451-507.

254. Smibert, R. M. and Krieg, N. R. (1994) Phenotypic characterization In Methods for General and Molecular Bacteriology (Gerhard, P., Murray, R. G. E., Wood, W. A. and Krieg, N. R. Eds.) Washington DC: American Society for Microbiology, 607-654.

255. Kovacs, N. (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction Nature, 178: 703.

214

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I

j