35
Department of Applied Physics, Yale University Michael Hatridge Remote entanglement of transmon qubits Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang Luigi Frunzio Steven Girvin Robert Schoelkopf Michel Devoret 35

Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Department of Applied Physics, Yale University

Michael Hatridge

Remote entanglement of transmon

qubits

Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller

Chen Wang Luigi Frunzio Steven Girvin Robert Schoelkopf Michel Devoret

35

Page 2: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

What is remote entanglement and why is it important?

How do we engineer interactions over arbitrary length scales?

Q1

Q2

Q3

Alice

Bob

Monroe, Hanson, Zeilinger

QN+1

QN+2

QN+3

Direct interaction Remote entanglement via msmt of ancilla

34

Page 3: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Remote entanglement with flying qubits

ALICE

BOB

bert

arnie

|𝐺

|𝑔

|𝑔

|𝐺

1/ 2 |𝐺𝑔 + |𝐸𝑒 ⊗

1/ 2 |𝐺𝑔 + |𝐸𝑒

How can we do this with a superconducting system?

Instead of qubits use coherent states

How do we entangle flying qubits?

How well can we transmit our flying qubit?

How do we build efficient detector?

quantum-limited amplification

𝑅𝑥 𝜋/2 ,

𝑅𝑥 𝜋/2 ,

1/ 2 |𝐺𝐺 + |𝐸𝐸 or

1/ 2 |𝐺𝐺 − |𝐸𝐸 or

1/ 2 |𝐺𝐸 + |𝐸𝐺 or

1/ 2 |𝐺𝐸 − |𝐸𝐺

measure X

(sign)

measure Z

(parity)

33

Page 4: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Part 1: measurement with coherent

states

32

Page 5: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

microwave cavity

coherent pulse

phase meter

dispersive cavity/pulse interaction

Dispersive measurement: classical version

|𝑔

transmission line

31

Page 6: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

microwave cavity

coherent pulse

phase meter

dispersive cavity/pulse interaction

Dispersive measurement: classical version

|𝑔 |𝑒

transmission line

30

Page 7: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

microwave cavity

coherent pulse

dispersive cavity/pulse interaction

Now a wrinkle: finite phase uncertainty

|𝑔 |𝑒

transmission line

phase meter

29

Page 8: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

microwave cavity

coherent pulse

dispersive cavity/pulse interaction

|𝑔 |𝑒

phase meter

Measurement with bad meter (still classical)

noise added by amp.

AND signal lost in transmission

• Each msmt tells us only a little • State after msmt not pure! • This example optimistic, best

commercial amp adds 20-30x noise • We fix this with quantum-limited

amplification

28

Page 9: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Ideal phase-preserving amplifier • What is power dissipated in Rload due to noise in Rsource, for Rload = Rsource = R?

BTkRR

TRBkR

R

VP B

Brmsload

22

2

4

2

NBload TTBGkP

𝜌𝑖 → 𝜌𝑓 = 𝑇𝑟𝑈𝜌𝑖𝑈†

𝑆 𝜌𝑓 = 𝑆 𝜌𝑖

MATH

Phase-sensitive amps

180° hybrid (beam splitter)

𝜙 = 0

𝜙 = 𝜋2

|0

|𝛼 𝐺 ≫ 1

𝐺 ≫ 1

Signal in

Idler in

180° hybrid (beam splitter)

These ports are often internal degrees of freedom, in our amp they are accessible. We’ll use this for remote entanglement

Signal out

Idler out

• Adds its inputs, outputs 2 copies of combined inputs • Adds minimum fluctuations to signal output*

* 𝜎𝑜𝑢𝑡2 = 2𝜎𝑖𝑛

2 (Caves’ Thm) Caves, Phys Rev D (1982)

27

Page 10: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

microwave cavity

coherent pulse

Quantum-limited amplification: projective msmt

|𝑔 |𝑒

phase meter w/ P. P. pre-amp

• state of qubit pure after each msmt • For unknown initial state

𝑐𝑔|𝑔 + 𝑐𝑒|𝑒 , repeat

many times to estimate 𝑐𝑔2

, 𝑐𝑒2

only quantum fluctuations

coherent superposition

26

Page 11: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

microwave cavity

WEAK coherent

pulse

Quantum-limited amplification: ‘partial’ msmt

|𝑔 |𝑒

phase meter w/ P. P. pre-amp

• state of qubit pure after each msmt • counter-intuitive, but is achievable

in the laboratory

only quantum fluctuations

coherent superposition

25

Page 12: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Part 2: Partial measurement with

transmon qubit and JPC

24

Page 13: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

200 nm

The Josephson tunnel junction

SUPERCONDUCTING TUNNEL JUNCTION

𝐼 = 𝐼0 sin𝜙

𝜑0

1nm

Al/AlOx/Al tunnel junction

nonlinear inductor shunted by capacitor

02e

LJ

CJ

𝐼

𝜙

23

Page 14: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Superconducting transmon qubit

Potential energy

f

Josephson junction with shunting capacitor anharmonic oscillator

lowest two levels form qubit

fge ~ 5.025 GHz, fef ~ 4.805 GHz

Koch et al., Phys. Rev. A (2007)

|𝑔

|𝑒

|𝑓

22

Page 15: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

mixer

Measurement configuration

TR

number of inddent signal modes:

cavity ring-down time 1 2

r

Q

/S RM T

𝑎 𝑔 ⊗ 𝛼𝑔, 0 + 𝑏 𝑒 ⊗ 𝛼𝑒 , 0

isolator circulator

Sig Idl Pump

compact resonator

+ qubit pulses

JPC

HEMT

𝐼𝑚 = 𝐼 𝑡 𝑑𝑡𝑇𝑚

0

readout pulse

Ref

transmon

𝑄𝑚 = 𝑄 𝑡 𝑑𝑡𝑇𝑚

0

on qubit state?

𝐼𝑚 = 𝐼 𝑡 𝑑𝑡𝑇𝑚

0

Readout

phase

tan−1 𝑄𝑚𝐼𝑚

𝜋2

width 𝜅

Readout

amplitude

𝐼𝑚2 + 𝑄𝑚

2 𝑓

dispersive shift 𝜒

Qubit +

resonator + qubit

pulses

JPC

|𝑔 |𝑒

|𝑔 |𝑒 𝜗 = 2 tan−1 𝜒

𝜅

readout

pulse at

𝑓𝑑

𝑓

Ref

𝑄𝑚 = 𝑄 𝑡 𝑑𝑡𝑇𝑚

0

Sig Idl

Pump

𝑓𝑑

HEMT

− 𝜋2

vacuum 50Ω

21

Page 16: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Isolating the transmon from the environment

transmon output coupler

Purcell filter

waveguide-SMA adapter

input coupler

Cavity fc,g = 7.4817 GHz 1/ = 30 ns

10 mm

25 mm

Qubit fQ=5.0252 GHz T1 = 30 s T2R = 8 s

20

Page 17: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

The 8-junction Josephson Parametric Converter

G=20 dB

NR= 9 dB

BW= 9 MHz

D.R. ~ 10 photons @ 4.5 MHz

Tunability ~100’s of MHz

~88% of output noise is

quantum noise!

→ quantum fluctuations

on an oscilloscope

Idler

Signal

ADD SOME REF?

Bergeal et al Nature (2010)

See also Roch et al PRL (2012)

20

15

10

5

G (

dB

)

7.507.487.467.447.42

x109

F 7.42 7.46 7.50

Frequency (GHz)

Direct G

(dB

)

20

10

not a defect! quantum jumps of connected qubit

10 m

19

Page 18: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

𝐼𝑚/𝜎

𝑄𝑚

/𝜎

|𝑔 10

5

0

10 5 0 -5 -10

102

104

1

|𝑒

𝑓 , … 𝑄𝑚

/𝜎

𝐼𝑚/𝜎

6000

0

10

5

0

10 5 0 -5 -10

|𝑔 |𝑒

MA

𝑓 , …

Rotate to z=0 State preparation Confirm state

8.6 σ

Rotate to z=0 State preparation Confirm state

𝑅𝑥 𝜋/2 𝑅𝑥 𝜋 𝐼𝑑 or

𝑛 11 𝑛 11

640 ns

𝑇𝑚 320 ns

Trep = 20 µs

See also Riste et al PRL (2012) Johnson et al PRL (2012)

Preparation by measurement + post-selection 18

Page 19: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Rotate to z=0 State preparation Confirm state

𝑅𝑥 𝜋/2 𝑅𝑥 𝜋 𝐼𝑑 or

𝑛 11 𝑛 11

640 ns

𝑇𝑚 320 ns

|𝑒

102

104

1

MA MB|MA = |𝑔 Trep = 20 µs

𝐼𝑚/𝜎

𝑄𝑚

/𝜎

10

5

0

10 5 0 -5 -10

|𝑔 |𝑒

𝑓 , …

𝑅𝑥 𝜋 “|𝑒 ”

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

10

5

0

10 5 0 -5 -10

|𝑔 |𝑒

𝑓 , …

𝐼𝑑 “|𝑔 ”

Fidelity=0.994! Error budget:

Msmt ~0.003

T1 ~0.001-0.002

rotation <0.002

Now that we have outcomes MA= |𝑔 either do nothing to retain |𝑔 OR rotate qubit by 𝑅𝑥 𝜋 to create |𝑒

Preparation by measurement + post-selection 17

Page 20: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

10

5

0

10 5 0 -5 -10

|𝑒

𝐼𝑚/𝜎 𝑄

𝑚/𝜎

10

5

0

10 5 0 -5 -10

102

104

1

|𝑔 |𝑒

𝑓 , …

|𝑔 |𝑒

𝑓 , …

𝑅𝑥 𝜋 “|𝑒 ” 𝐼𝑑 “|𝑔 ”

How ideal is this operation?

Fidelity=0.994!

Strong measurements allow rapid, high-fidelity state preparation and tomography

Say : “practically useful, but doesn’t tell us how ideal we are, and how much room for improvement in signal processing”

16

Page 21: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

A picture is worth a thousand math symbols * : Mapping (𝐼𝑚, 𝑄𝑚) to the bloch vector

For weak msmt:

𝜕𝑥𝑓

𝜕𝑄𝑚 𝐼𝑚,𝑄𝑚=0

= η𝐼𝑚𝑔

− 𝐼𝑚𝑒

2

• Now calculate the effect of some added classical noise on the density matrix • Efficiency 𝜂 = 𝜎𝑚

𝜎2

• 𝑥𝑓, 𝑦𝑓 provide important information about efficiency

Rotation (𝑸𝒎) Convergence to poles (𝑰𝒎)

Information loss due to 𝜼 < 𝟏

COWBOY HAT

w/ curvy arrow

𝑄𝑚

𝐼𝑚

𝐼𝑚 gives latitude information

𝑄𝑚 gives longitude information

𝑥

𝑦

𝑧

*Gambetta, et al PRA (2008); Korotkov/Girvin, Les Houches (2011); M. Hatridge et al Science (2013)

The equator is a dangerous place: lost information pulls trajectory

towards the z-axis

15

Page 22: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

mixer

Back-action characterization protocol

TR

number of inddent signal modes:

cavity ring-down time 1 2

r

Q

/S RM T

𝑛 11 𝑛 11

Tomography

𝑅𝑥 𝜋/2

𝑅𝑥 𝜋/2 ,

𝑅𝑦 𝜋/2 ,

700ns

qubit

cavity

𝑥𝑓, 𝑦𝑓, 𝑧𝑓

variable 𝑛

𝐼𝑑 or

𝑇𝑚 320 ns

Variable strength

measurement

State preparation

X = 1 𝑥

𝑦

𝑧

or

or Y = 1

Z = 1

(𝐼𝑚, 𝑄𝑚)

14

Page 23: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

histogram of measurement after p/2 pulse tomography along X, Y and Z after measurement

Measurement with 𝑰 𝒎 𝝈 = 0.4

Pro

bab

ility

of

gro

un

d

1

0

-1

Counts

Max 0

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

6

0

6 0 -6

6

0

6 0 -6

6

0

6 0 -6

𝑋 𝑐 𝑌 𝑐

𝑍 𝑐

6

0

6 0 -6

𝐼 𝑚

𝜎

13

Page 24: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

histogram of measurement after p/2 pulse tomography along X, Y and Z after measurement

Measurement with 𝑰 𝒎 𝝈 = 1.0

Pro

bab

ility

of

gro

un

d

1

0

-1

Counts

Max 0

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

6

0

6 0 -6

6

0

6 0 -6

6

0

6 0 -6

𝑋 𝑐 𝑌 𝑐

𝑍 𝑐

6

0

6 0 -6

𝐼 𝑚

𝜎

12

Page 25: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

histogram of measurement after p/2 pulse tomography along X, Y and Z after measurement

Measurement with 𝑰 𝒎 𝝈 = 2.8

Pro

bab

ility

of

gro

un

d

1

0

-1

Counts

Max 0

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

𝑄𝑚

/𝜎

𝐼𝑚/𝜎

6

0

6 0 -6

6

0

6 0 -6

6

0

6 0 -6

𝑋 𝑐 𝑌 𝑐

𝑍 𝑐

6

0

6 0 -6

𝑓 , … show at ~10-4 contamination

𝐼 𝑚 𝜎

11

Page 26: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

𝑛

Measurement strength 𝐼𝑚/𝜎

𝑄𝑚

/𝜎

𝑄𝑚

/𝜎

𝑛 Experiment Theory

x- and y-component along 𝑰𝒎 = 𝟎

0 2 𝐼𝑚/𝜎

0

4

0

4

𝑌 𝑐 along 𝐼𝑚 = 0

𝑋 𝑐 along 𝐼𝑚 = 0

𝑋𝑐,

𝑌𝑐

0 6

0

-1

1

Amplitude determined by one fit parameter: 𝜼 = 0.57 ± 0.02

𝑰 𝒎 𝝈 = 0.82

𝑋 𝑐 = sin𝑄𝑚

𝜎

𝐼 𝑚𝜎

+ 𝜃 exp −𝐼 𝑚𝜎

21 − 𝜂

𝜂

𝑌 𝑐 = cos𝑄𝑚

𝜎

𝐼 𝑚𝜎

+ 𝜃 exp −𝐼 𝑚𝜎

21 − 𝜂

𝜂

-6

𝜼 ≥ 𝟎. 𝟓 → 3 body entanglement (qubit, signal, idler)

𝑄𝑚/𝜎

10

Page 27: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Part 3: remote entanglement

experiment

9

Page 28: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Two qubit readout schematic

𝑇1 = 30 𝜇s 𝑇2𝑅 = 15𝜇s

𝑓𝑄𝑔𝑒

= 4.672 GHz 𝜒

2𝜋 = 2.7 MHz 𝜅 2𝜋 = 6.7 MHz

𝑇1 = 15𝜇s 𝑇2𝑅 = 15 𝜇s

𝑓𝑄𝑔𝑒

= 6.074GHz 𝜒

2𝜋 = 3.5 MHz 𝜅 2𝜋 = 4.1 MHz

𝑓𝑝 = 16.58 GHz

𝑓𝑟𝑑 = 7.464 GHz 𝑓𝑟

𝑑 = 9.116 GHz

50 Ω

8

Page 29: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Simultaneous readout of two qubits

Signal Alone

𝑄𝑚

𝐼𝑚

|𝑒𝑠

|𝑔𝑠

Idler Alone

𝑄𝑚

𝐼𝑚

|𝑒𝑖

|𝑔𝑖

Together

𝑄𝑚

𝐼𝑚

|𝑒𝑒

|𝑔𝑔

|𝑔𝑒

|𝑒𝑔

“Joint Readout”

|𝑒𝑠 |𝑔𝑠

|𝑔𝑖

|𝑒𝑖

𝐼𝑚 encodes Z info

𝑄𝑚 encodes Z info

CHANGE ALL TO FUZZY BALLS

7

|𝑒𝑒

|𝑔𝑔 |𝑔𝑒

|𝑒𝑔

Page 30: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

How to perform “entangling readout”

Signal Alone

𝑄𝑚

𝐼𝑚

|𝑒𝑠

|𝑔𝑠

Idler Alone

𝑄𝑚

𝐼𝑚

Together

𝐼𝑚 encodes Z info

𝐼𝑚 encodes Z info

𝑄𝑚 (sign)

𝐼𝑚 (parity)

|𝑒𝑒 |𝑔𝑔

|𝑔𝑒 , |𝑒𝑔

“Entangling Readout”

|𝑒𝑖

|𝑔𝑖

|𝑔𝑖

|𝑒𝑖

• 𝐼𝑚 is now blind to contents of |𝑔𝑒 , |𝑒𝑔

• With/ appropriate initial state, outcome is Bell state w/ 50 % success rate

• 𝑄𝑚 encodes phase of Bell state

6

|𝑒𝑒 |𝑔𝑔

|𝑔𝑒 , |𝑒𝑔

Page 31: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Back action of two qubit msmt creates entanglement

For weak msmt:

𝜕𝑥𝑓

𝜕𝑄𝑚 𝐼𝑚,𝑄𝑚=0

= η𝐼𝑚𝑔

− 𝐼𝑚𝑒

2

• Now calculate the effect of some added classical noise on the density matrix • Efficiency 𝜂 = 𝜎𝑚

𝜎2

• 𝑥𝑓, 𝑦𝑓 provide important information about efficiency

Rotation (𝑸𝒎) Convergence to poles (𝑰𝒎)

Information loss due to 𝜼 < 𝟏

COWBOY HAT

w/ curvy arrow

𝑄𝑚

𝐼𝑚

𝐼𝑚 gives info on even vs. odd

parity (a bit too much, actually)

𝑄𝑚 gives sign info for odd

parity states

Even parity states:

= |𝑔𝑔

= |𝑒𝑒

= |𝑔𝑒 − |𝑒𝑔

= |𝑔𝑒 + 𝑖|𝑒𝑔

= |𝑔𝑒 + |𝑒𝑔

= |𝑔𝑒 − 𝑖|𝑒𝑔

Odd parity states:

Make note about which we keep…which are good ones

The climax… this is my favorite part..

5

Page 32: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Pro

bab

ility

of

gro

un

d

-1

0

+1

Tomography of strong entangling msmt

Histogram

𝑄𝑚

𝜎

𝑋𝑋 𝑐 𝑍𝐼 𝑐

𝑍𝑍 𝑐

𝐼𝑚 𝜎

10

0

-10

-10 0 10

𝑄𝑚

𝜎

𝐼𝑚 𝜎

10

0

10 0

-10

-10

𝑄𝑚

𝜎

10 0 -10

10

0

-10

10 0 -10

10

0

-10

4

Page 33: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Pro

bab

ility

of

gro

un

d

-1

0

+1

Tomography of weak entangling msmt

Histogram

𝑄𝑚

𝜎

𝑋𝑋 𝑐 𝑍𝐼 𝑐

𝑍𝑍 𝑐

𝐼𝑚 𝜎

5

0

-5

-5 0 5

𝑄𝑚

𝜎

𝐼𝑚 𝜎

5

0

5 0

-5

-5

𝑄𝑚

𝜎

5 0 -5

5

0

-5

5 0 -5

5

0

-5

3

Page 34: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

XX YY ZZ

Average a strip along 𝑄𝑚 ≃ 0

Blo

ch c

om

p. v

alu

e 5

0

𝑄𝑚

𝜎

𝐼𝑚 𝜎 𝑄𝑚 𝜎

-5 0 5

0

0.5

-0.5

𝑋𝑋 𝑐

5 0

-5

-5

𝑄𝑚

𝜎

Signature of entangling operation

• currently, too much information is lost • correct dependence of qubit correlations • expect to demonstrate entanglement soon (F > 0.5)

2

Page 35: Remote entanglement of transmon qubitswebsupport1.citytech.cuny.edu/dept/physics/docs/slides/Hatridge.pdf · Evolution of single-qubit readout vs time Year 1 0 cy 0.5 2010 2012 2014

Evolution of single-qubit readout vs time

Year

1

0

0.5 To

tal e

ffic

ien

cy 𝜂

20

10

20

12

20

14

Conclusions

• Coherent states can be used as flying qubits • Quantum mechanics goes through the amplifier • New tools for building large-scale quantum

entanglement

Compare with optical systems: 𝜂~10−3

due to collector/detector inefficiencies

1