30
4 th Metallization Workshop, May 8 th 2013, Konstanz S. Braun The Multi-Busbar Design: an Overview Stefan Braun 1 , Giso Hahn 1 Robin Nissler 2 , Christoph Pönisch 2 , Dirk Habermann 2 Universität Konstanz 1 www.uni-konstanz.de/photovoltaics Gebr. Schmid GmbH 2

The Multi-Busbar Design: an · PDF file4th thMetallization Workshop, May 8 2013, Konstanz S. Braun The Multi-Busbar Design: an Overview Stefan Braun1,Giso Hahn1 Robin Nissler2, Christoph

Embed Size (px)

Citation preview

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

The Multi-Busbar Design: an Overview

Stefan Braun1, Giso Hahn1

Robin Nissler2, Christoph Pönisch2,

Dirk Habermann2

Universität Konstanz1

www.uni-konstanz.de/photovoltaics

Gebr. Schmid GmbH2

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Optimized Solar Cell Design for Module Integration*

Motivation

*S. Braun et al., “Solar Cell Improvement by Using a Multi-Busbar Design as Front Electrode”, Energy Procedia 21, 227-233 (2012)

1

Multi-Busbar Solar Cell

Ag consumption Module Solar cell optimization

+ =

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Outline

• Motivation

• Cell Concepts

- Differences between 3-busbar and multi-busbar solar cell

• Simulation

- Advantages of multi-busbar design on cell- and module-level

• Results of Experiment

- Solar cells & one cell modules

• Summary

2

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Cell Concepts

3

Alkaline textured

SiNx:H layer

Screen printed fingers

Full area Al BSF

SE Solar Cell (6 inch Cz)

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Cell Concepts

3-Busbar Multi-Busbar

3

3 Busbars Round Sn coated Cu wires

Alkaline textured

SiNx:H layer

Screen printed fingers

Full area Al BSF

SE Solar Cell (6 inch Cz)

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Extraction IV Parameters

Starting Point

2-diode model simulation

4

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Extraction IV Parameters

Starting Point

2-diode model simulation

4

jsc [mA/cm2] Voc [mV] FF [%] η [%]

37.63 638.7 79.78 19.17

*B. Tjahjono et al.,”Optimizing selective emitter technology in one year of full scale production”, Proc. 26th EUPVSEC Hamburg, p. 901-905

j01 [fA/cm2] j02 [nA/cm2] rp [cm2] rs [cm2] jph [mA/cm2]

538 17 10000 0.433 40.5**

**without shading

Selective Emitter

reference cell*

Extracted

parameters

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Simulation

5

Adding busbars to cell structure

Busbar width 1.4 mm

3 4 5 6 7 8 9 1018.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

[

%]

Busbars

Cell

Stringed

Stringed opt.

How many busbars do we need?

IV setup

Shading dominates

drop

IV setup

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Simulation

6

How many busbars do we need?

Busbar width 1.4 mm

Height of rectangular tabbing 200 µm

Shading dominates

drop

3 4 5 6 7 8 9 1018.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

[

%]

Busbars

Cell

Stringed

Stringed opt.

• drop due to stringing

• Additional Rs by tabbing

• IV measurement does not represent module

..performance

Stringed front side

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Simulation

7

Busbar width variable

Height of rectangular tabbing 200 µm

Rs reduction dominates

η gain

How many busbars do we need?

3 4 5 6 7 8 9 1018.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

[

%]

Busbars

Cell

Stringed

Stringed opt.

Stringed front side

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Simulation

8

How many busbars do we need?

Busbar width variable

Height of rectangular tabbing 200 µm

3 4 5 6 7 8 9 1018.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

[

%]

Busbars

Cell

Stringed

Stringed opt.0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Bu

sba

r w

idth

[m

m]

Stringed front side

Rs reduction dominates

η gain

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

String Geometry

Tabbing

Reflection on string

Effectively shaded area: ~100%

Reflection on wire

Effectively shaded area: ~70%

Wire

9

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Tabbing

Total reflection on glass

Effectively shaded area: ~36%

Wire

Reflection on string

Effectively shaded area: ~100%

10

String Geometry

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

String Geometry

Tabbing

Partial reflection on glass

Effectively shaded area: 30%*

Wire

Reflection on string

Effectively shaded area: ~100%

11

*A.W. Blakers, "Shading losses of solar-cell metal grids“, Journal of Applied Physics, vol. 71, p. 5237, 1992

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Finger Design

12

Series resistance rs of

finger grid:

rs ~ L2

rs 3BB 25 times higher

with same grid structure

L = 25 mm L = 5 mm

3-Busbar, 6 inch Multi-Busbar (15 wires), 6 inch

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

10 20 30 40 50 60 70 80 900.0

0.2

0.4

0.6

0.8

1.0

r s [

cm

2]

Finger width [µm]

3 Busbars

15 Wires

Finger Design

Finger spacing constant (2 mm) Aspect ratio height/width = 0.5

Gaussian shaped fingers

13

IV setup

L = 25 mm L = 5 mm

3-Busbar, 6 inch Multi-Busbar (15 wires), 6 inch

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

10 20 30 40 50 60 70 80 900.0

0.1

0.2

0.3

0.4

0.5

0.6

r s [

cm

2]

Finger width [µm]

3 Busbars

15 Wires

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Fin

ge

r sp

acin

g [

mm

]

Finger Design

Finger spacing variable Aspect ratio height/width = 0.5

Gaussian shaped fingers

14

IV setup

L = 25 mm L = 5 mm

3-Busbar, 6 inch Multi-Busbar (15 wires), 6 inch

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

10 20 30 40 50 60 70 80 900.0

0.1

0.2

0.3

0.4

0.5

0.6

r s [

cm

2]

Finger width [µm]

3 Busbars

15 Wires

18.8

19.0

19.2

19.4

19.6

19.8

20.0

[%

]

IV setup

Ag Consumption & Efficiency

15

Finger width η

3 Busbars 50 µm 19.3%

15 Wires 17 µm 19.7%

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

10 20 30 40 50 60 70 80 900.0

0.1

0.2

0.3

0.4

0.5

0.6

r s [

cm

2]

Finger width [µm]

3 Busbars

15 Wires

18.8

19.0

19.2

19.4

19.6

19.8

20.0

[%

]

IV setup

10 20 30 40 50 60 70 80 900.0

0.1

0.2

0.3

0.4

0.5

0.6

r s [

cm

2]

Finger width [µm]

3 Busbars

15 Wires

0

30

60

90

120

150

180

Ag

pa

ste

[m

g]

15

Finger width η Ag consumption

3 Busbars 50 µm 19.3% 108 mg

15 Wires 17 µm 19.7% 6.7 mg

Ag Consumption & Efficiency

IV setup

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Aluminium Rear Side

• Pad size 4 mm x 0.5 mm

• 15 round Cu wires

• Rsheet Al = 10 m/sq. ~ 18 µm

How many Ag Pads on Al Rear Side?

16

?

continuous

6 5 4 3 2 Pads on

unit cell

Al rear side

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

220 240 260 280 3000.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

r s [

cm

2]

Wire diameter [µm]

2 Pads

3 Pads

4 Pads

5 Pads

6 Pads

Continuous

Aluminium Rear Side

Number of pads

depends on wire

diameter

How many Ag Pads on Al Rear Side?

17

Stringed rear side

rs <0.3 cm2 is sufficient

• Pad size 4 mm x 0.5 mm

• 15 round Cu wires

• Rsheet Al = 10 m/sq. ~ 18 µm

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

220 240 260 280 3000.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

r s [

cm

2]

Wire diameter [µm]

2 Pads

3 Pads

4 Pads

5 Pads

6 Pads

Continuous

Aluminium Rear Side

17

How many Ag Pads on Al Rear Side?

*TinPad by Schmid Group

TinPad*

Sn pads instead of Ag pads

Full area Al BSF

Stringed rear side

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Aluminium Rear Side

17

How many Ag Pads on Al Rear Side?

*TinPad by Schmid Group

220 240 260 280 3000.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

r s [

cm

2]

Wire diameter [µm]

2 Pads

3 Pads

4 Pads

5 Pads

6 Pads

Continuous

Stringed rear side TinPad*

Sn pads instead of Ag pads

Full area Al BSF

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Experiment

Process Flow Solar Cell Level

Alkaline texture

Emitter etch back 110 Ohm/sq.

POCl3 emitter diffusion 55 Ohm/sq.

Inkjet masking

Cz-Si, 6 inch, 2 Ohmcm

Chemical edge isolation

SiNx:H deposition

Screen printing full area Al BSF

Screen printing front side

Co-firing

3 busbars + fingers Front pads + fingers

3 busbars + fingers Front pads + fingers

IV measurement

18

Finger width 70 µm

Spacing 2.1 mm

Finger width 50 µm

Spacing 1.8 mm

Pads 500 x 700 µm2

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Experiment

Process Flow Module Level

19

Stringing front- / rear side

IV measurement

Collector ribbons

Lamination process

TinPad

3 ribbons 15 wires

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Experiment

Process Flow Module Level

V,I

V,I

V,I

V,I

European Solar Test Installation

in Ispra, Italy

19

Stringing front- / rear side

Aperture area - IV measurement

Collector ribbons

Lamination process

TinPad

3 ribbons 15 wires

Independently measured @

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Experiment: IV Results

Design Ag [mg] Voc [mV] jsc [mA/cm²] FF [%] rs [Ωcm2] η [%]

3BB 140 640 38.1 80.0 0.41 19.45

MBB 68 640 37.7 80.2 0.32 19.34

Delta -72 0 -0.4 +0.2 -0.09 -0.11

Average IV Parameters of 3x Solar Cells

20

• Ag paste reduction >50% for multi-busbar cells (72 mg)

• jsc loss -0.4 mA/cm²

• Efficiency loss -0.11%

Similar η on cell level

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Experiment: IV Results

Average IV Parameters of 3x Solar Cells and 3x 1-Cell Modules

20

Design Ag [mg] Voc [mV] jsc [mA/cm²] FF [%] rs [Ωcm2] η [%]

3BB 140 638 37.1 76.7 1.19 18.16*

MBB 68 637 37.3 77.9 0.96 18.49*

Delta -72 -1 +0.2 +1.2 -0.23 +0.33

High module efficiencies with

multi-busbar design

*aperture area

Design Ag [mg] Voc [mV] jsc [mA/cm²] FF [%] rs [Ωcm2] η [%]

3BB 140 640 38.1 80.0 0.41 19.45

MBB 68 640 37.7 80.2 0.32 19.34

Delta -72 0 -0.4 +0.2 -0.09 -0.11

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

• Multiple busbars can boost module efficiency

• Technology has high potential for metal reduction

• Ag reduction via fine line printing 72 mg 50%abs

• Module efficiencies 18.16% 3BB 18.49% MBB

• Best multi-busbar module efficiency 18.57%

• Outlook:

- Optimized front pad design increased jsc

η 18.7% possible (Simulation)

Conclusion

Advantages of Multi-Busbar Solar Cell Design

21

4th Metallization Workshop, May 8th 2013, Konstanz S. Braun

Thank you for your attention!

Special thanks to: Schmid Group for funding

Harald Müllejans, Diego Pavanello, Elena Salis, Roberto Galleano for IV measurements