139
WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN, FUNKALARMSYSTEME UND ÄHNLICHES INTERESSIERT UND DAZU ANREGUNGEN FÜR EIGENE AKTIVITÄTEN SUCHT, DER IST HIER RICHTIG Bei GPS handelt es sich um ein satellitengestütztes Navigationssystem. Mithilfe der dafür preiswert erhältlichen Empfangsgeräte wird Jedermann in die Lage versetzt, überall auf der Welt schnell eine Standortbestimmung mit einer Genauigkeit von mindestens etwa +/- 10m durchführen zu können. Aber das ist sicherlich für die meisten Leser nichts Neues. Was mich persönlich dabei besonders interessiert, ist nicht der GPS- Empfang ansich, sondern die Funkübertragung der gewonnenen Navigationsdaten und deren Fernauswertung. Quelle: www.kowoma.de Aufbau des GPS-Systems Das GPS-System lässt sich in drei grundlegende Segmente unterteilen, die nachfolgend besprochen werden: o Weltraumsegment (Satelliten) o Kontrollsegment (Kontrollstationen) o Benutzersegment (GPS-Empfänger) Weltraumsegment GPS-Block IIF Satellit Das Weltraumsegment besteht aus mindestens 24 Satelliten. Der erste dieser Satelliten wurde bereits 1978 in seine Umlaufbahn gebracht. Mittlerweile gibt es fünf verschiedene Typen (Block I, Block II, Block IIA, Block IIR und Block IIF) dieser Satelliten, die natürlich im Laufe der AK, 08.07.2022 Seite 1 document.doc

WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN, FUNKALARMSYSTEME UND ÄHNLICHES

INTERESSIERT UND DAZU ANREGUNGEN FÜR EIGENE AKTIVITÄTEN SUCHT, DER IST HIER RICHTIG

Bei GPS handelt es sich um ein satellitengestütztes Navigationssystem. Mithilfe der dafür  preiswert erhältlichen Empfangsgeräte wird Jedermann in die Lage versetzt, überall auf der Welt schnell eine Standortbestimmung mit einer Genauigkeit von mindestens etwa +/- 10m durchführen zu können. Aber das ist sicherlich für die meisten Leser nichts Neues. Was mich persönlich dabei besonders interessiert, ist nicht der GPS-Empfang ansich, sondern die Funkübertragung der gewonnenen Navigationsdaten und deren Fernauswertung.

Quelle: www.kowoma.de

Aufbau des GPS-Systems

Das GPS-System lässt sich in drei grundlegende Segmente unterteilen, die nachfolgend besprochen werden:

o  Weltraumsegment (Satelliten)

o  Kontrollsegment (Kontrollstationen)

o  Benutzersegment (GPS-Empfänger)

Weltraumsegment

GPS-Block IIF Satellit

Das Weltraumsegment besteht aus mindestens 24 Satelliten. Der erste dieser Satelliten wurde bereits 1978 in

seine Umlaufbahn gebracht. Mittlerweile gibt es fünf verschiedene Typen (Block I, Block II, Block IIA, Block

IIR und Block IIF) dieser Satelliten, die natürlich im Laufe der Jahre immer weiter entwickelt wurden.

Block I Satelliten

AK, 20.05.2023 Seite 1 document.doc

Page 2: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

GPS-Block I Satellit (Quelle:NASA)

 Zwischen 1978 und 1985 wurden von Kalifornien aus elf Block I Satelliten mit jeweils einer Masse von 845 kg

gestartet, von denen heute jedoch kein einziger mehr in Betrieb ist. Diese Satelliten waren für eine

Lebensdauer von 4,5 Jahren konzipiert, überlebten jedoch ihr geplantes Alter um weitere fünf Jahre. Einer der

Satelliten war 13 Jahre lang in Betrieb. Bei den Block I Satelliten, die als Prototypen lediglich der Erprobung

des Systems dienten, waren alle Signale für zivile Nutzer zugänglich. Zur Stromversorgung dienten

Solarpanels mit 400 Watt Leistung. Während sich die Satelliten im Erdschatten befanden, dienten Nickel-

Cadmium-Zellen als Reserve. Die Triebwerke zur Positionskorrektur wurden mit Hydrazin betrieben.

Informationen zu den Block I Satelliten können hier eingesehen werden (englisch), die Informationen sind

jedoch von 1996, da alle Block I Satelliten mittlerweile ausser Betrieb sind.

 

Block II Satelliten

GPS-Block IIA Satellit (Quelle:NASA)

Die Block II Satelliten wiegen mit über 1500 kg etwa das doppelte der Block I Satelliten. Der erste dieser

Satelliten wurde 1989 von Cape Canaveral aus gestartet. Diese Satelliten haben eine "Spannweite" von ca.

5,1 m. Die Block II Satelliten sind für eine Betriebsdauer von 7,5 Jahren ausgelegt. Insgesamt wurden 9

Block II Satelliten und 18 Block IIA Satelliten bis September 1996 gestartet.

Obwohl die Satelliten sich weiterhin auf sechs unterschiedlichen Bahnen mit einem jeweils gleichen Winkel

zum Äquator befinden, haben die neueren Block II Satelliten eine etwas veränderte Konstellation. Im Jahr

1990 wurde der erste Block IIA-Satellit (A steht für "advanced") in seine Umlaufbahn gebracht. Infos über den

Status der Block II Satelliten gibt es hier (englisch). Der Status des Gesamtsystems ist hier zu finden

AK, 20.05.2023 Seite 2 document.doc

Page 3: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

(englisch).

Kleine Atomuhr (zu sehen im Verkehrshaus Luzern)

Die Block II und Block IIA Satelliten besitzen jeweils zwei Rubidium und zwei Cäsium Atomuhren mit einer

Uhrenstabilität von mindestens 10 - 13  s. Aus der Grundfrequenz der Atomuhren (10,23 MHz) leiten sich alle

anderen benötigten Frequenzen ab. Die Satelliten des Blocks IIR haben drei Rubidium-Atomuhren an Bord.

Diese extreme Ganggenauigkeit von ± 1 Sekunde in 1 Million Jahren ist absolut notwendig für das

Funktionieren des Systems. Warum wird im Kapitel Positionsbestimmung erklärt.

GPS-Block IIR Satellit

Bei diesen neuen Block IIR Satelliten ist jetzt nur noch das sogenannte C/A-Signal (Coarse/Aquisition) für zivile

Anwendungen zugänglich. Die Stromversorgung und der Antrieb blieben gleich wie bei den Block I Satelliten,

die Solarpanels leisten jetzt allerdings 750 Watt.

Von der nächsten Generation (Block IIR (replenishment - Auffrischung)) Satelliten sollten ursprünglich jeweils

drei Stück mit dem Space Shuttle in ihre Umlaufbahn gebracht werden, nach der Challenger Katastrophe

(1986) wurde dann aber beschlossen, jeweils zwei Satelliten mit einer Delta-Rakete in den Orbit zu bringen.

AK, 20.05.2023 Seite 3 document.doc

Page 4: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Start einer Delta-Rakete

Paradoxerweise gingen dabei bereits die ersten beiden Satelliten verloren, da aufgrund einer Fehlfunktion der

Delta II Rakete (übrigens die erste Fehlfunktion bei einer Rakete diesen Typs) diese kurz nach dem Start

zerstört werden musste. Die Satelliten des Block IIR besitzen anstatt der Rubidium- bzw. Cäsium-Atomuhren

Wasserstoffmaser, die eine noch größere Genauigkeit aufweisen. Die nächste Generation der Satelliten

(Block IIF) soll voraussichtlich über eine zweite Frequenz für die zivile Nutzung verfügen, die dann

Positionsbestimmungen mit noch größerer Genauigkeit ermöglicht. Diese Satelliten werden nach der

bisherigen Planung aber erst nach 2005 einsatzbereit sein.

Die Block II Satelliten haben weiterhin noch einige zusätzliche Fähigkeiten, die aber mit dem eigentlichen

GPS-System nichts zu tun haben. Dazu gehören beispielsweise Sensoren, die Atomexplosionen detektieren

können. Der bisher letzte Block IIa Satellit wurde am 30. Januar 2001 von Cape Canaveral aus gestartet.

Der Start eines Block II Satelliten kostet etwa $ 50 Mio., was deutlich macht, welch hohe Investitionskosten

das System birgt. Diese enormen Ausgaben werden teilweise nur deshalb vom US Kongress bewilligt, weil das

System sowohl militärisch als auch zivil genutzt werden kann. Aktuelle Informationen zum Status der Block II

Satelliten kann hier oder hier eingesehen werden (englisch).

 

Die Abstrahlungsleistung der Satelliten beträgt lediglich maximal 50 Watt. Zum Vergleich: Fernsehsatelliten

wie die ASTRA-Satelliten strahlen mit einer Leistung von etwa 100 Watt, jedoch nur über Europa und man

benötigt mindestens eine 50 cm Parabolantenne für den Empfang ohingegen eine GPS-Antenne meist nur

wenige Zentimeter gross ist. Bei den Fernsehsatelliten sind die Datenübertragungsraten jedoch

unvergleichlich höher.

Aufgrund der verwendeten hohen Frequenz können die Signale weder Stein noch Wasser durchdringen und

werden unter Umständen bereits von sehr dichter Belaubung in Wäldern so stark abgeschwächt, dass manche

(vor allem ältere) Empfänger Schwierigkeiten bekommen können. Allerdings funktioniert das GPS bei jedem

Wetter, also auch bei stärkster Bewölkung (Probleme können jedoch bei sehr starkem Schneefall auftreten).

AK, 20.05.2023 Seite 4 document.doc

Page 5: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

UmlaufbahnenDie Satelliten umkreisen die Erde mit 3,9 km pro Sekunde

und haben eine Umlaufzeit von 12 Stunden Sternzeit, was

in Erdenstunden 11 Stunden 58 Minuten ausmacht. Das

bedeutet, dass der gleiche Satellit jeden Tag etwa 4

Minuten früher über der gleichen Position steht. Die

mittlere Enfernung vom Erdmittelpunkt beträgt 26560 km,

was bei einem mittleren Erdradius von 6360 km zu einer

Bahnhöhe von etwa 20200 km führt. Umlaufbahnen in

dieser Höhe werden auch MEO - "medium earth orbit"

genannt. Im Vergleich dazu haben geostationäre Satelliten

wie die ASTRA oder Meteosat-Satelliten mit 42300 km eine

Umlaufbahn in etwa der doppelten Entfernung.

Die GPS-Satellitenbahnen befinden sich in sechs Ebenen, in

denen jeweils vier Satelliten in gleichen Abständen

vorgesehen waren. Heute sind es meist mehr als 24 Satelliten, was die Verfügbarkeit weiter erhöht. Die

Inklination der Ebenen beträgt 55 °. Die Ebenen sind in der Äquatorebene um jeweils 60 ° gegeneinander

versetzt. Das bedeutet, dass die Umlaufbahnen die Satelliten bis 55 ° nördlicher und 55 ° südlicher Breite

führen. (Die Satelliten des Block I hatten noch eine Inklination der Bahnebene gegenüber dem Äquator von 63 °).

Durch diese besondere Anordnung der Bahnen wird vermieden, dass sich überdurchschnittlich viele Satelliten

über den Polen befinden (wie es beim TRANSIT-System mit auf Polbahnen verlaufenden Satelliten der Fall

war), andererseits verlaufen die Bahnen nördlich genug, dass auch den Einsatz von GPS in polnahen Gebieten

möglich ist. Weiterhin führt diese Anordnung auch zu einer relativ stabilen Konstellation, da Störfaktoren (z.B.

Gravitationsfelder, Sonnenwinde) im Mittel auf alle Satelliten gleich einwirken.

Die Anzahl und Anordnung der Satelliten hat zur Folge, dass immer mindestens vier Satelliten überall auf der

Welt zu jeder Zeit empfangen werden können. Je weiter man sich allerdings den Polen nähert, desto weiter am

Horizont befinden sich die Satelliten, können trotzdem gut empfangen werden, sind jedoch in keinem Fall

mehr direkt über Kopf. Aufgrund der Geometrie der Satellitenpositionen kann dies zu geringen Einbußen in

der Positionierungsgenauigkeit führen. Diese Geometrieeffekte treten jedoch bei bestimmten

Satellitenkonstellationen von Zeit zu Zeit auch an anderen Punkten der Erde auf. Die Entfernungen auf der

Darstellung der Bahnen auf dem oberen Bild ist in etwa maßstabsgetreu (Vergleich des Erdradius mit den

AK, 20.05.2023 Seite 5 document.doc

Satellitenbahnen (Abstände sind massstabsgetreu)

Inklination der Umlaufbahnen

Page 6: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Nebenstehende Grafik zeigt den Groundtrack (Subsatellitenbahn - Bahn auf der Erde, über dem der Satellit

jeweils senkrecht steht) des Satelliten BIIR-07 (PRN 18) von 18.10.01 00:00 Uhr bis 19.10.01 00:00 Uhr. Der

gelbe Pfeil zeigt jeweils die 00:00 Zeiten. Man sieht, dass sich die Umlaufzeit leicht (4 Minuten) verschiebt.

Der gelbe Punkt zeigt den Subsatellitenpunkt um 21:30 Uhr. Der Satellit steht über Äthiopien. Die

dazugehörige "Ausleuchtungszone", innerhalb derer der Satellit sichtbar ist, ist hellblau markiert. Die Grafik

wurde mit dem FreeWare Programm WinOrbit erstellt (und leicht modifiziert).

Wer sich die Umlaufbahnen der GPS (und auch anderer Satelliten) plastisch vor Augen führen möchte, dem sei

folgender Link empfohlen: J-Track 3D. Auf dieser Seite gibt es ein Java-Applet, dass die Umlaufbahnen und

Informationen von über 500 Satelliten darstellen kann.

 

Kontrollsegment (Bodenstationen)

Die Kontrolle über das GPS-System

liegt vollständig in der Hand der

US-Armee. Zur Überwachung der

Satelliten dient eine "Master

Control Station" sowie vier weitere

Monitorstationen auf Hawaii, den

Ascension Islands, Diego Garcia und Kwajalein (siehe Grafik).

AK, 20.05.2023 Seite 6 document.doc

Ground-Track (Subsatellitenbahn) des Satelliten GPS BIIR-07 (PRN 18) von 18.10.2001 00:00 Uhr bis 19.10.2001 00:00 Uhr

Position der Monitorstationen und der Master Control Station

Page 7: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Die passiven Monitorstationen

sind nichts weiter als GPS

Empfänger, die alle im

Sichtbereich befindlichen

Satelliten verfolgen und auf diese

Weise Messdaten der

Satellitensignale sammeln. Die

Monitorstationen senden diese

Rohdaten an die "Master Control

Station" zur Weiterverarbeitung.

Die Stationen Ascension Islands,

 

Die "Master Control Station" befindet

sich in der Schriever Air Force Base

(ehemals Falcon AFB), die knapp

zwanzig Kilometer östlich von Colorado

Springs liegt. Das "50th Space Wing’s 2nd

Space Operations Squadron" ist für den

Betrieb des GPS Systems verantwortlich.

Hier werden die Daten der

Monitorstationen 24 Stunden am Tag in

Echtzeit ausgewertet und daraus

Informationen über die Uhren und

Bahnen der Satelliten gewonnen. Auf

diese Weise können eventuelle

Fehlfunktionen schnell festgestellt

werden. Aus den Informationen werden

auch neue Ephemeridendaten berechnet.

Ein bis zwei mal pro Tag werden diese

Daten dann zusammen mit anderen Kommandos über Sendeantennen der Stationen auf den Ascension Islands,

Diego Garcia oder Kwajalein über ein S-Band Signal (S-Band: 2000 - 4000 MHz) an die Satelliten

zurückgesandt. Die Satelliten des Block IIR sind in der Lage, Signale mit anderen GPS-Satelliten

auszutauschen und können dadurch ihre Bahndaten selbst korrigieren, wodurch sie theoretisch nur alle 180 Tage eine Verbindung mit den Bodenstationen benötigen.

Aktuelle Informationen zum Zustand des GPS-Systems finden sich hier und

hier (englisch).

 

Benutzersegment (GPS-Empfänger)

GPS-Satellitenempfänger lassen sich mittlerweile so kompakt bauen, dass sie

sogar in eine Armbanduhr integriert werden können. Die meisten der heute

AK, 20.05.2023 Seite 7 document.doc

Satelliten-Tracking-Station auf Hawaii (Quelle: Schriever Air Force Base Satellite Flyer Vol. 6; No.12)

oben:  Schriever AFB, Coloradounten: 50th Space Wing’s 2nd Space Operations Squadron  (Quelle: AFSPC Image Gallery)

Älteres GPS-Gerät (Magellan GPS 2000)

Page 8: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

angebotenen Geräte für den Privatgebrauch haben etwa die Grösse eines Mobiltelefons. Alle heute

angebotenen Geräte haben mindestens 12 Kanäle, d.h. sie können die Daten von bis zu 12 Satelliten

gleichzeitig verarbeiten und auswerten. Ältere Geräte mussten die Auswertung teilweise nacheinander

durchführen, wodurch die wesentlich langsamer und ungenauer waren, sowie empfindlicher auf Störungen

reagiert haben. Geräte für den professionellen Einsatz (Vermessung, Militär) sind typischerweise etwas

grösser und aus verschiedenen Gründen wesentlich genauer.

 

Positionsbestimmung

Stark vereinfacht gesagt sendet jeder Satellit eine Nachricht der Art: "Ich bin Satellit Nr. X, meine Position ist

gerade Y und diese Nachricht wurde zum Zeitpunkt Z versandt". Dies ist, wie gesagt, stark vereinfacht am es

kommt dem Prinzip recht nah. Zusätzlich sendet der Satellit noch Informationen über seine Position (und die

der anderen Satelliten). Diese Bahndaten (Ephemeriden- und Almanachdaten) werden vom GPS-Empfänger

gespeichert und für spätere Rechnungen verwendet.

 

Um nun die Position zu bestimmen, vergleicht der GPS-Empfänger die Zeit, zu der das Signal ausgesamdt

wurde mit der Zeit, zu der das Signal empfangen wurde. Aus dieser Zeitdifferenz kann die Entfernung des

Satelliten berechnet werden. Werden nun von weiteren Satelliten Messungen hinzugefügt, so kann die

aktuelle Position durch Trilateration (Entfernungsmessung von drei Punkten aus) bestimmt werden werden.

Mit wenigstens drei Satelliten kann der GPS Empfänger seine Position auf der Erdoberfläche bestimmen. Dies

wird "2D position fix" (zweidimensionale Positionsbestimmung) genannt. Zweidimensional deshalb, weil der

Empfänger davon ausgehen muss, sich direkt auf der Erdoberfläche (also einer rechnerisch zweidimensionalen

Fläche) zu befinden. Mit Hilfe von vier oder mehr Satelliten kann ein "3D position fix", also die absolute

Position im Raum oder eben zusätzlich die Höhe über der Erdoberfläche bestimmt werden.

 

Durch ständige Neuberechnung der aktuellen Position kann der GPS Empfänger auch genau die

Geschwindigkeit und Bewegungsrichtung (als "ground speed" und "ground track" bezeichnet) berechnen. Eine

andere Möglichkeit der Geschwindigkeitsmessung ist das Ausnutzen des Dopplereffekts, der durch die

Bewegung bei den übermittelten Signalen auftritt. Das funktioniert nach dem gleichen Prinzip, wie ein

Beobachter ein Martinshorn als höheren Ton wahrnimmt, wenn es sich auf ihn zu bewegt und als tieferen Ton,

wenn es sich von ihm weg bewegt.

 

Vereinfacht liegt also der Positionsbestimmung mit Hilfe von GPS das gleiche Prinzip zugrunde, das man

bereits als Kind genutzt hat, um die Entfernung eines Gewitters abzuschätzen. Hierbei wird einfach gezählt,

welche Zeitdifferenz zwischen dem Einschlag des Blitzes (im Vergleich zur Schall- ist die Lichtgeschwindigkeit

so hoch, dass man die Laufzeit des Lichts vom Einschlagpunkt zum Beobachter nicht berücksichtigen muss)

und dem Eintreffen des Donners vergangen ist. Da Schall sich in Luft mit etwa 340 m/s ausbreitet ergibt sich

so aus z.B. 3 Sekunden zwischen Blitz und Donner eine Entfernung von etwa 1 Kilometer.

 

Dabei machen wir allerdings noch keine Positionsbestimmung, sondern nur eine Entfernungsbestimmung. Mit

mehreren Entfernungsbestimmungen lässt sich jedoch eine Positionsbestimmung durchführen. Um beim

Beispiel mit dem Blitz zu bleiben würde das bedeuten, dass wenn mehrere Leute an unterschiedlichen

AK, 20.05.2023 Seite 8 document.doc

Page 9: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Positionen, die natürlich bekannt sind, stehen und die Zeit zwischen Blitzeinschalg und Donner messen, die

Position des Blitzeinschlags bestimmen könnten.

 

Im Folgenden nun eine Erkärung, wie die Positionsbestimmung beim GPS-System vonstatten geht. Zur

Vereinfachung soll zunächst von einer zweidimensionalen Welt ausgegangen werden, da hier die

Übersichtlichkeit um "Dimensionen" besser ist und sich das ganze auch vernünftig aufzeichnen lässt. Später

kann das gesehene dann leicht in die wahre

dreidimensionale Welt übertragen werden.

In unserem Beispiel haben wir die Zeit, die

ein Signal vom ersten der beiden Satelliten

bis zu unserem Standpunkt benötigt mit

4 Sekunden bestimmt. (Dieser Wert ist

natürlich unrealistisch hoch, aber das macht

jetzt nichts. Tatsächlich ist die Laufzeit der

Signale vom Satelliten zur Erdoberfläche bei

einer Lichtgeschwindigkeit von

299 792 458,0 m/s etwa 0,07 Sekunden, aber

das ändert ja nichts am Prinzip.) Wenn wir

nur diese Information haben, können wir

immerhin schon sagen, dass unsere Position

irgendwo auf einem Kreis mit der

"Entfernung" 4 Sekunden um den ersten

Satelliten sein muss.

Wenn wir das ganze jetzt noch mit der Laufzeit eines zweiten Signals machen, bleiben zwei Schnittpunkte der

Kreise als mögliche Positionen (Punkte A und B). Moment mal, brauchen wir nun nicht noch einen dritten

Satelliten, schliesslich heisst es ja auch "Trilateration" und nicht "Dilateration"?

Nein, denn wir wissen ja bereits, dass wir uns wenigstens irgendwo in der Nähe der Erde befinden müssen

(Punkt A) und nicht irgendwo weit draussen im Weltraum (Punkt B). Genau genommen haben wir damit

unseren dritten "Satelliten" bzw. dritten Kreis, der mit den beiden anderen überlappen muss. Der im Bild grau

hinterlegte Bereich ist der Bereich innerhalb dem das GPS-System in unserem Beispiel genutzt werden kann.

Dieser Bereich ist jedoch sehr gross, da die Satelliten weit weg sind von der Erdoberfläche, so dass sich auch

hoch fliegende Flugzeuge innerhalb dieses Bereichs befinden. Damit bleibt also nur ein einziger Punkt übrig,

an dem wir uns befinden können und unsere Position ist genau bestimmt. Fertig!

 

Und für drei Dimensionen brauchen wir jetzt lediglich noch einen dritten Satelliten?

Im Prinzip ja, jedoch gibt es wie immer ein Aber. Das Problem ist, die tatsächliche und exakte Laufzeit der

Signale zu kennen. Die Satelliten übermitteln wie gesagt mit jeder Nachricht eine Art Zeitstempel, wann die

Nachricht abgesandt wurde. Ausserdem wissen wir, dass die Uhren aller Satelliten absolut genau und

synchron gehen, schliesslich sind Atomuhren an Bord. Das Problem ist jedoch die Uhr unseres GPS

Empfängers. Kein GPS-Empfänger hat eine eingebaute Atomuhr, was ihn ungeheuer teuer machen würde.

Unsere GPS-Empfänger haben "nur" Quarzuhren und die gegen im Vergleich zu Atomuhren wirklich nicht sehr

genau. Aber wie wirkt sich das nun in der Praxis aus?

 

AK, 20.05.2023 Seite 9 document.doc

Positionsbestimmung mit zwei Satelliten (2-dimensionale Welt)

Page 10: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Bleiben wir bei unserem Beispiel und

nehmen an, die Uhr in unserem GPS

Empfänger geht gegenüber den Uhren

der Satelliten eine halbe Sekunden vor.

Damit erscheint uns die Laufzeit der

Signale von den Satelliten um

0,5 Sekunden länger. Das wiederum

führt dann dazu, dass wir glauben am

Punkt B anstatt am Punkt A zu sein. Die

Kreise die sich in Punkt B schneiden

werden im GPS-Wortschatz auch

Pseudoranges (Pseudoentfernungen)

genannt. Diese werden so lange mit

"Pseudo" bezeichnet, bis die Korrektur

der Synchronisationsfehler (Bias) der

Uhren durchgeführt wurde. Je nachdem, wie genau die Uhr funktioniert, wird die ermittelte Position "mehr

oder weniger falsch" sein. Für die Praxis der Navigation mit GPS würde das bedeuten, dass bei den

ungeheurer kleinen Signallaufzeiten die ermittelte Position immer viel mehr (als weniger) falsch ist und damit

völlig unbrauchbar wäre. Ein Uhrenfehler von 1/100 Sekunde, was die Vorstellungskraft bereits strapaziert,

einem jedoch von Auto- und Skirennen heute dennoch durchaus geläufig ist, macht in der GPS-Navigation eine

Fehlbestimmung der Position um ca. 3000 km aus. Um eine Positionsbestimmung auf 10 m genau zu erreichen

muss die Laufzeit bis auf 0,00000003 Sekunden genau sein. Da keine Atomuhren in GPS-Empfängern zu finden

sind, lässt sich das Problem anders auf eleganate Weise lösen.

AK, 20.05.2023 Seite 10 document.doc

2D Positionsbestimmung mit 2 Satelliten und angenommenem Uhrenfehler

Page 11: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Zieht man nämlich noch einen dritten

Satelliten hinzu und betrachtet

zunächst wieder den Fall, dass die

Uhr des Empfängers absolut genau

geht, so erhält man wieder eine

eindeutige bestimmte Position

(Punkt A).

Betrachtet man den gleichen Fall

aber unter der Voraussetzung, dass

die Empfänger-Uhr eine halbe

Sekunde vorgeht, so erhält man

keinen eindeutigen Schnittpunkt

mehr, sondern drei Schnittpunkte B

aus je zwei Kreisen. Der Uhrenfehler

fällt also sofort auf. Verschiebt man

nun die Zeit der Empfängeruhr

solange, bis aus den drei

Schnittpunkten B ein Schnittpunkt A

wird, so hat man den Uhrenfehler

korrigiert und die Empfängeruhr läuft

absolut snychron zu den Atomuhren

der GPS-Satelliten. Der GPS-

Empfänger wird zur "Atomuhr". Die Entfernungen zu den Satelliten, die als "Pseudoranges" bezeichnet

wurden, werden jetzt echte Entfernungsangaben und es wird auch klar, warum sie vorher nur als

Pseudoentfernungen bezeichnet wurden.

In unserem Beispiel in der 2-dimensionalen Welt sind also die Signale von drei Satelliten nötig, um eine

eindeutige Positionsbestimmung durchzuführen. In der Realität, die eine Dimension mehr hat, braucht man für

eine 3D-Positionierung wie bereits erwähnt demnach vier Satelliten.

 

Warum hört man dann so oft, dass drei Satelliten ausreichen?

Man kann in der Praxis auch mit drei Satelliten eine Ortsbestimmung erhalten, aber nur eine zeidimensionale

(2D-fix). Zweidimensional bedeutet, dass sich die so Position auf der Erdoberfläche befinden muss. Der für die

Berechnung notwendige vierte Satellit wäre der Erdmittelpunkt und die zu diesem Satelliten bestimmte

Entfernung wäre die Entfernung der Erdoberfläche vom Erdmittelpunkt (6360 km). Somit hat man wieder vier

gemessene Pseudoentfernungen aus denen die tatsächliche Position bestimmt wird. Aber eben mit der

Einschränkung, dass der Empfänger immer davon ausgeht, dass man sich direkt auf der Erdoberfläche

befindet. Erdoberfläche meint in diesem Fall das Erdgeoid, also Meereshöhe. Ist das nicht der Fall (ist man

z.B. auf einem Berg), kommt es zu Fehlern bei der Bestimmung, da die Laufzeiten von den Satellitensignalen

nicht stimmen.

 

Ausgesendete GPS-Signale

AK, 20.05.2023 Seite 11 document.doc

2D Positionsbestimmung mit 3 Satelliten und Korrektur des Uhrenfehlers

Page 12: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Die Art, wie mit Hilfe des GPS-Systems Positionen bestimmt werden und auch deren Genauigkeit hängt in

hohem Maße von den von den Satelliten ausgesendeten Signalen ab. Es gibt eine ganze Reihe von Kriterien,

die in die Entwicklung der Signalstruktur eingeflossen sind. Als Folge davon ist das GPS Signal relativ komplex

und bietet folgende Möglichkeiten: Ein-Weg (passive) Positionsbestimmung, genaue Entfernungs- und

Geschwindigkeitsbestimmungen (Doppler-Effekt), Aussenden einer Navigations-Nachricht, simultane

Erfassung mehrerer Satellitensignale, Bereitstellung von Korrekturen für die ionosphärische Verzögerung der

Signale und Störungsunempfindlichkeit gegenüber Interferenzen und Mehrwegeffekte. Um allen diesen

Forderungen Genüge zu tun wurde die nachfolgend beschriebene Signalstruktur entwickelt.

Wahl der Trägerfrequenzen

Um die Datensignale zu transportieren wird zunächst eine geeignete Trägerfrequenz benötigt. Die Auswahl

dieser Trägerfrequenz ist bestimmten Bedingungen unterworfen:

o Die Frequenz sollten unter 2 GHz gewählt werden, da Frequenzen darüber den Einsatz von

Richtantennen in der Empfangseinheit erforderlich machen würden.

o Ionosphärische Verzögerungen sind in den Frequenzbereichen kleiner 100 MHz und größer

10 GHz enorm hoch.

o Die Ausbreitungsgeschwindigkeit elektromagnetischer Wellen weicht bei Ausbreitung in Medien

(also z.B. in Luft) umso stärker von der Lichtgeschwindigkeit (im Vakuum) ab, je tiefer die

Frequenz ist. Dies würde bei sehr tiefen Frequenzen wiederum die Laufzeitberechnungen

nachteilig beeinflussen.

o Die PRN-Codes benötigen eine große Bandbreite für die Code-Modulierung auf die

Trägerfrequenz, es musste also ein entsprechender Bereich hoher Frequenz und mit Möglichkeit

zu großer Bandbreite gewählt werden.

o Die gewählte Frequenz sollte in einem Bereich liegen, in dem die Signalausbreitung nicht durch

Wetterphänomene (Wolken, Regen, Schnee usw.) bestört wird.

 

Aus diesen Überlegungen heraus hat sich die Wahl von gleichzeitig zwei Frequenzen als besonders geeignet

herausgestellt, weshalb jeder der GPS-Satelliten zwei Trägersignale im Mikrowellenbereich überträgt, die als

L1 und L2 bezeichnet werden (Die Bezeichnung L weist auf die Frequenz hin, die im L-Band liegt (L-

Band: 1000 - 2000 MHz). Zivile GPS-Empfänger verwenden die L1-Frequenz mit 1575,42 MHz (Wellenlänge:

19,05 cm) (L2 - Frequenz: 1227.60 MHz; Wellenlänge: 24,45 cm). Die L1-Frequenz trägt sowohl die

Navigationsdaten als auch den SPS code (standard positioning code - Standard-Positionsbestimmungscode).

Die L2 Frequenz trägt nur den P-Code und wird nur von Empfängern die für den PPS (precision positioning

code) vorgesehen sind (Zweifrequenz-Geräte, meist militäriche Empfänger) verwendet.

 

Modulation der Trägersignale

C/A und P-Code

Die Trägerphasen werden durch drei unterschiedliche Binärcodes moduliert, zum einen dem C/A code (coarse

aquisition, grobe Bestimmung). Dieser Code ist ein 1023 "chip" langer Code, der mit einer Frequenz von

1,023 Mhz übertragen wird. Ein "chip" ist im Prinzip das gleiche wie "bit", also eine Eins oder eine Null, der

AK, 20.05.2023 Seite 12 document.doc

Page 13: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Begriff "chip" wird jedoch hier deshalb verwendet, da das Signal keine Information trägt. Durch diesen Code

wird das Trägersignal moduliert und dadurch auf eine Bandbreite der Hauptkeule (also des stärksten Signals)

von 2 MHz (P-Code auf L2: 20 MHz) ausgebreitet (Spread spectrum), was die Störungsanfälligkeit verringert.

Der C/A Code ist ein pseudozufälliger Code (PRN - pseudo random code), der wie zufällig aussieht, jedoch für

jeden der Satelliten eindeutig festgelegt ist. Er wiederholt sich nach jeweils 1023 bit oder einer Millisekunde.

Pro Sekunde werden damit also 1 023 000 chips generiert, wodurch sich mit Hilfe der Lichtgeschwindigkeit

die "Länge" eines "chips" auf 300 m berechnet.

 

PRN-Nummern

Häufig werden die Satelliten vom Empfänger über PRN-Nummern identifiziert. Hierbei erhalten echte GPS-

Satelliten Nummern von 1 - 32. WAAS/EGNOS-Satelliten und andere Pseudolites erhalten Werte darüber

(siehe auch hier). Diese PRN-Nummern der Satelliten sind meist auf der Satellitenanzeigeseite des GPS-

Empfängers wiederzufinden. Zur Vereinfachung des Satellitennetzwerks sind 32 verschiedene PRN Nummern

zur Zuordnung für Satelliten vorhanden, obwohl nur 24 Satelliten für das System nötig würden und zunächst

auch geplant waren. Seit längerem sind aber mehr als 24 Satelliten gleichzeitig aktiv, was die Verfügbarkeit,

Ausfallsicherheit und Genauigkeit erhöht. Dadurch, dass mehr Nummern als Satelliten verfügbar sind, kann

ein Ersatzsatellit gestartet und aktiviert werden, bevor der zu ersetzende Satellit tatsächlich ausfällt oder

abgeschaltet wird. Für diesen Satelliten wird dann einfach eine der zusätzlichen Nummern verwendet.

 

Die erwähnten PRN-Codes sind nur scheinbar zufällig. Wären sie wirklich zufällig, so gäbe es 2 1023

verschiedene Möglichkeiten für den PRN-Code. Von diesen eignen sich jedoch nur sehr wenige für die

Kreuz/Autokorrelation, die zur Laufzeitmessung benötigt wird (siehe Kapitel über die Entfernungsmessung

hier). Diese 37 geeigneten Codes werden als GOLD-Codes bezeichnet (nach einem Mathematiker benannt). Bei

diesen GOLD-Codes ist die Korrelation untereinander besonders schwach, wodurch eine eindeutige

Identifikation ermöglicht wird.

 

Der C/A Code ist die Basis für alle zivilen GPS-Empfänger.

Der P Code (precise) moduliert sowohl die L1, als auch die L2 Trägerfrequenz und ist ein sehr langer

10,23 MHz Pseudozufallscode (sieben Tage werden verwendet, der Code selbst wäre aber 266 Tage lang).

Zur Absicherung gegen mögliche Störsignale eines Feindes verfügt der P-Code die Möglichkeit verschlüsselt

übertragen zu werden. In diesem Anti-Spoofing (AS) Betrieb (manipulationssicherer Betrieb) wird der P-Code

in einen Y-Code verschlüsselt. Der verschlüsselte Code benötigt ein spezielles AS-Modul für jeden

Empfängerkanal und ist nur für autorisiertes Personal mit speziellem Schlüssel zugänglich. Der P bzw. Y Code

sind die Basis für die präzise (militärische) Positionsbestimmung. Seit 31. Januar 1994 ist das AS-System in

Betrieb und der P-Code wird nur verschlüsselt als Y-Code ausgesendet.

 

Übertragung der Daten

Im GPS-System werden die Daten durch Phasenmodulation auf das Trägersignal aufmoduliert. Diese

Phasenmodulation dürfte im Gegensatz zu Amplitudenmodifikation (AM) und Frequenzmodulation (FM) relativ

unbekannt sein. Diese drei Arten der Modulation eines Trägersignals sollen deshalb kurz erläutert werden.

AK, 20.05.2023 Seite 13 document.doc

Page 14: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Bei der Amplitudenmodifikation wird, wie der Name schon sagt, die

Amplitude, also die Stärke des Signals entsprechend dem anliegenden

Datensignal verändert. Wenden man das Prinzip auf Schallwellen an,

würde das heissen, man ändert die Lautstärke eines Tons, um so Daten

zu übertragen. Mit zunehmender Abschwächung des Signals wird es

immer schwieriger, die Daten aus dem Signal herauszufiltern. Diese Art

der Modulation ist vom Mittelwellenradio her bekannt.

Bei Frequenzmodulation wird die Trägerfrequenz selbst durch Aufmodulieren des Datensignals verändert. Mit

dem Beispiel der Schallwellen würde man also durch ändern der Tonhöhe bei konstanter Lautstärke Daten

übertragen. Frequenzmodulierte Signale sind weniger anfällig gegen Störungen. Diese Art der Modulation ist vom UKW-Radio (FM) bekannt.

Bei der Phasenmodulation wird bei Änderung des Datensignals die Sinusschwingung des Trägersignals

abgebrochen und mit einer Phasenverschiebung von z.B. 180° (also einer halben Welle) wieder aufgenommen.

Das Trägersignal kommt sozusagen aus dem Tritt. Diese Phasenverscheibung kann von einem geeigneten

Empfänger erkannt und die Daten wieder extrahiert werden. Phasenmodulation führt zu einer Verbreiterung

(spread spectrum) des Frequenzbereichs der Trägersignals. Dies sieht man in obigem Bild z.B. daran, dass bei

einem Wechsel der Phase viel schneller "Wellenberge" oder "Wellentäler" aufeinanderfolgen als im

ursprünglichen Trägersignal. Diese Art der Modulation eignet sich nur zur Übertragung von digitalen Daten.

Folgende Grafik zeigt die Zusammensetzung der von GPS-Satelliten ausgesendeten Signale. Der Aufbau der

NAV/System Daten wird im Kapitel Datensignalaufbau beschrieben.

AK, 20.05.2023 Seite 14 document.doc

Amplitudenmodulation einesDatensignals auf einen Träger (Carrier)

Frequenzmodulation eines Datensignalsauf einen Träger (Carrier)

Phasenmodulation eines Datensignalsauf einen Träger

Page 15: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 Zusammensetzung der Signale der GPS Satelliten (nach Peter H. Dana; mit freundlicher Genehmigung)

 

Hinweis: Modulo 2 Sum bedeutet, daß nach normalen arithmetischen Regeln summiert wird. Ist das Ergebnis

jedoch größer 2, wird nur der nicht durch 2 teilbare Rest behalten. (0+0=0; 0+1=1; 1+0=1; 1+1=0).

 

Aufbau des Datensignals

Zusätzlich zum C/A-Code wird mit 50 bit/s die Navigationsnachricht das L1-Signal mit hineinmoduliert. Sie

besteht aus einem 50 Hz Signal und enthält Daten wie die Satellitenbahnen, Uhrenkorrekturen und andere

Systemparameter (z.B. den Status der Satelliten, also ob in Ordnung oder fehlerhaft). Diese Daten werden

ständig von jedem Satelliten übermittelt und daraus erhält der GPS-Empfänger sein Datum, die ungefähre

Uhrzeit und die Positionen der Satelliten.

 

Das vollständige Datensignal besteht aus 37500 bit und es dauert demnach bei einer Übertragungsgeschwindigkeit von 50 bit/s ganze 12,5 Minuten bis es vollständig übertragen ist. Diese Zeit benötigt ein GPS-Empfänger bis zur ersten Positionsbestimmung wenn er noch keine Daten über die Satelliten gespeichert hat oder diese veraltet sind.Das Datensignal ist in 25 Blöcke (frames) unterteilt, die jeweils 1500 bit lang sind und 30 Sekunden zur Übertragung brauchen.

 Struktur der GPS-Navigationsdaten eines "frames"

 

AK, 20.05.2023 Seite 15 document.doc

Page 16: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Diese Blöcke sind wiederum in Teilblöcke (subframes) unterteilt (300 bit; 6 sec.), welche ihrerseits in je

10 Worte (word) untergliedert (30 bit; 0,6 sec.) sind. Das erste Wort jedes Teilblocks ist das TLM (telemetry

word). Es enthält Informationen zur Aktualität der Ephemeridendaten. Darauf folgt das HOW (hand over

word), welches die Anzahl der gezählten Z-Epochen enthält. Diese Daten beinhalten die Zeit seit dem letzten

"Neustart" der GPS-Zeit vom jeweils vorherigen Sonntag 0:00 Uhr. Da das Signal des P-Codes eine Woche lang

ist, dient dieses HOW militärischen Empfängern dazu, den "Einstieg" in den P-Code zu finden.

Die restlichen Daten des ersten Teilblocks enthalten Daten zum Zustand und Genauigkeit des sendenden

Satelliten sowie Uhrenkorrekturwerte. Der zweite und dritte Teilblock enthält Parameter der Ephemeriden.

Die Teilblöcke 4 und 5 schliesslich beinhalten die sogenannten Almanachdaten, die in vereinfachter Form

Informationen über die Bahnparameter aller Satelliten, deren technischen Zustand und ihre momentane

Konfiguration, Identifikationsnummer usw. enthalten. Teilblock 4 enthält die Daten für die Satelliten 25 - 32,

Ionosphärenkorrekturdaten, spezielle Nachrichten sowie UTC Zeitinformationen, Teilblock 5 enthält die

Almanachdaten für die Satelliten 1 - 24 sowie Zeit und GPS-Wochennummer.

Die ersten drei Teilblöcke sind bei allen 25 Blöcken gleich, womit alle 30 Sekunden die wichtigsten Daten zur

Positionsbestimmung übermittelt werden. Aus den Almanachdaten kann der GPS-Empfänger ersehen, welche

Satelliten an der momentanen Position zu erwarten sind und beschränkt seine Suche auf diese. Damit kann

eine schnellere Positionsbestimmung erreicht werden.

Wir hatten gesehen, dass das Datensignal Korrekturparameter für die Satellitenuhren enthält. Warum wird

das benötigt, wo die Atomuhren doch so hochgenau sind?

Jeder Satellit besitzt mehrere Atomuhren und damit eine sehr exakte Zeit. Die Atomuhren der einzelnen

Satelliten werden allerdings nicht auf die GPS Referenz-Zeit abgeglichen, sondern laufen völlig frei. Aus

diesem Grund werden Korrekturparameter für die Uhr jedes einzelnen Satelliten benötigt. Die GPS Referenz-

Zeit unterscheidet sich zudem von der UTC-Zeit (oder Weltzeit), welche regelmäßig der Erddrehung angepaßt

wird (Schaltsekunden).

 

Wenn ein Satellit die Signale nicht korrekt übermittelt oder in seiner Umlaufbahn instabil ist, kann er von der

Kontrollstation als "ungesund" gekennzeichnet werden. Diese Informaiton wird im Datensignal mit übertragen

und ein guter Empfänger wird diesen Satelliten aus den Berechnungen ausklammern. Ein typischer Grund,

warum ein Satellit als "ungesund" gekennzeichnet wird ist, dass seine Position korrigiert werden muss. Für

diese Veränderung werden die Triebwerke gezündet und wenn der Satellit in seiner neuen Umlaufbahn ist,

dauert es noch einige Zeit, während der er als "ungesund" gekennzeichnet wird, bis die neue Umlaufbahn

stabilisiert hat.

 

Die Speicherung der Ephemeriden- und Almanach-Daten im GPS-Empfänger führt dazu, daß es ja nachdem,

wie lange ein GPS-Gerät keinen Empfang hatte, unterschiedlich lange dauert, bis die erste

Positionsbestimmung verfügbar ist.

 

War der Empfang der Signale lediglich kuru unterbrochen (z.B. Tunnelfahrt, Wald) so spricht man von

Wiedererfassung (engl. reaquisition). Dies dauert nur sehr wenige Sekunden.

 

Von einem Heisstart (Hot Start) spricht man, wenn Position und Uhrzeit bekannt sind, die Almanach-Daten

und die Ephemeriden-Daten aktuell sind. Dieser Fall tritt ein, wenn das Gerät innerhalb der letzten

2 - 6 Stunden am etwa gleichen Ort eine Positionsbestimmung durchgeführt hat. Dabei dauert es etwa

15 Sekunden, bis eine Positionsbestimmung (engl. position fix) verfügbar ist.

AK, 20.05.2023 Seite 16 document.doc

Page 17: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

Wenn die letzte Position bekannt ist, das Almanach vorhanden und die Uhrzeit im Empfänger stimmt aber die

Ephemeriden veraltet sind, spricht man von einem Warmstart (Warm Start). Dabei müssen nur die

Ephemeridendaten aktualisiert werden und es dauert etwa 45 Sekunden bis einen Positionsbestimmung

verfügbar ist. Die Ephemeriden sind veraltet, wenn mehr als etwa 2 - 6 Stunden seit dem letzten Empfang von

Daten zu den momentan sichtbaren Satelliten vergangen sind. Je mehr andere Satelliten seit dem letzten

Einschalten am Himmel stehen desto länger dauert der Warmstart.

 

Sind weder Ephemeriden, noch Almanach-Daten noch die letzte Position bekannt, spricht man von einem

Kaltstart (Cold Start). Es müssen zunächst alle Almanach-Daten der Satelliten abgewartet werden, was bis zu

12,5 Minuten dauern kann. Das gleiche Verhalten zeigen die Empfänger, wenn sie längere Zeit (Wochen)

ausgeschaltet waren, ohne Batterie gelagert wurden oder mehr als etwa 300 km seit dem letzten Positionsfix

bewegt wurde. Im letzten Fall müssen natürlich keine Daten abgewartet werden, aber da die Position sich so

stark verändert hat, dass die "falschen" Satelliten am Himmel stehen, muss der Empfänger zunächst "blind"

alle Satelliten suchen. Bei vielen Geräten lässt sich durch Eingabe des Datums und der ungefähren Position

die benötigte Zeit für den Kaltstart verkürzen.

 

Wer jetzt alles noch ganz genau wissen will, sieht am besten hier nach (englisch).

 

Laufzeitmessung der Signale

Wie wir gehört haben, sendet jeder Satellit einen Pseudozufallscode (PRN) aus, der dem Empfänger bekannt ist. Das bedeutet, der Empfänger kann den gespeicherten PRN mit dem gerade empfangenen Code vergleichen.Nachfolgendes Bild zeigt zwei identische Codes. Ausgefüllte Felder sollen binär 1, weisse Zwischenräume eine 0 darstellen. Das violette Signal sei das Signal des Satelliten, das Orange das Signal des Empfängers. Man kann jetzt einfach bestimmen, wie weit man das Signal verschieben muss, damit man es direkt zur Deckung bringt. Aus der Verschiebung, die ja einer Zeit - nämlich der Signallaufzeit vom Satelliten zur Erde - entspricht läßt sich die Entfernung zum Satelliten berechnen.

  Vergleich zweier Signale. Oben: verschoben; Unten: Zur Deckung gebracht.

 

Wie aber verschiebt man Signale, die sehr schwach sind und wo zudem noch alle Satelliten auf einer Frequenz

senden, man also eigentlich ein heilloses Durcheinander empfängt? Für die Lösung derartige Probleme gibt es

einen eleganten Algorithmus mit der Bezeichnung Kreuzkorrelation. Dieser zeichnet sich durch eine große

Unempfindlichkeit gegenüber Störungen aus.

 

AK, 20.05.2023 Seite 17 document.doc

Page 18: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Im folgenden soll das Verfahren anhand eines einfachen und deutlichen Signals erläutert werden. Oben sieht man jeweils einen Ausschnitt eines PRN-Codes eines Satelliten, in der Mitte den gleichen Code des Empfängers. Im Ersten Beispiel ist der Code des Empfängers noch "zu spät" dran, wie man am grünen Balken sieht. Bei der Kreuzkorrelation multipliziert man die Signale nun miteinander. Hieraus ergibt sich das untere Signal. Jetzt summiert man das untere Signal auf, was im ersten Fall einen Wert von 9 (9 x 1 plus 39 x 0) ergibt.

Oben: Signal des Satelliten; Mitte: Signal des Empfängers, dessen Signal ist gegenüber dem des Satelliten nach hinten verschoben. Unten: Beide Signale multipliziert. Summiert man für jede Position das multiplizierte Signal erhält manin diesem Fall einen Korrelationswert von 9

 

Verschiebt man nun das Signal schrittweise um jeweils eine Einheit und führt den gleichen Prozess jedesmal durch, so erhält man einen Zahlenwert für jede Verschiebung.

Oben: Signal des Satelliten; Mitte: Signal des Empfängers, dessen Signal genau deckungsgleich mit dem des Satelliten ist. Unten: Beide Signale multipliziert. Summiert man für jede Position das multiplizierte Signal erhält man in diesem Fall einen Korrelationswert von 25.

 

Beim zweiten Beispiel liegt das Signal des Empfängers nun genau Deckungsgleich zum Signal des Satelliten. Wie man sieht ist die Summe am Ende deutlich größer als beim ersten Beispiel.

Oben: Signal des Satelliten; Mitte: Signal des Empfängers, dessen Signal ist gegenüber dem des Satelliten nach vorn verschoben. Unten: Beide Signale multipliziert. Summiert man für jede Position das multiplizierte Signal erhält manin diesem Fall einen Korrelationswert von 9

 

Verschiebt man das Signal noch weiter, wie im dritten Beispiel geschehen, so wird die Summe wieder kleiner.

 

AK, 20.05.2023 Seite 18 document.doc

Page 19: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

  Korrelation der beiden Signale bei Verschiebungen von -7 bis 13

Die nebenstehende Grafik zeigt nun die Korrelationswerte nochmals für Verschiebungen von -7 bis 13.

Deutlich ist zu sehen, wie die Korrelationsfunktion bei einer Verschiebung um 3 einen maximalen Wert

erreicht (unsere oben gesehenen 25. Die Funktion ist auf 1 normiert, was verdeutlichen soll, dass die Signale

im Idealfall zu 100 % übereinstimmen können.) Wer die Signalkorrelation live sehen will, kann hier mal spielen

(englisch) oder hier (deutsch).

In der Realität ist das Verfahren der Kreuzkorrealtion noch ein wenig komplexer. Beispielsweise wird durch

die Bewegung des GPS-Empfängers das Signal durch den Dopplereffekt gestaucht oder gestreckt. Dies erlaub

zwar eine Geschwindigkeitsmessung auf Basis des Dopplereffekts erschwert aber die Korrelation, da die

Signale nicht nur gegeneinander verschoben sondern auch noch gestaucht und gestreckt werden müssen.

Nun wollen wir das eben Gesehene auf die Dimensionen der GPS Signale übertragen. Wir haben gehört, dass

der C/A-Code aus 1023 chips besteht, die mit einer Frequenz von 1,023 MHz gesendet werden, somit alle

1000 Mikrosekunden wiederholt werden. Bei einer Lichtgeschwindigkeit von etwa 300 000 km/s entspricht

das einer Entfernung von 300 km. Das Signal wiederholt sich also sozusagen alle 300 km. Ein Balken (oder

"Nichtbalken") der obigen Grafiken entspricht einem chip im GPS-Signal. Die von uns berechnete

Signalverschiebung von 3 entspräche damit 3 chips oder 3 Mikrosekunden. Das entspricht einer Entfernung

von 0,9 km.

 

Hier fallen jetzt zwei Dinge auf. Zum einen: Was soll eine Entfernung von 0,9 km bedeuten? Zum anderen wird

der aufmerksame Leser sich fragen: Wenn man die Signalverschiebung nur auf 1 Mikrosekunde genau kennt,

ist die Entfernung ja auch nur auf 300 m bekannt und wie kann GPS dann so genau sein? Die Antwort hierauf

zuerst: Moderne GPS-Empfänger sind in der Lage, die Signalverschiebung auf bis zu 1 % eines chips zu

bestimmen, wodurch die Entfernung zum Satelliten im Idealfall auf 3 m genau berechnet werden kann.

 

Nun zur ersten Frage: Wir sehen, dass der Empfänger zunächst nur einen Entfernungswert zum Satelliten

zwischen 0 und 300 km errechnen kann. Entweder kennt jetzt der Empfänger seine Position schon ungefähr,

weil seine letzte Positionsbestimmung an einer (weniger als etwa 300 km entfernten) Stelle durchgeführt

wurde, oder es gibt eine ganze Reihe von möglichen Positionen, aus denen aber durch Iteration, also einer

schrittweisen Annäherung an an den richtigen Wert, die tatsächliche Position bestimmt werden kann.

 

AK, 20.05.2023 Seite 19 document.doc

Page 20: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Annäherung an die tatsächliche Position (auf einen durch 300 km teilbaren Wert ) durch Iteration

Vereinfacht gesagt ist, wenn es mehrere Möglichkeiten gibt, die richtige ziemlich in der Mitte dieser

Möglichkeiten. Nebenstehende Grafik zeigt anhand einer zweidimensionalen Positionsbestimmung, wie die

möglichen Positionen um die tatsächliche Position verteilt sind. Eingeschränkt werden diese Möglichkeiten

beispielsweise schon dadurch, dass sich der Empfänger ja in einer begrenzten Entfernung von der

Erdoberfläche befinden muss. Weiterhin kann darüber, welche Satelliten empfangen werden eine

Einschränkung über die mögliche Position gemacht werden, sobald die Uhrzeit ungefähr bekannt ist. Diese

wird ja auch von den Satelliten übertragen ist somit bekannt.

Dieser ganze Vorgang dauert bei einem Empfänger, der "überhaupt nichts weiss" allerdings durchaus eine

gewisse Zeit, weswegen die meisten Empfänger nach einem größeren Ortswechsel die Möglichkeit bieten,

eine ungefähre Position vorzugeben. Ein moderner GPS-Empfänger ist aber wie gesagt durchaus in der Lage,

seine Position auch ohne diese Hilfestellung zu bestimmen. Die Grafik zeigt also mögliche Positionen in

Abständen an, die sich um jeweils 300 km unterscheiden. Hat sich der GPS-Empfänger nun entschieden, dass

die grüne Position (auf ± 300 km "gerundet") die richtige ist, geht der Rest über das Einrasten des Signal.

Angenommen, die in 300 km-Schritten berechnete Entfernung wäre 24000 km. Jetzt wird über die

Verschiebung des Signals um 3 Mikrosekunden (siehe oben) die exakte Entfernung berechnet.

Unsere Entfernung zum Satelliten aus obigem Beispiel berechnet sich damit auf 24000,9 km. Dies entspricht

einer gesamten Signallaufzeit von lediglich 0,08003 s. Also etwas mehr als acht hundertstel Sekunden.

 

Fehlerquellen bei GPS

Selective Availability

Der größte Faktor bei der Positionsgenauigkeit des GPS besteht seit 2. Mai 2000 5:05 Uhr (MEZ) bis auf

weiteres nicht mehr. An diesem Tag wurde die sogenannte "selective availability" (SA) abgeschaltet. Hierbei

handelt es sich zum einen um eine künstliche Verfälschung der vom Satelliten übermittelten Uhrzeit im L1

AK, 20.05.2023 Seite 20 document.doc

Page 21: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Signal, was bei zivilen GPS Empfängern dazu führt, eine ungenauere Positionsbestimmung zu erzielen. Dies

führt zu Schwankungen um ca. 50 m während wenigen Minuten. Zusätzlich werden die Ephemeriden-Daten

ungenauer übertragen, d.h. die übermittelte Satellitenposition stimmt nicht mit der tatsächlichen überein.

Hierdurch kann eine Ungenauigkeit der Position um 50 bis 150 m mit Periodendauern von mehreren Stunden

erreicht werden. Während bei eingeschalteter SA die Positionsgenauigkeit im Bereich von 100 Metern lag,

wird jetzt eine Genauigkeit von 20 Meter erreicht, die in der Praxis häufig jedoch sogar noch unterschritten

wird. Vor allem die Höhenbestimmug hat stark von der Abschaltung der SA profitiert. Vorher war eine

Höhenbestimmung über GPS praktisch unbrauchbar.

 

Als Grund für SA wurden Sicherheitsbedenken angegeben. So sollte es beispielsweise Terroristen unmöglich

gemacht werden, kritische Einrichtungen in den USA mit selbstgebauten Fernlenkwaffen genau treffen.

Paradoxerweise war genau diese SA bereits während des ersten Golfkriegs (1990) teilweise deaktiviert, da für

die vielen dort befindlichen amerikanischen Truppen nicht genügend militärische Empfänger zur Verfügung

standen und auf zivile Empfänger ausgewichen werden musste, wovon 10000 Stück eingekauft wurden (Es

handelte sich übrigens um Geräte der Firmen Trimble und Magellan). Dies ermöglichte den Truppen sehr

präzise Operationen in einer orientierungspunktlosen Wüste. Wie gesagt wurde dieses SA jedoch mittlerweile

aufgrund der großen Verbreitung von GPS Empfängern und des damit verbundenen weltweiten Nutzens

deaktiviert.

Nachfolgend noch zwei Diagramme, die die Verbesserung der Positionsbestimmung durch die Abschaltung der SA verdeutlichen. Die Kantenlänge der Diagramme beträgt jeweils 200 Meter, die Daten wurden am 1. Mai 2000 bzw. am 3. Mai 2000 jeweils über 24 Stunden aufgenommen. Während mit SA 95 % der Messwerte innerhalb eines 45 m Radius liegen, sind ohne SA 95 % der Werte innerhalb eines 6,3 m Radius.

Streuung der Positionsbestimmung mit ein- und ausgeschalteter "Selective Availability"(Diagramme entnommen von http://www.igeb.gov/sa/diagram.shtml

Mit freundlicher Genehmigung von Dr. Milbert (NOAA))

 

Satellitengeometrie

AK, 20.05.2023 Seite 21 document.doc

Page 22: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Ein weiterer Faktor, der die Genauigkeit der Positionsbestimmung beeinflusst ist die "Satellitengeometrie".

Einfach gesagt bezieht sich "Satellitengeometrie" auf die vom Empfänger aus gesehene Stellung der gerade

empfangenen Satelliten zueinander im Raum.

Wenn ein Empfänger beispielsweise gerade vier Satelliten empfängt und alle vier Satelliten sind

beispielsweise nur im Nordwesten, so ergibt sich daraus eine "schlechte Geometrie". Unter Umständen kommt

überhaupt keine Positionsbestimmung zustande denn wenn alle Entfernungsmessungen aus der gleichen

Richtung erfolgen, kann keine Position trianguliert werden. Selbst wenn der Empfänger eine

Positionsbestimmung durchführen kann, so kann der Fehler ohne weiteres im Bereich von 100 bis 150 Metern

liegen.

Sind hingegen die vier empfangenen Satelliten möglichst gut über den gesamten Himmel verteilt, so wird die

Positionsbestimmung wesentlich genauer. Angenommen die Satelliten befinden sich im Norden, Osten, Süden

und Westen, sind also in 90° Abständen angeordnet, so ist die "Satellitengeometrie" sehr gut, da die

Entfernungsmessungen in allen Richtungen gemacht werden. Dies kann mit den folgenden Zeichnungen für

den zweidimensionalen Fall wieder recht deutlich gemacht werden. Wir beschränken uns auf zwei Satelliten,

lassen also Uhrzeitungenauigkeiten aus dem Spiel.

 

Angenommen die Satelliten befinden

sich in einer "günstigen" Anordnung.

Vom Betrachter aus bilden die

Sichtlinine zu den Satelliten etwa

einen rechten Winkel. Die Laufzeit

kann ja aus verschiedenen in diesem

Kapitel erklärten Gründen nicht ganz

exakt bestimmt werden, was durch die

grauen Bereiche um die

"Laufzeitkreise" dargestellt wird. Der

"Schnittpunkt" A der beiden Kreise ist

nun eine relativ kleine annähernd

quadratische Fläche (blau), die

Positionsbestimmung wird sehr genau

sein.

AK, 20.05.2023 Seite 22 document.doc

Geometrisch günstige Anordnung zweier Satelliten

Page 23: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Befinden sich sich die beiden Satelliten jetzt vom

Betrachter aus gesehen eher mehr hintereinander, so

ergibt die Schnittfläche der möglichen Positionen an

denen man sich befindet eine wesentlich größere und

in die Länge gezogene Fläche. Als Folge davon ist die

Positionsbestimmung weniger genau.

 

Die Satellitengeometrie muss auch berücksichtigt

werden, wenn der GPS- Empfänger in Fahrzeugen oder

in der Nähe von hohen Gebäuden verwendet wird.

Wenn einige Satellitensignale abgeblockt werden, so

entscheiden die restlichen Satellitenpositionen

darüber, wie gut die Positionsbestimmung sein wird

und ob überhaupt eine Positionsbestimmung möglich

ist. Dies kann häufig sehr gut innerhalb von Gebäuden

in Fensternähe beobachtet werden. Wenn noch eine

Positionsbestimmung möglich ist, ist diese meist sehr ungenau. Je größer der verdeckte Bereich des Himmels

ist, desto schwieriger wird die Positionsbestimmung. Die meisten GPS Empfänger zeigen nicht nur an, welche

Satelliten empfangen werden, sondern bieten darüber hinaus auch eine Positionsanzeige der Satelliten an.

Dies ermöglicht es dem Benutzer zu Erkennen, ob ein zur Positionsbestimmung nötiger Satellit eventuell

durch ein Hindernis verdeckt wird und vielleicht ein paar Meter weiter wesentlich bessere

Empfangsbedingungen herrschen würden. Viele Geräte zeigen ein Mass für die Genauigkeit der Messwerte

an, die meist ein Kombinationswert verschiedener Faktoren ist und über deren genaue Berechnung die

Hersteller nur ungern Auskunft geben. Für die "Güte" der Satellitengeometrie sind die DOP-Werte (dilution of

precision; Verschlechterung der Genauigkeit) sehr verbreitet. Je nachdem, welche Daten bei der Berechnung

herangezogen werden unterscheidet man zwischen verschiedenen DOP-Werte:

o GDOP (Geometric Dilution Of Precision); Gesamtgenauigkeit; 3D-Koordinaten und Zeit

o PDOP (Positional Dilution Of Precision) ; Positionsgenauigkeit; 3D-Koordinaten

o HDOP (Horizontal Dilution Of Precision); Horizontalgenauigkeit; 2D-Koordinaten

o VDOP (Vertical Dilution Of Precision); Vertikalgenauigkeit; Höhe

o TDOP (Time Dilution Of Precision); Zeitgenauigkeit; Zeit

So sind HDOP-Werte unter 4 sehr gut, über 8 jedoch schlecht. Die HDOP Werte werden schlechter, wenn sich

die emfpangenen Satelliten hoch am Himmel befinden. VDOP Werte hingegen sind eher schlechter, wenn sich

die Satelliten sehr nahe am Horizont befinden und die PDOP Werte sind am besten, wenn sich ein Satelliten

überkopf und drei weitere gleichmässig am Horizont verteilt befinden. Für eine gute Bestimmung sollte der

GDOP-Wert nicht unter 5 sein. Die PDOP, HDOP und VDOP Werte werden im NMEA-Datensatz $GPGSA

ausgegeben.

Die Satellitengeometrie verursacht keinen Fehler in der Positionsbestimmung, der mit Meterangaben fassbar

ist. Vielmehr vervielfachen die DOP-Werte die anderen Fehler. Hohe DOP-Werte wirken sich also auf die

restlichen Fehler einfach stärker aus, als niedere DOP-Werte.

 

AK, 20.05.2023 Seite 23 document.doc

Geometrisch ungünstige Anordnung zweier Satelliten

Page 24: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Wie bereits weiter oben erwähnt, hängt der Fehler der Positionsbestimmung durch die Satellitengeometrie

auch vom Breitengrad des Empfängers ab. Anhand von zwei Diagrammen kann dies veranschaulicht werden.

Das linke Diagramm zeigt den Höhenfehler (anfangs noch mit SA eingeschaltet) aufgenommen in Wuhan (V. R.

China), welches auf 30,5 ° nordlicher Breite liegt und somit praktisch immer ideale Satellitenkonstellationen

vorfindet. Das rechte Diagramm zeigt den gleichen Messzeitraum aufgenommen auf der Casey-Station in der

Antarktis (66,3 ° südliche Breite). Bedingt durch die dort zeitweise sehr ungünstige Geometrie fällt der Fehler

deutlich grösser aus. Die Skala beträgt jeweils 150 m um die wahre Position. Zusätzlich kommt es, je näher

man zu den Polen kommt zu einer Verschlechterung der Positionsgenauigkeit dadurch, dass die Signale

flacher durch die Atmosphäre laufen und somit eine "dickere" Atmosphäre "sehen", die zu zusätzlichen

Fehlern führt (siehe atmosphärische Effekte).

Höhenfehler in verschiedenen Breitengraden.(Diagramme entnommen von http://www.ngs.noaa.gov/FGCS/info/sans_SA/world/.

Mit freundlicher Genehmigung von Dr. Milbert (NOAA))

 

Satellitenumlaufbahnen

Obwohl die GPS Satelliten sich in sehr präzisen Umlaufbahnen befinden kommt es zu leichten Schwankungen

durch Gravitationskräfte. So beeinflussen Sonne und Mond die Bahnen geringfügig. Die exakten Bahndaten

werden jedoch regelmässig kontrolliert und auch korrigiert und in den Ephemeridendaten zu den Empfängern

gesandt. Dadurch bleibt der für die Positionsbestimmung resultierende Fehler mit ca. 2 Metern sehr gering.

 

Mehrwegeeffekt

Der Mehrwegeffekt hat nichts mit Recycling zu

tun, es ist ein Effekt, der durch die Reflektion

der Satellitensignale (Radiowellen) an Objekten

zustande kommt und ist übrigens der gleiche

Effekt, der Geisterbilder bei Fernsehbildern

verursachte, als noch die normale Dachantenne

üblich war (die Generation der nicht Kabel- und

Schüsselverwöhnten kennt das noch).

AK, 20.05.2023 Seite 24 document.doc

 Störungen durch Reflektion der Signale

Page 25: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Bei GPS-Signalen tritt dieser Effekt besonders stark durch Reflektion an hohen Gebäuden oder anderen

Erhebungen auf. Das reflektierte Signal braucht länger, um zum Empfänger zu gelangen als das direkt

empfangene Signal. Der daraus resultierende Fehler liegt typischerweise bei wenigen Metern. Die

Empfindlichkeit von GPS-Empfängern auf den Mehrwegeeffekt ist unterschiedlich und hängt vor allem von der

Antennenkonstruktion ab. Patch-Antennen sind weniger empfindlich, Helixantennen mehr. Das hat für beide

Typen vor und Nachteile. Bei guten Empfangsbedingungen mag eine Patch-Antenne genauer sein, wenn sie

nicht durch eventuell vorhandene Reflektionen beeinflusst wird, bei schlechten Bedingungen ist es hingegen

besser eine Positionsbestimmung mit einem

Atmosphärische Effekte

Weiterhin zum Genauigkeitsfehler trägt die

durch durch atmosphärische Effekte in der

Troposphäre   und   Ionosphäre verringerte

Ausbreitungsgeschwindigkeit bei. Während

sich Radiosignale im Weltall mit

Lichtgeschwindigkeit ausbreiten, breiten

sich diese in der Ionosphäre und der

Troposphäre mit geringerer

Geschwindigkeit aus.

 

So werden in der Ionosphäre durch die

ionisierende Wirkung der Sonne in einer Höhe von ca. 80 bis 400 km Elekronen und positive Ionen in großer

Zahl gebildet. Diese konzentrieren sich in vier leitenden Schichten innerhalb der Ionosphäre (D-, E-, F1-, und

F2- Schicht). Diese Schichten reflektieren bzw. brechen die elektromagnetischen Wellen der

Navigationssatelliten. Daraus folgt eine längere Laufzeit der Satellitensignale.

Diese Fehler werden größtenteils im Empfänger durch entsprechende Berechnungen kompensiert. Dies

geschieht dadurch, dass man die typischen Geschwindigkeitsabweichungen bei tiefen und hohen Frequenzen

während der Ionosphärendurchdringung an einem Standardtag zu Standardbedingungen kennt und bei allen

Entfernungsberechnungen mit einbezieht. Was bei zivilen Empfängern nicht kompensiert werden kann ist eine

unvorhergesehene Laufzeitänderung beispielsweise durch veränderte Ionosphäre infolge starker

Sonnenwinde.

 

Man weiß, dass sich elektromagnetische Wellen beim Durchgang der Ionosphäre umgekehrt proportional ihrer

Frequenz zum Quadrat (1/f2) verlangsamen. Das bedeutet, daß sich elektromagnetische Wellen mit niedrigen

Frequenzen stärker als solche mit hohen Frequenzen verlangsamen. Wenn man nun die bei einem Empfänger

ankommenden hoch- und tieffrequenten Signale hinsichtlich ihrer unterschiedlichen Ankunftszeit untersucht,

kann die ionosphärische Laufzeitverlängerung berechnet werden. Militärische GPS-Empfänger verwenden

hierzu die Signale beider Frequenzen (L1 und L2), die unterschiedlich von der Atmosphäre beeinflusst werden

und sind somit in der Lage einen weiteren Teil der Ungenaugkeit herauszurechnen.

 

AK, 20.05.2023 Seite 25 document.doc

Gestörte Ausbreitung der Signale durch die Atmosphäre

Page 26: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Der Troposphärenfehler ist ein weiterer Faktor, der durch Brechung die Laufzeit elektromagnetischer Wellen

verlängert. Ursache dafür sind die durch unterschiedliche Wetterlagen bedingten unterschiedlichen

Wasserdampfkonzentrationen in der Troposphäre. Der hierdurch verursachte Fehler ist kleiner als der

Ionosphärenfehler, lässt sich jedoch nicht herausrechnen und kann lediglich durch ein allgemeines Modell bei

den Berechnungen angenähert werden.

 

Zur Veranschaulichung des Ionosphärenfehlers nun noch zwei Grafiken, die den Unterschied in der

Positionsgenauigkeit zwischen Zweifrequenz-Empfängern mit Ionosphären-Korrektur und Einfrequenz-

Empfängern verdeutlichen. Links die Streuung der Positionsbestimmung bei einem Einfrequenzempfänger,

rechts bei einem Zweifrequenzempfänger. Beide Diagramme haben näherungsweise die gleiche Skala (Links:

Breitengrad -15 m bis +10 m, Längengrad -10 m bis +20 m, Rechts: Breitengrad -12 m bis +8 m, Längengrad -

10 m bis +20 m). Deutlich erkennbar ist das Verschwinden einzelner "Ausreisser" mit Ionosphären-Korrektur,

während die mittlere Positionsgenauigkeit für 95 % der Messwerte nicht sehr stark verbessert wird.

 

Positionsbestimmung ohne und mit Atmosphärenkorrektur durch Verwendung der zweiten Frequenz.(Diagramme entnommen von http://www.ngs.noaa.gov/FGCS/info/sans_SA/iono.

Mit freundlicher Genehmigung von Dr. Milbert (NOAA))

 

Durch Einführung von WAAS und EGNOS (siehe hier) ist es möglich, "Karten" mit dem Einfluss der

Atmosphäre (Ionosphäre) auf bestimmte Gebiete zu erstellen und diese Korrekturdaten an die Empfänger zu

senden. Dadurch wird die Genauigkeit deutlich erhöht.

 

Uhrenungenauigkeit und Rundungsfehler

Eine weitere Fehlerquelle ist, trotz der Synchronisierung der Uhr während der Positionsbestimmung auf die

Zeit der Satelliten, die verbleibende Ungenauigkeit der Empfänger-Uhr. Die verbleibende Uhrenungenauigkeit

der Satelliten macht einen Fehler von ca. 2 Metern aus. Rundungs- und "Rechenfehler" der Empfänger

bewirken etwa 1 Meter Ungenauigkeit.

 

AK, 20.05.2023 Seite 26 document.doc

Page 27: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Relativistische Effekte

Nachfolgender Abschnitt soll keine Erklärung der allgemeinen oder speziellen Relativitätstheorie sein. Im

täglichen Leben glaubt man immer, nichts von der Relativitätstheorie zu merken, aber sie haben

beispielsweise einen wichtigen Einfluss auf das Funktionieren des GPS-Systems. Genau deshalb soll kurz

erklärt werden, weshalb.

Die Zeit ist, wie schon erwähnt, bei der ganzen GPS-Navigation ein sehr kritischer Faktor und muss bis auf

20 - 30 Nanosekunden genau bekannt sein, um die gewollte Genauigkeit zu erreichen. Genau deshalb spielt

die schnelle Bewegung der Satelliten (fast 12000 km/h) eine Rolle.

 

Wer sich schon einmal mit der speziellen Relativitätstheorie auseinandergesetzt hat (oder auseinandergesetzt

wurde!), weiss, dass bei schnellen Bewegung die Zeit langsamer vergeht als im Stillstand. Für die Satelliten,

die sich mit 3874 m/s bewegen, bedeutet das aber, dass deren Uhren, von der Erde aus gesehen, langsamer

gehen. Diese relativistische Zeitdilatation macht einen Zeitfehler von etwa 7,2 Mikrosekunden (1

Mikrosekunde = 10-6 Sekunden) pro Tag aus.

Die allgemeine Relativitätstheorie sagt nun aber zudem, dass die Zeit umso langsamer vergeht, je stärker das

Gravitationsfeld ist, dem man ausgesetzt ist. Dieser Effekt führt nun dazu, dass ein Beobachter auf der Erde

die Uhr des Satelliten, der ja in 20200 km Höhe einem geringeren Erdgravitationsfeld ausgesetzt ist, als der

Beobachter, als zu schnell empfindet. Und dieser Effekt ist etwa sechsmal so gross die durch die

Geschwindigkeit hervorgerufene Zeitdilatation.

 

In der Summe gesehen scheinen die Uhren der Satelliten also insgesamt etwas zu schnell zu laufen. Die

Zeitverschiebung zum Beobachter auf der Erde wäre etwa 38 Mikrosekunden pro Tag und würde einen

Gesamtfehler von etwa 10 Kilometern pro Tag ergeben. Damit man sich nicht ständig mit diesen Fehlern

herumschlagen muss, haben sich die Entwickler der GPS-Systems etwas einfache und schlaues einfallen

lassen. Sie haben die Uhren der Satelliten auf 10.229999995453 Mhz anstat 10.23 Mhz eingestellt, tun aber

so, als hätten sie 10.23 MHz. Damit werden die relativistischen Effekte kompensiert.

Es gibt noch einen weiteren relativistischen Effekt, der bei normalen GPS-Positionsbestimmungen nicht

berücksichtigt wird: Der Sagnac-Effekt. Dieser kommt dadurch zustande, dass sich ein Beobachter auf der

Erde durch die Erdrotation ebenfalls mit bis zu 500 m/s (am Äquator) bewegt. Der Einfluss dieses Effekts ist

sehr gering und kompliziert zu berechnen, da er richtungsabhängig ist, weshalb er nur in besonderen Fällen

berücksichtigt wird. Wer das Ganze noch ein wenig ausführlicher wissen will, sollte hier nachsehen.

 

Insgesamt sieht die Fehlerbilanz des GPS-Systems etwa folgendermassen aus, wobei die Werte keine festen

Größen sind, sondern durchaus Schwankungen unterworfen sind. Die angegebenen Werte sind circa-Werte.

 

Störungen durch die Ionosphäre ± 5 Meter

Schwankungen der Satellitenumlaufbahnen ± 2.5 Meter

Uhrenfehler der Satelliten ± 2 Meter

Mehrwegeffekte ± 1 Meter

AK, 20.05.2023 Seite 27 document.doc

Page 28: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Störungen durch die Troposphäre ± 0.5 Meter

Rechnungs- und Rundungsfehler ± 1 Meter

 

Insgesamt ergibt sich daraus ein Fehler von ± 15 Metern. Mit aktivierter SA waren es hingegen noch etwa

± 100 Meter. Mit Korrektur durch Systeme wie WAAS und EGNOS, wodurch vor allem Ionosphäreneffekte

aber auch Umlaufbahnen und Uhrenfehler reduziert werden, wird der Fehler auf etwa ± 3 - 5 Meter reduziert.

 

Für eine Erklärung der Begriffe Präzision, Genauigkeit und Richtigkeit siehe hier.

 

Erreichbare Genauigkeit

Ein typischer GPS-Empfänger für die zivile Nutzung bietet heute eine Genauigkeit von bis zu wenigen Metern.

Hierbei fällt jedoch die Anzahl der empfangen Satelliten und die Geometrie stark ins Gewicht, so dass im

praktischen Gebrauch Genauigkeiten um 20 Meter erwartet werden können. Ausgefeiltere und teure GPS

Empfängersysteme wie sie für die Landvermessung Verwendung finden kosten mehrere tausend Euro und

erreichen Genauigkeiten im Zentimeter-Bereich.

Mit eingeschalteter "Selective Availability" (SA) erreichten die Empfänger typischerweise Genauigkeiten von

etwa 100 Metern (diese Angaben gelten immer für 95 % der Fälle).

Nach der Abschaltung der SA stieg die Genauigkeit auf etwa 15 Meter, je nach verfügbarer Zahl und Stellung

der Satelliten.

 

Siehe auch hier für aktuelle Informationen zur lokalen Genauigkeit in Süddeutschland.

 

Differentielles GPS (DGPS)

Mit Hilfe einer "Differenzielles GPS" genannten Technik (DGPS) können jedoch auch zivile Empfänger

Genauigkeiten von fünf bis manchmal unter einem Meter erreichen. Bei DGPS wird ein zweiter stationärer

GPS Empfänger zur Korrektur der Messung des ersten eingesetzt. Ist die Position des zweiten stationären

Empfängers sehr genau bekannt, so kann man mit Hilfe eines Langwellensenders (283.5 - 325.0 kHz) ein

Korrektursignal ausstrahlen, das von einem mit dem mobilen GPS Empfänger verbundenen Empfänger

ausgewertet wird. Das Korrektursignal wird wie das GPS-Signal selbst kostenlos ausgestrahlt, es entstehen

lediglich die Kosten für die Anschaffung des Langwellenempfängers. Dieser Empfänger wird über eine

dreiadrige Verbindung mit dem GPS verbunden und überträgt die Korrekturdaten in einem seriellen

Datenformat (RTCM SC-104). Die Ausstrahlung dieser DGPS-Signale beschränkt sich teilweise auf

Küstenregionen und wird häufig von der Küstenwache der einzelnen Länder vorgenommen.

 

Wide Area Augmentation System (WAAS)

Seit 1999 in den USA in Betrieb und seit 2001 auch für kleine tragbare GPS-Systeme verfügbar ist ein System

mit dem Namen WAAS (Wide Area Augmentation System) was auf deutsch etwa mit "weiträumiges

Erweiterungssystem" übersetzt werden könnte.

AK, 20.05.2023 Seite 28 document.doc

Page 29: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

WAAS ist ein System, in dem etwa 25 Bodenstationen die die GPS-Signale überwachen, zwei

Referenzstationen an den beiden Küsten der USA, die die Daten der Referenzstationen sammeln und die

Korrekturdaten errechnen. Diese Daten enthalten Korrekturinformationen für die Satellitenumlaufbahnen,

Uhrendrift der Satelliten und Signalverzögerungen, die durch die Ionosphäre und Atmosphäre verursacht

werden. Die Daten werden dann über einen von zwei geostationäre Satelliten an die Empfänger übermittelt.

Seit Dezember 1999 ist WAAS nahezu durchgängig in Betrieb. Es wurde für die amerikanische

Luftfahrtbehörde FAA für hohe Genauigkeit bei Landeanflügen entwickelt. Das WAAS-Signal ist für zivile

Nutzung zugänglich und bietet sowohl auf dem Land wie auch auf See oder in der Luft eine weiterreichender

Abdeckung, als sie bisher durch landgestützte DGPS-Systeme ermöglicht wurde. Im Gegensatz zur normalen

DGPS-Korrektur sind für den Empfang keine zusätzlichen Empfänger nötig, es reicht aus, einen normalen

GPS-Empfänger zu besitzen, dessen Software für den Empfang der WAAS-Korrektursignale vorbereitet ist.

Von Bedeutung ist allerdings, dass zur Funktion des WAAS "Sichtkontakt" zu einem der geostationären

Satelliten vorhanden sein muss. Dies wird umso mehr erschwert, je nördlicher die Position des Empfängers ist,

da die Höhe der geostationären Satelliten über dem Horizont entsprechend abnimmt. So ist WAAS vor allem

für Navigation in offenem Land, die Luft- und Seefahrt von Bedeutung.

In Europa gibt es ein dem WAAS entsprechendes System namens EGNOS (Euro Geostationary Navigation

Overlay Service - Europäischer Geostationärer Zusatz-Navigationsdienst) welches nach dem gleichen Prinzip

arbeitet. Im asiatischen Raum ist ein japanisches System namens MSAS (Multi-Functional Satellite

Augmentation System) in Planung. Da diese Systeme alle nach dem gleichen Prinzip arbeiten kann ein GPS-

Empfänger der WAAS unterstützt auch von EGNOS und MSAS profitieren. Näheres zum WAAS/EGNOS-

System hier.

 

Übersicht über die zu erwartende Genauigkeit

Genauigkeit des ursprünglichen GPS-Systems mit aktivierter SA ± 100 Meter

Typische Positionsgenauigkeit ohne SA ± 15 Meter

Typische Differential-GPS (DGPS)-Genauigkeit ± 3 - 5 Meter

Typische Genauigkeit mit aktiviertem WAAS/EGNOS ± 1 - 3 Meter

 

Garmin's Genauigkeitsangabe

Die Genauigkeitsanzeige der Garmin-GPS sorgt häufig für Verwirrung. Was bedeutet nun eigentlich, wenn das

Gerät beispielsweise anzeigt: Genauigkeit: 4 m. (Dies ist ein häufig zu

erreichender Wert)

Die Anzeige bezieht sich auf die sogenannte 50 % CEP (Circular Error

Probable). Das heisst, dass sich 50 % aller Messungen in einem Kreis mit

dem angegeben Radius befinden, also hier 4 m. Das bedeutet aber auch,

das die Hälfte der Messpunkte ausserhalb dieses Radius sind. Es ist aber

weiterhin so, dass sich 95 % aller Messpunkte innerhalb eines Kreises

mit dem doppelten angegebenen Radius befinden. Und weiterhin 98,9 %

der Messungen in einem Kreis mit dem 2,55 fachen Radius. Nahezu alle

AK, 20.05.2023 Seite 29 document.docGenauigkeit der Positionsbestimmung

Page 30: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Punkte befinden sich also im angegebenen Beispiel in einem Kreis mit etwa 10 m Radius. Die bestimmte

Position ist dann also praktisch immer auf

 

WAAS/EGNOS

Sehr stark vereinfacht handelt es sich beim

WAAS-System (WAAS = Wide Area

Augmentation System; Erweiterungssystem

für einen großen Bereich) um ein

satellitengestützes DGPS (Differenzial GPS).

Das heisst, zum Empfang des Signals

benötigt man keinen zusätzlichen

Langwellenempfänger und es werden zur Signalübertragung keine zusätzlichen und zahlreichen

Sendestationen gebraucht.

 

Unterschiede zwischen WAAS, EGNOS und MSAS

Das Prinzip ist bei allen drei Systemen das gleiche und die Systeme sind sogar miteinander kompatibel. Das

kann man beinahe schon als erstaunlich bezeichnen, da WAAS von den Nordamerikanern, EGNOS (European

Geostationary Navigation Overlay Service) von den Europäern und MSAS (Multi-Functional Satellite

Augmentation System) von den Japanern bzw. zahlreichen asiatischen Ländern entwickelt und betrieben wird.

Während sich das WAAS-System nun bereits seit einigen Jahren im fortgeschrittenen Testbetrieb befindet, hat

das EGNOS-System vor allem im Jahr 2002 große Fortschritte gemacht. Noch befindet es sich aber auch im

Testbetrieb als ESTB (EGNOS satellite test bed). Die Entwicklung des MSAS hingegen erfuhr 1999 einen

herben Rückschlag, nachdem der erste von zwei für diesen Dienst benötigten Satelliten beim Start verloren

ging. Anfang 2003 war der Start des Ersatzsatelliten geplant und das System soll 2005 betriebsbereit sein.

Aktuelle Informationen darüber sind aber rar.

Selten hört man als Sammelbegriff der Systeme die Bezeichnung SBAS (Satellite Based Augmentation

Systems, Satellitengestützte Erweiterungssysteme), obwohl damit eigentlich alle drei Systeme gemeinsam

beschrieben würden.

 

Wie die SBAS funktionieren

Zweck des Systems

WAAS, EGNOS und MSAS wurden bzw. werden natürlich nicht dazu entwickelt, um dem Wanderer oder

Geocacher eine genauere Positionsbestimmung zu ermöglichen. Der eigentliche Hintergrund ist die

Flugsicherung. Um als einziges Navigationsmittel zulässig zu sein, ist das GPS-System zum einen nicht genau

genug und zum anderen ist keine zuverlässige und rechtzeitige Benachrichtigung des Nutzers über eventuelle

Fehler oder Ausfälle möglich. Somit sind Flugzeuge speziell beim Landeanflug ohne oder mit schlechter Sicht

AK, 20.05.2023 Seite 30 document.doc

 WAAS und EGNOS-Logos (Quellen: FAA und ESA)

Page 31: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

heute auf ILS-Systeme (Instrument Landing System) angewiesen. Diese müssen aber mit hohem finanziellen

Aufwand auf jedem einzelnen Flughafen installiert werden. Hier sollen die SBAS-Systeme in naher Zukunft

eine Ergänzung sein und CAT I Anflüge (eingeschränkte Sicht, aber mindestens 550 m) ohne ILS zu

ermöglichen. CAT III Anflüge (ganz ohne Sicht) werden allein mit den SBAS jedoch nicht möglich sein.

 

Infrastruktur und Funktionsweise

Die Zusatzsysteme sollen sowohl die Genauigkeit als auch die Zuverlässigkeit des GPS Systems erhöhen. Dazu

werden an zahlreichen Orten in den USA (25), Europa (10 während des Testbetriebs, im Endausbau dann 34)

bzw. im Pazifikraum GPS-Empfangstationen oder soganannte RIMS (Ranging and Integrity Monitor Stations,

Entfernungsmessungs und Integritätsbeobachtungs Stationen) aufgebaut. Die Position dieser Stationen muss

sehr exakt bekannt sein. Exakt bedeutet, dass die Position der Antenne auf wenige Zentimeter genau bekannt

ist. Diese Stationen empfangen nun das normale GPS-Signal (im Übrigen auch die Signale von GLONASS und

später GALILEO). Hierdurch kann für jede einzelne Station bereits die Differenz zwischen der über GPS

bestimmten und der tatsächlichen Position der Station bestimmt werden. Da die RIMS mit beiden GPS-

Frequenzen (L1 und L2) arbeiten, kann außerdem die Signalverzögerung durch die Ionosphäre für jeden

einzelnen Satelliten bestimmt werden.

Weiterhin erhält man beim Empfang von mehr als vier Satellitensignalen überzählige Informationen, aus

denen eventuelle Fehlfunktionen einzelner Satelliten, beispielsweise durch Uhrenfehler oder

Umlaufbahnschwankungen, sehr schnell abgeleitet werden können. Die Daten aller RIMS werden nun an ein

Central Processing Centre (Hauptrechenstation) weitergeleitet. Diese befinden sich für das ESTB in Toulouse

(Fankreich) und Hönefoss (Norwegen). Wenn EGNOS vollständig in Betrieb geht, werden

EGNOS-Kontroll/Rechenzentren (genannt MCC = Mission Control Centre) in Deutschland (Langen bei

Frankfurt), Spanien (Torrejon bei Madrid), Italien (Ciampino bei Rom) und Großbritannien (Swanwick bei

London) errichtet sein. Hier werden die Daten aller Stationen miteinander verrechnet und folgende Daten

errechnet:

o Langzeitfehler der Satellitenpositionen

o Kurz- und Langzeitfehler der Satellitenuhren

o IONO Korrekturgitter

o Integritätsinformationen

Mit Hilfe der Integritätsinformationen können innerhalb von 6 Sekunden nach dem Auftreten von Problemen

mit dem GPS-System die Empfänger darüber informiert werden.

 

Das für zivile Nutzer wohl

wichtigste Ergebnis der SBAS ist

das IONO Korrekturgitter. Da nach

Abschaltung der künstlichen

Signalverschlechterung (SA) die

größte Fehlerquelle für

Einfrequenzempfänger die

Signalverzögerungen der

Ionosphäre sind, hat eine exaktere

Korrektur als das in jedem GPS-

Empfänger allgemeine

AK, 20.05.2023 Seite 31 document.doc

Beispiel einer TEC-Map der Strotosphäre über Nordamerika (Quelle: JPL)

Page 32: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Ionosphärenmodell direkte und große Auswirkungen auf die Genauigkeit der bestimmten Position. Aus den

Messdaten der RIMS wird nun eine Art Karte mit der Gesamtelektronenmenge (TEC = Total Electron Content)

des Gebietes berechnet, welches von den Empfangsstationen abgedeckt wird. Mit etwas verminderter

Genauigkeit lässt sich dies sogar über ein noch größeres Gebiet berechnen.

Diese ganzen Informationen werden nun an bestimmte geostationäre Satelliten gesendet. Für das EGNOS-

Testsystem (ESTB) geschieht dies von Aussaguel (Frankreich, bei Toulouse) an den INMARSAT AOR-E und von

Fucino (Italien) aus an INMARSAT IOR. Später mit EGNOS in Normalbetrieb wird von Aussaguel und

Goonhilly (Grossbritannien) zum Satellit AOR-E und von Fucino und Goonhilly zum Satelliten IOR-F5 gesendet.

Von der Station Torrrejon (Spanien) und Scanzano (Italien) werden Daten zum Satelliten Artemis gesandt.

Dieser hat im Januar 2003 doch noch seine endgültige Position erreicht hat, nachdem er wegen Problemen mit

der letzten Stufe der Ariane-Rakete beim Start im Juli 2001 beinahe aufgegeben werden musste.

 

Die geostationären Satelliten senden ein sehr ähnliches Signal wie die GPS-Satelliten auf der selben Frequenz

diese. Damit können die geostationären Satelliten zum einen zur Positionsbestimmung verwendet werden und

zudem werden die gesendeten Informationen im GPS-Empfänger dazu verwendet, die Genauigkeit der

Positionsbestimmung zu verbessern.

 

Mit Hilfe der übertragenen Ionosphären-

Karte kann nun für jedes Signal eines GPS-

Satelliten, das zur Positionsberechnung

verwendet wird, der Durchtrittspunkt (pierce

point) durch die Ionosphäre bestimmt und

die Signalverzögerung berechnet werden.

Die Ionosphäre verändert sich mit der

Sonnenaktivität und damit auch im Laufe des

Tages. So ist beispielsweise bekannt, dass

normale Einfrequenz GPS-Empfänger nachts

nach Mitternacht eine höhere Genauigkeit

aufweisen als tagsüber. Die übrigen

Funktionen zur Integritätsüberprüfung des GPS-Systems, die die SBAS-Systeme bieten, werden von Handheld-

Empfängern vermutlich nie ausgewertet, da die notwendigen Berechnungen zu komplex sind und die

Aussagen daraus vermutlich für den Normalbenutzer nicht von besonderem Interesse sind.

 

Unterschied zu normalem DGPS

In der Berechnung des Ionosphärenkorrekturgitters liegt für normale Nutzer der Hauptunterschied in der

Funktionsweise zwischen Differential-GPS und WAAS. Beim DGPS vergleicht jede einzelne Referenzstation die

über das GPS-Signal für sich bestimmte Position mit der bekannten Position und sendet diese Differenz über

eine bestimmte Langwellenfrequenz als Korrekturdaten aus. Ein DGPS-Empfänger empfängt nun diese Signale

und wendet die Korrektur auf seine eigene Position an. Durch mit zunehmender Entfernung des Empfängers

von der Referenzstation größerer werdende Unterschiede in den atmosphärischen Einflüssen, wird die

Korrektur immer wenig exakt, je weiter entfernt man sich von einer solchen Station befindet. Nimmt die

Entfernung zur Referenzstation zu, so durchläuft das Signal vom Satelliten zur Referenzstation andere Teile

der Atmosphäre als das Signal vom Satelliten zum Benutzer. Weiterhin werden vom Benutzer teilweise Daten

AK, 20.05.2023 Seite 32 document.doc

Zeidimensional vereinfachte Darstellung des IONO-Korrekturgitters

Page 33: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

von ganz anderen Satelliten empfangen und ausgewertet als von der Referenzstation. Der Empfänger hat also

eine andere Satellitensymmetrie und erhält andere Ergebnisse.

Die typische Reichweite von DGPS-Sender liegt bei etwa 70 - 200 km und in diesem Bereich ist auch die

Korrektur noch gut. Das oben beschriebene Phänomen der Verschlechterung der Qualität der Korrektur mit

zunehmender Entfernung von einem Korrektursender bei DGPS wird im englischen als "spatial decorrelation"

bezeichnet.

Beim WAAS hingegen wird aus der Summe der Messungen aller Referenzstationen ein Korrekturgitter für das

gesamte abgedeckte Gebiet berechnet. Jeder einzelne Empfänger korrigiert seine Position daraufhin mit Hilfe

dieser Daten selbst. Die erreichbare Genauigkeit ist sogar höher als mit normalem DGPS und das Gebiet, für

welches die Korrekturdaten gelten kann extrem vergrößert werden. Daher kommen auch die Worte "Wide

Area" in der Bezeichnung WAAS. Befindet man sich jedoch auch bei den SBAS deutlich ausserhalb des

Einzugsgebietes der Korrekturstationen und empfängt beispielsweise in Europa die Korrekturdaten für

Nordamerika, so wird der GPS-Empfänger im glücklichsten Fall die Standardionosphärenkorrekturen

anwenden, die er gespeichert hat. In diesem Fall wird man keinen Unterschied zwischen aktiviertem und nicht

aktiviertem WAAS/EGNOS bemerken. Im unglücklichsten Fall jedoch wird überhaupt keine oder eine falsche

Ionosphärenkorrektur angewandt und die Position ist sogar schlechter als mit deaktiviertem WAAS/EGNOS.

Wenn die Software des GPS-Empfängers korrekt programmiert ist, sollte dieser Fall jedoch nicht eintreten, da

die SBAS-Systeme die Informationen über den Gültigkeitsbereich ihrer Daten in den ausgesendeten Signalen

mitliefern.

 

Abdeckungsbereich der geostationären Satelliten

Der Bereich, in dem WAAS, EGNOS und MSAS verfügbar sind, hängt zum einen davon ab, wo überall RIMS stehen deren Informationen zur Berechnung verwendet werden, und zum anderen davon, wo die Signale der geostationären Satelliten empfangen werden können. Als Satelliten zur Ausstrahlung der Korrektursignale werden momentan unter anderem einige Inmarsat-Satelliten verwendet, die alle eine geostationäre Umlaufbahen (ca. 36000 km) haben und eigentlich Telefonsatelliten für Telefongespräche von und zu Schiffen sind. Nachfolgende Grafik zeigt die zur Ausstrahlung verwendeten Satelliten und deren "Footprint" also der Bereich, indem die Signale emfpangen werden können. Bis zum Endausbau von EGNOS ändert sich hier allerdings noch einiges, speziell auch für die Abdeckung im europäischen Raum.

AK, 20.05.2023 Seite 33 document.doc

Page 34: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

INMARSAT-Satelliten und deren Ausleuchtungsbereich

 

Die Bezeichungen der Satelliten nochmal tabellarisch:

 Satellitenbezeichnung Satellit steht über GPS PRN Nr. Garmin Sat ID

INMARSAT 3 F2 (AOR-E)(Atlantic Ocean Region East)

Westafrika 120 33

INMARSAT 3 F4 (AOR-W)(Atlantic Ocean Region West)

Ostküste Brasiliens 122 35

INMARSAT 3 F1 (IOR)(Indian Ocean Region)

Indischer Ozean 131 44

INMARSAT 3 F3 (POR)(Pacific Ocean Region)

Pazifik 134 47

INMARSAT IOR-W (III-F5)(Indian Ocean Region West)

Afrika (Kongo) 126 39

Artemis Afrika (Kongo) 124 37

MTSAT-1R(Multifunction Transportatin Satellite)

Start Anfang 2003 129 42

MTSAT-2 Start Mitte 2004 137 50

 

Wenn man also in Europa auf einem Garmin-GPS bei aktiviertem WAAS eine Korrektur mit anderen Satelliten

als Nr. 33 oder Nr. 44 im Satelliten-Display findet, sollte man Vorsicht walten lassen. Speziell vor Nr. 35 sollte

man sich "in Acht nehmen", da dieser unter bestimmten Umständen empfangen werden kann, aber nur

Ionosphärendaten für Nordamerika ausstrahlt. Von den Korrekturdaten dieses Satelliten hat man keine

Vorteile. Interessanterweise scheinen zumindest die Garmin-GPS keine Auswertung der Daten für den

Gültigkeitsbereich der Signale durchzuführen.

Die Verteilung und Nutzung der Satelliten für EGNOS wird sich Anfang bis Mitte des Jahres 2004 nochmals

verändern. Der Satellit ARTEMIS der ESA (European Space Agency, Europäische Weltraumbehörde) wird

hinzukommen, AOR-E wird ab MItte des Jahres nicht mehr verwendet und IOR wird in Richtung Pazifik

verschoben.

Einen deutlichen Nachteil haben die auf geostationären Stalliten basierenden Korrektursysteme allerdings.

Für den bodengebundenen GPSler befinden sich die geostationären Satelliten alle im Süden und dort relativ

nahe am Horizont. Befindet man sich beispielsweise in München, so steht AOR-E etwa 35° über dem Horizont,

AK, 20.05.2023 Seite 34 document.doc

Page 35: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

IOR hingegen nur 16°. Dadurch kann es sehr leicht zu Abschattungen durch Gebäude oder auch Bäume

kommen. In bewaldeten oder hügeligen Gebieten wird man vermutlich nicht in den Genuss der EGNOS

Korrekturen kommen. Hier macht sich negativ bemerkbar, das das System eigentlich für die Luftfahrt gedacht

ist, wo es keine Rolle spielt, wenn die Satelliten etwas tiefer stehen. Der Satellit III-F5, der für den EGNOS-

Betrieb verwendet werden wird, wird von München aus etwa 35° über dem Horizont stehen. Wie der Empfang

in Wäldern und Hügellandschaften ausfallen wird, wird sich zeigen.

 

WAAS, EGNOS und Garmin GPSSeit dem 1. April 2003 wird das EGNOS-Signal in "WAAS

kompatiblem" Format (SBAS mode 0/2) ausgestrahlt und es sind

damit auch die Garmin-Empfänger in der Lage, das Signal zu

verarbeiten.

An dieser Stelle sei nochmal darauf hingewiesen, dass die Garmin-

GPS das WAAS oder EGNOS-Signal nur verarbeiten können, wenn

sich das Gerät nicht im Energiesparmodus befindet. Es reicht also

nicht, die Option WAAS im Optionenmenü zu aktivieren, sondern man

muss gleichzeitig auch in den Normal-Modus wechseln. Diese

Tatsache ist ein Nachteil für die Verwendung von WAAS/EGNOS

(zumindest mit Garmin-Empfängern). Im Normalmodus halten die

Batterien der Garmin-Geräte nur etwa halb so lange wie im

Energiesparmodus. Das Bild rechts zeigt die Satellitenseite eines Garmin vista mit aktiver

Differentialkorrektur durch EGNOS. Der Buchstabe "D" im Signalbalken der Satelliten zeigt an, dass für das

Signal des entsprechenden Satelliten Korrekturdaten empfangen und verwendet werden. Mit einer

angezeigten Genauigkeit von 2 Metern (RMS) ist die Positionsgenauigkeit entsprechend gut.

aktueller Status von ESTB/EGNOS

vom 30.09.2004:

 

Der Inbetriebnahme-Termin für EGNOS mit allen Satelliten ist jetzt für das erste Quartal 2005 geplant.

Momentan wird das System wohl noch getestet und vorbereitet. EGNOS wird anschliessend vorläufig nur für

nicht-kritische (also noch nicht für Luftfahrt) Anwendungen zugelassen sein.

 

Die EGNOS-Konstellation wird aus den Satelliten ARTEMIS (PRN 124; ID 37) , Inmarsat AOR-E (PRN120; ID

33) und Inmarsat IOR-W (PRN126; ID 39) bestehen. Bis zur offiziellen Inbetirebnahme senden diese Satelliten

bereits teilweise Signale, die aber von handelsüblichen GPS-Geräte zwar empfangen aber nicht ausgewertet

werden können. Die Satelliten werden also teilweise im SkyView angezeigt, der Signalbalken bleibt jedoch

grau.

 

Der aktuelle Sendestatus der ESTB-Satelliten kann hier bei der esa eingesehen werden.

 

Nachfolgende Grafik zeigt die geplanten Aktivitäten des ESTB/EGNOS-Systems.

AK, 20.05.2023 Seite 35 document.doc

Satellitenseite des Garmin-Vista mit ESTB-Satelliten

Page 36: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Sendeplan der ESTB/EGNOS Satelliten (Quelle: esa)

 

Position und Abdeckungsbereich der EGNOS-Satelliten

 

Für weiter Infos siehe hier (englisch).

 

Links:

SBAS-Seite der FAA (Federal Aviation Administration); englisch

ESA-Satellitennavigation; englisch

EGNOS-Seite der ESA; englisch

ESA-Liste der SBAS-fähigen (WAAS und EGNOS) GPS-Geräte als pdf-File; englisch

INMARSAT; englisch

 

(Besonderer Dank geht an Michael Baguhl für ergänzende Hinweise und Korrekturen)

 

AK, 20.05.2023 Seite 36 document.doc

Page 37: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Navigation mit GPS

Da nicht jeder sofort mit der Bedeutung der besonderen Begriffe vertraut ist, die bei der Navigation mit GPS-

Geräten verwendet werden, sollen die wichtigsten nachfolgend kurz erklärt werden.

 

Position, Wegpunkt, Routen und Tracks

Position

Die Koordinaten an denen man sich momentan befindet. Für die Darstellung gibt es zahlreiche verschiedene

Formate (siehe auch Kartendatum) aber sehr gebräuchlich sind Angaben wie: N 47° 35.53'  E 007° 39.32'. Die

aktuelle Position lässt sich im GPS-Gerät abspeichern und wird dann zu einem Wegpunkt.

 

Wegpunkt (Waypoint)

Wegpunkte können abgespeicherte Positionen sein, an denen man sich einmal befunden hat. Z.B. kann man

nach dem Parken seines Autos die aktuelle Position speichern um das Auto später leichter wiederzufinden. Die

Koordinaten eines Wegpunkts können aber auch über die Tasten des Geräts eingegeben oder vom PC

übertragen werden. Jeder Wegpunkt kann üblicherweise mit einem kurzen Namen und einem Symbol

versehen werden. Die meisten Geräte können zwischen 500 und 1000 Wegpunkte speichern.

Bei vielen Geräten lässt sich ein Wegpunkt auch über eine Entfernung und Peilung von der aktuellen Position

oder einem anderen Wegpunkt erzeugen. Das kann praktisch sein, wenn man aus einer Karte den Abstand und

die Richtung eines neuen Wegpunkts von einem bereits Bestehenden ausgemessen hat, ohne die exakten

Koordinaten zu kennen. Vor allem in der Seefahrt dürfte diese Funktion beliebt sein.

 

Wählt man einen Punkt aus der Liste der gespeicherten Wegpunkte aus, so

berechnet, nachdem man über die "Goto"-Funktion (Gehe-zu) den Punkt als

Navigationsziel ausgewählt hat, das Gerät kontinuierlich die Richtung und

Entfernung zu diesem Punkt. Häufig wird auch die geschätze Ankunftszeit

oder Zeit die man bis zum Punkt braucht angegeben. Befindet man sich in

Bewegung oder hat das Gerät einen elektronischen Kompass, so wird das

GPS-Gerät auch genau mit Hilfe eines Pfeils anzeigen, in welche Richtung

man sich bewegt und ob man sich tatsächlich in Richtung des Wegpunkts

bewegt.Wegpunkte lassen sich zu Routen kombinieren.

 

Routen

AK, 20.05.2023 Seite 37 document.doc

Wegpunkte auf einer Kartenansicht

Page 38: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Eine Route besteht aus einer Aneinanderreihung von bestehenden

Wegpunkten in einer bestimmten selbst festgelegten Reihenfolge. Die meisten

Geräte können eine oder mehrere (häufig zwischen 10 und 20) solcher Routen

speichern, wobei jede Route je nach Gerät bis zu mehr als hundert

Wegpunkte enthalten kann. Meist kann die Route beliebig editiert werden

und graphisch auf einer Kartenansicht dargestellt werden. Wird die Route in

der einen oder anderen Richtung (Anfang-zum-Ende oder Ende-zum-Anfang)

zur Navigation aktiviert ("Goto" oder "Follow" route), so zeigt das GPS-Gerät

die Richtung und Entfernung zum nächsten Wegpunkt auf der Route, folgt

dieser Route also Punkt für Punkt, erkennt aber typischerweise auch, wenn

ein Punkt auf der Route ausgelassen wurde und man sich bereits an einen der

nächsten Punkte angenähert hat. Das Gerät besteht dann nicht darauf, zurück

zum eigentlich vorgesehenen Punkt zu gehen

Bei vielen neueren Geräten wird kurz vor dem Erreichen eines Wegpunktes auf der Route (meist als Wende

bezeichnet) auf der Kompassansicht angezeigt, in welcher Richtung es nach der Wende weitergehen soll. Die

Routenfunktion eignet sich sehr gut für Fahrrad, Auto oder Motorradrouten, wenn wichtige Abzweigungen als

Wegpunkte gespeichert werden und dann zu einer Route zusammengeführt werden. Es wird dann zwar nicht

der exakte Strassenverlauf in der Route wiedergegeben aber man hat einen guten Anhaltspunkt, wann man in

welche Richtungen abbiegen muss, da die Entfernung (natürlich Luftlinie) zum nächsten Wendepunkt laufend angezeigt wird.

 

Tracks bzw Tracklog Während man sich bewegt, speichern die meisten Geräte in regelmässigen

Zeit- oder Entfernungsabständen, die man man teilweise selbst bestimmen

darf, die aktuelle Position in sogenannten "Tracklogs". Bei dieser

eigentlich jedem bereits aus Hänsel und Gretel bekannten

Brotkrumenfunktion können je nach Gerät 1000 bis 10000 Punkte

gespeichert werden. Speziell bei Geräten mit 10000 Punkten

Speicherplatz (z.B. etrex Vista mit neuester Firmware) sollte dies für die

Aufzeichnung einer ganzen Tagestour ausreichen.

AK, 20.05.2023 Seite 38 document.doc

Ansicht einer Route mit vier Wegpunkten

 Ansicht der Kompassansicht kurz bei Erreichen einer Wende beim Garmin geko 201

Ansicht des zurückgelegten Weges (Tracklog)

Page 39: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Diese Tracklogs können grafisch dargestellt und wie Routen aktiviert werden. Dies kann auch "Rückwärts"

erfolgen und führt einen somit exakt auf dem Weg zurück, auf dem man gekommen ist. Im Gegensatz zur

Route, die nur die Luftlinie zwischen zwei Wegpunkten anzeigt, enthält der Track den tatsächlich

zurückgelegten Weg. Viele Geräte erlauben das Speichern von mehren Tracks, wenn auch mit reduzierter

Punktzahl, so dass man diese dann wie Routen verwenden kann. Normalerweise können Tracks jedoch nicht

im GPS-Gerät editiert oder wie Routen aus Wegpunkten erzeugt werden. Es gibt aber einige Programme am

PC (die meisten Routenplaner mit GPS-Unterstützung), mit denen man Tracks zeichnen kann und dann auf den

GPS laden und verwenden kann. Sie können allerdings immer nur ausserhalb des GPS-Gerätes editiert

werden.

 

Von Heading, Bearing, Course und Co.

Mit Hilfe nachfolgender Grafik sollen nun noch die etwas verwirrenden unterschiedlichen Bezeichnungen für verschiedene Richtungsangaben bei der Navigation erläutert werden.

Erklärung von Heading, Bearing, Course usw.

 

Course

Course, Desired Track (DTK) oder zu deutsch Sollkurs ist der Kurs, den man anlegen muss, um direkt vom

Startpunkt zum Zielpunkt zu gelangen. Anders gesagt gibt dieser Wert die Richtung zwischen der

Ausgangsposition und dem Ziel an. Im obigen Beispiel wären das 56°. Der Sollkurs verändert sich natürlich

nicht, wenn man sich bewegt, sondern nur, wenn man einen neuen Start oder Zielpunkt festlegt.

 

Heading

AK, 20.05.2023 Seite 39 document.doc

Page 40: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Die Bezeichung Heading oder Track (TRK), zu deutsch einfach nur Kurs gibt die Richtung an, in die man sich

momentan tatsächlich bewegt. Dabei ist 0° Norden, 90° Osten, 180° Süden und 270° Westen. Im obigen

Beispiel beträgt der Kurs 34°. Genau genommen gilt das nicht ganz bei Fliegerei und in der Schiffahrt. Hier

bezeichnet nur Track den tatsächlich anliegenden Kurs und Heading bezeichnet die Richtung der Flugzeug-

oder Schiffslängsachse, die sich je nach Seitenwind oder Strömungsverhältnissen deutlich vom Kurs

unterscheiden kann (Dank für diesen Hinweis an Rolf Loose).

 

Bearing

Unter Bearing (BRG) oder Peilung versteht man die Richtung, in die man von der aktuellen Position aus

gehen muss, um zum vorgesehenen Zielpunkt zu gelangen. Im obigen Beispiel beträgt der Wert für Bearing

76°.

 

Die Kursabweichung (Off Course) bezeichnet die Abweichung des aktuellen Kurses vom Sollkurs. Diese

Kursabweichung würde im obigen Beispiel 22° nach links (Backbord) betragen. Eine Angabe "Zum Kurs"

oder "To Course" würde die Richtung angeben, die man einschlagen muss, um wieder auf Kurs zu gelangen.

Dies wäre im obigen Beispiel Richtung Südosten.

 

Gleichzeitig zur Kursabweichung kann man noch die Versetzung oder XTE (Cross Track Error) angeben. Dies

ist der Abstand der eigenen Position in Metern, Kilometer oder Meilen vom geplanten Weg, also von der

Verbindungslinie zwischen Start und Ziel.

 

Gutgemachte Geschwindigkeit

Manchmal taucht noch die Bezeichung "gutgemachte Geschwindigkeit", Vektorgeschwindigkeit zum Ziel

oder VMG (Velocity Made Good) auf. Dies ist die Geschwindigkeit, mit der man sich dem Ziel längs des

Sollkurses nähert und ist am Besten grafisch zu erklären. Wenn man sich (erste Zeichnung) exakt auf Sollkurs

befindet, so ist die gutgemachte Geschwindigkeit gleich der tatsächlichen Geschwindigkeit. Je mehr der

aktuelle Kurs vom Sollkurs abweicht, desto geringer wird die gutgemachte Geschwindigkeit, bis sie Null wird,

wenn man sich rechtwinklig zum Sollkurs bewegt. Die gutgemachte Geschwindigkeit dient dem GPS-Gerät im

übrigen auch zur Berechnung der ungefähren Dauer, die man noch bis zum Erreichen des Ziels braucht (ETA

= Estimated Time of Arrival).

 

AK, 20.05.2023 Seite 40 document.doc

Page 41: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Erklärung der gutgemachten Geschwindigkeit

 

Praktische Hinweise

Allgemeines

Einschalten nach längerer Zeit und größeren Ortswechseln.

Auf Reisen kommt es häufig vor, dass man ein GPS-Gerät ausgeschaltet über eine größere Entfernung (mehr

als etwa 300 km) bewegt. Schaltet man das Gerät dann am Zielort zum ersten Mal wieder an, so wird es einige

Minuten benötigen, um die korrekte Position zu ermitteln. Dies wird dadurch bedingt, dass die GPS-Geräte

berechnen, welche Satelliten zu welcher Zeit am zuletzt ermittelten Ort empfangen werden können. Sind

durch eine Ortsänderung andere Satelliten verfügbar, so müssen zunächst alle möglichen Satelliten

"durchprobiert" werden, bevor die Positionsberechnung stattfinden kann. Bei manchen Geräten gibt es die

Möglichkeit die ungefähre neue Position einzugeben und dem Gerät dadurch die Satellitenauswahl zu

erleichtern.

Ein ähnliches Phänomen zeigt sich, wenn das GPS-Gerät über einen längeren Zeitraum (Wochen)

ausgeschaltet war. Auch dann stimmen die tatsächlich verfügbaren Satelliten nicht mehr mit den vom Gerät

erwarteten überein bzw. werden die Almanachdaten als veraltet und ungültig angesehen und die

Positionsbestimmung dauert ebenfalls länger.

 

Wer ein Gerät mit WAAS-Funktion besitzt, dieses in den USA verwendet hat und wieder nach Europa

zurückkehrt, sollte daran denken, dass andere Satelliten für WAAS als für EGNOS verwendet werden. Es kann

eine ganze Weile dauern, bis das Gerät hier wieder die richtigen Satelliten findet. Das beeinflusst aber die

normale Positionsbestimmung nicht sondern nur die Verfügbarkeit von WAAS/EGNOS.

 

Keine Positionsangabe trotz freier Sicht zum Himmel

Vermutlich hat sich jeder, der ofters mit dem GPS unterwegs ist schon gewundert, warum manchmal, und

meist nur für recht kurze Zeit, einfach keine Positionsbestimmung zustande kommt, obwohl der Himmel

weitgehend sichtbar ist und man auch sonst alles richtig gemacht hat.

In solchen Fällen empfiehlt sich ein Blick auf die Satellitenseite des GPS. Hier

findet man dann vielleicht heraus, dass überhaupt nur fünf Satelliten sichtbar

sind (also höher als 10° am Horizont stehen). Wenn von diesen jetzt zufällig

einer oder zwei von einem Baum, Haus oder ähnlichem verdeckt werden, oder

doch so tief am Horizont stehen, dass sie von einem Hügel verdeckt werden, so

ist keine Positionsbestimmung mehr möglich (zumindest keine in 3D).

Bereits 10 Minuten später hat sich die Situation meist wieder drastisch

verbessert und es gibt überhaupt keine Probleme eine gute

Positionsbestimmung zu erhalten.

Warum dies so ist, läßt sich erkennen, wenn man die Anzahl der sichtbaren

AK, 20.05.2023 Seite 41 document.doc

Satellitenseite des Garmin etrex Vista

Page 42: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Satelliten und deren Höhe über dem Horizont über einen bestimmten Zeitraum verfolgt. Hierfür eignet sich

hervorragend das Planungstool "Planning" von Trimble, welches es hier zum kostenlosen Download gibt und

eigentlich Vermessern helfen soll, optimale Zeitpunkte für Ihre Aktivitäten zu planen.

Sieht man sich nun damit einmal die Anzahl der Satelliten an, die innerhalb von beispielsweise 24 Stunden

überhaupt an einem bestimmten Ort sichtbar sind, ergibt sich beispielsweise für München am 23.11.2002

folgendes Bild:

Anzahl der sichtbaren Satelliten (über 10° über dem Horizont) für Münschen am 23.11.02

 

Es läßt sich erkennen, dass nachts um etwa 1:00 Uhr und mittags um 13:00 Uhr für etwa 20 Minuten lediglich

5 Satelliten "verfügbar" sind. Der oben genannte Fall, dass bei zufälliger Abdeckung von zwei der fünf

Satelliten z.B. durch Häuser, Bäume oder Hügel gar keine Position bestimmt werden kann, tritt dann recht

schnell ein.

Das Bild zeigt aber auch, dass zu einigen Zeiten am Tag (blaue und dunkelblaue Balken) 9 oder 10 Satelliten

verfügbar sind. Zu diesen Zeiten wird man vermutlich selbst in schwierigem Gelände eine recht gute

Positionsbestimmung zustande bekommen. Das Bild wiederholt sich übrigens sehr exakt jeden Tag, nur

verschiebt es sich jeden Tag um 4 Minuten nach vorn, was mit den Umlaufbahnen und -zeiten der Satelliten

zusammenhängt.

 

Verwendung auf Reisen

Verwenden von GPS zu Fuss und auf dem Fahrrad

Wird das GPS-Gerät bei Wanderungen und ähnlichem verwendet, gibt es zwei grundsätzliche Möglichkeiten.

Zum Beispiel kann man das Gerät mitnehmen, um im Notfall wieder zum Auto zurück zu finden, nachdem man

dieses als Wegpunkt eingespeichert hat. Dann reicht es natürlich, das ausgeschaltet Gerät irgendwo in einer

Tasche oder im Rucksack zu transportieren. Wird es benötigt, kann man es einfach einschalten und es wird

einem nach kurzer Zeit den Weg zurück weisen können.

Möchte man aber bereits während der Wanderung über die zurückgelegte Strecke, Richtungen, Höhe und so

weiter informiert bleiben, dann muss das Gerät nicht nur eingeschaltet sein, die Antenne sollte auch möglichst

ununterbrochen freie "Sicht" zum Himmel haben. Man wird wenig Spass haben, wenn man den GPS in einer

Hüft- oder Jackentasche trägt. Trägt man die "Hüftasche" auf dem Rücken, wird das Ergebnis etwas besser

sein, aber noch immer nicht perfekt. Als sehr gut hat sich eine Position auf der Schulter erwiesen. Hat man

eine Schutztasche zum GPS, in die eine Klammer eingearbeitet ist (z.B. die etrex-Serie von Garmin), so läßt

sich diese meist gut an den Riemen eines Rucksacks klemmen. Es empfiehlt sich, zusätzlich die Kordel als

Notleine irgendwo zu befestigen, damit sich der GPS nicht "zu Tode" stürzen kann. Ein Platz im Rucksack ganz

AK, 20.05.2023 Seite 42 document.doc

Page 43: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

oben mit der Antenne nach oben zeigend funktioniert ebenfalls meist gut, man kann aber unterwegs nicht

schnell mal auf dem Display gewünschte Informationen einsehen.

Trotz allem gibt es Stellen im Gelände, an denen der Empfang nur schlecht oder überhaupt nicht funktioniert.

Besonders ungünstig sind bei Bergwanderungen Schluchten oder steile Hänge. Wie man von Auge schon

schon leicht sieht, wird hier der sichtbare Bereich des Himmels mitunter so stark eingeschränkt, dass nur

noch weniger als drei Satelliten empfangen werden können. Unter solchen Bedingungen ist jedes GPS

überfordert, eine Positionsbestimmung ist unmöglich.

Genau das Gleiche gilt natürlich für Städte. In tiefen Häuserschluchten (die bei schmalen Strassen

überraschenderweise garnicht so tief sein müssen) ist ebenfalls häufig sehr wenig Himmel zu sehen und

entsprechend kein Empfang möglich. Zusätzlich wird bei schneller Bewegung die Positionsbestimmung

dadurch erschwert, dass sehr schnell die sichtbaren Bereiche des Himmels wechseln. Möchte man in Städten

mit schwierigen Empfangsbedingungen seine Position bestimmen, sollte man sich zu einem grösseren Platz

oder die Mitte einer grossen Strassenkreuzung begeben (sofern es der Verkehr erlaubt). Nach meinen

Erfahrungen sind Städte im allgemeinen allerdings weniger kritisch als bergige Regionen. Manchmal

reflektieren die Gebäude die Signale auch, so dass die Signale von eigentlich nicht zu empfangende Satelliten

trotzdem ausgewertet werden können. Dies führt zwar zu einem Mehrwegefehler, dieser ist im allgemeinen

aber nicht sehr gross und eine etwas ungenauere Positionsbestimmung ist besser als garkeine.

Ebenfalls verschlechtert wird der Empfang durch sehr dichte Belaubung. Während in mitteleuropäischen

Wäldern mit den neueren GPS-Geräten üblicherweise keine größeren Probleme zu erwarten sich, kann man in

tropischen Urwäldern unter Umständen Schwierigkeiten mit der Positionsbestimmung bekommen.

Obwohl die GPS-Frequenzen so gewählt wurden, dass sie durch Wetter (Regen, Schnee, Wolken usw.) nicht

beeinflusst werden, kann bei Regen der Empfang verschlechtert werden. Dies allerdings nicht unter freiem

Himmel sondern unter Bäumen, wenn das Wasser auf den Blättern steht.

Zusammenfassend muss man sich also nicht wundern, wenn das GPS-Gerät in einem dichten Wald an einem

Hang bei Regen keinen einzigen Satelliten erfassen kann. Unter diesen Bedingungen ist diese Technik ganz

einfach überfordert.

 

GPS in Transportmitteln (Auto, Zug, Bus, Flugzeug, Schiff)

Wie bei der Fortbewegung zu Fuss gilt natürlich auch in anderen Transportmitteln, dass die Antenne eine

möglichst freie Sicht zum Himmel haben muss. An dieser Stelle soll nur von Handheld-Geräten gesprochen

werden, die eine eingebaute Antenne haben und nicht von fest in Autos, Schiffen und Flugzeugen eingebauten.

 

Auto

 

Im Auto ist jegliche Nähe zu Scheiben zu bevorzugen. Auch unter Sonnendächern ist der Empfang

üblicherweise sehr gut. Neuere Autos sind häufig mit einer metallbedampften Frontscheibe ausgerüstet, die

das Aufheizen des Autos im Sommer reduzieren soll. Dies reduziert jedoch auch die Signalstärke der GPS-

Signale und tut dies besser als die Reduktion der Hitze. Hinter derartigen Scheiben ist typischerweise kein

Empfang möglich. Zu erkennen sind die Scheiben daran, dass sie, wenn man seitlich daraufschaut, blau

schimmern. Es sei noch bemerkt, dass das "Spielen" mit dem GPS nur den Mitfahrern vorbehalten sein sollte.

Als Fahrer einen Handheld-GPS während der Fahrt zu bedienen lenkt, auch wenn dieser mit einem Saugnapf

an der Scheibe befestigt ist, sehr stark ab. Es ist also sicher kein Ersatz für ein richtiges Navigationssystem.

 

AK, 20.05.2023 Seite 43 document.doc

Page 44: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Eisenbahn

 

Wieder gilt, je näher an einer Scheibe, desto besser. Grundsätzlich funkionieren GPS in Zügen relativ gut, es

gibt jedoch eine aus GPS-Sicht immer häufiger werdende Ausnahme. Wagen mit Klimaanlage sind häufig

ebenfalls mit metallbeschichteten Scheiben ausgerüstet, Deutsche ICE-Züge gehören natürlich auch dazu.

Auch hier erkennt man einen leicht metallischen Glanz und eine charakteristische Färbung der Scheiben. In

solchen Waggons ist kein Empfang möglich. Wer also den GPS nutzen will, sollte bei der Sitzplatzwahl die

Wägen älteren Baujahrs bevorzugen.

 

Flugzeug

 

In Flugzeugen ist meist ein sehr guter GPS-Emfang möglich, sofern man einen Fensterplatz ergattert hat.

Nahe ans Fenster gehalten sollte in fast jedem Fall der Empfang von ausreichend vielen Satelliten möglich

sein. Sind die Satelliten allerdings sehr ungünstig am Himmel verteilt und hat man das Fenster auf der

falschen Seite des Flugzeugs, so kann die Positionsbestimmung schlecht oder unmöglich sein. Dies kommt

jedoch selten vor und die Situation bleibt meist nicht während des ganzen Flugs derart schlecht. Die

Verwendung von GPS-Geräten in Verkehrsflugzeugen wird von den meisten Fluggesellschaften erlaubt,

lediglich beim Start und der Landung müssen sie wie alle elektronischen Geräte abgeschaltet werden. Es kann

allerdings vorkommen, dass das Kabinenpersonal etwas verunsichert nachfragt, ob es sich bei dem Gerät um

ein Handy handelt, welches natürlich nicht erlaubt ist. Hier noch einige Informationen über die Verwendung

von GPS-Empfängern in Passagierflugzeugen.

 

Schiff

 

Bei Schiffen gilt wiederum das gleiche wie bei den anderen Transportmitteln. Da es auf dem Meer keine Berge

gibt, sind die Empfangbedingungen meist sehr gut. Im Inneren beschränkt sich der Empfang natürlich auch

auf Fensternähe, ansonsten sind keine Probleme zu erwarten.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Absolute Positioning - Absolute Positionierung

Positionierungsmodus in dem eine Position in Bezug auf ein exakt definiertes Koordinatensystem bestimmt

wird. Dies ist meist ein geozentrisches System, d.h. ein System bei dem der Ursprung mit dem Schwerpunkt

der Erde zusammenfällt.

 

Accuracy - Richtigkeit

Der Grad der Übereinstimmung zwischen der geschätzten oder gemessenen Position, Zeit und/oder

Geschwindigkeit eines GPS Empfängers und des wahren Werts der Zeit, Position und/oder Geschwindigkeit

der von einem konstanten Standard vorgegeben wird. In der Radionavigation wird die Richtigkeit eines

Systems üblicherweise als statistische Messung des Systemfehlers angegeben und wie folgt charakterisiert:

Vorhersehbare Genauigkeit: Die Richtigkeit einer durch Radionavigation bestimmten Position im Vergleich zur

kartierten Position. Beide Positionsbestimmungen müssen auf dem gleichen geodätischen Datum basieren.

Wiederholbare Genauigkeit: Die Richtigkeit mit der ein Benutzer zu einer bestimmten Position zurückkehren

kann, die zu einem früheren Zeitpunkt mit dem gleichen Navigationssystem bestimmt wurde.

AK, 20.05.2023 Seite 44 document.doc

Page 45: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Relative Genauigkeit: Die Richtigkeit mit der ein Benutzer eine Position relativ zu einem anderen Benutzer

bestimmen kann, der das gleiche Navigationssystem zur gleichen Zeit verwendet.

 

Almanac - Almanach

Ein Datensatz der die Informatinen über die Umlaufbahnen aller Satelliten, Uhenkorrekturfaktoren und

atmosphärische Verzögerungsparameter enthält. Diese Daten werden von jedem Satelliten übermittelt um

eine schnelle Erfassung der momentan verfügbaren Satelliten zur ermöglichen.

 

Ambiguity - Mehrdeutigkeit

Die unbekannte Verschiebung um ganzzahlige Vielfache der Trägerwellenlänge zwischen dem GPS Satelliten

und dem Empfänger. Das Trägersignal wird nur bei hochgenauen GPS Empfängern für die

Vermessungstechnik ausgewertet.

 

Analog - Analog

Eine Übertragungsart die dadurch charakterisiert wird, dass variable Wellenformen die Informationen tragen.

Eine Uhr mit beweglichen Zeigern ist ein analoges Gerät, wohingegen eine Uhr mit elektronisch angezeigten

Zahlen ein digitales Gerät ist. Moderne Computer sind stets digital. Kommunizieren sie jedoch über

Telefonleitungen, so muss das Signal meist in eine analoge Form gebracht werden. Dies geschieht mi Hilfe

eines sogenannten Modems (Modulator, Demodulator). Das Analogsignal wird in ein digitales Signal

zurückkonvertiert, bevor der empfangende Computer es verarbeiten kann.

 

Anti-Spoofing - Manipulationssicherung

"Anti-spoofing" bezeichnet ein Verfahren bei dem der P Code, der für die präzise Positionsbestimmung dient,

verschlüsselt wird. Der resultierende verschlüsselte Code wird als Y Code bezeichnet und kann nur von

Empfängern mit Entschlüsslungssystem (meist militärisch genutze Geräte) ausgewertet werden.

 

Anywhere Fix - Positionsbestimmung überall

Mit dieser Bezeichnung werden Empfänger charakterisiert, die in der Lage sind Positionsbestimmungen

vorzunehmen, ohne vorher eine ungefähre Position oder Uhrzeit vorgegeben zu haben. Durch derartige

Startbedingungen erschwert sich die Suche nach geeigneten Satelliten, da deren Positionen nicht bekannt

sein können. Üblicherweise dauert eine Positionsbestimmung in diesem Fall deutlich länger.

 

Apogee - Apogäum

Der Punkt der Umlaufbahn eines Satelliten, an dem dieser die grösste Entfernung von der Erde hat. Wie die

Umlaufbahnen der Planeten um die Sonne sind auch Satellitenumlaufbahnen gemäss der Keplerschen Gesetze

elliptisch und nicht kreisförmig.

 

Application Software - Anwendungssoftware

Diese Art von Programmen ermöglicht dem Benutzer mit dem Computer bestimmte Aufgaben zu erledigen,

während das Betriebssystem dafür sorgt, dass ein Computerüberhaupt arbeitet. Ein

Textverarbeitungsprogramm ist beispielsweise ein Anwendungsprogramm.

 

AK, 20.05.2023 Seite 45 document.doc

Page 46: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Automatic Vehicle Location - AVL - Automatische "Fahrzeug"lokalisierung

Ein System, welches ein "Fahrzeug" (z.B. Satellit) automatisch lokalisieren oder dessen Positon verfolgen

kann.

 

Availability - Verfügbarkeit

Der Prozentsatz an Zeit, in dem ein Navigationssystem innerhalb eines bestimmten Abdeckungsbereichs

verwendbar ist. Die Signalverfügbarkeit ist der Prozentsatz der Zeit, in dem Navigationssignale, die von

externen Quellen ausgesandt werden verfügbar sind. Die Verfügbarkeit ist eine Funktion sowohl der

physikalischen Besonderheiten des Betriebsbereichs als auch der technischen Möglichkeiten der

Sendestationen.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Bandwidth - Bandbreite

Der Frequenzbereich eines Signals.

 

Baseline - Basislinie

Eine Basislinie besteht aus einem dreidimensionalen Vektor zwischen zwei Empfangsstationen die beide

gleichzeitig GPS Daten empfangen.

 

Base Station - Basisstation

Eine Basisstation ist ein GPS Empfänger, der an einer genau bekannten Position aufgestellt wurde um Daten

zur differenziellen Korrektur anderer GPS Empfänger zu liefern. Die Daten werden dazu verwendet, Fehler

relativ zur Position der Basisstation zu errechnen. Aus diesem Unterschied zwischen der bekannten Position

der Basisstation und der von der Basisstation durch die GPS Signale ermittelten Position wird ein

Korrekturfaktor für andere GPS Empfänger errechnet, die zur gleichen Zeit Daten empfangen. Diese

Korrektur kann in Echtzeit übertragen oder zur späteren Korrektur gespeichert werden. Basisstationen

werden auch als Referenzstationen bezeichnet.

 

Block I, II, IIR, IIF Satellites - Block I, II, IIR, IIF Satelliten

Es gibt folgende Typen von GPS Satelliten: Die Satelliten des Block I waren Prototypen, die ab 1978 gestartet

wurden. Satelliten vom Block II Typ wurden genutzt, um die 24 Positionen des NAVSTAR Systems zu besetzen.

Block IIR Satelliten sind Ersatzsatelliten und der Typ IIF bezeichnet die Nachfolgegeneration.

 

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

C/A Code - C/A Code

Der "coarse/aquisition" (Grob/Erfassung) Code wird dem GPS L1 Signal aufmoduliert. Dieser Code ist eine

Folge von 1023 pseudozufälligen (pseudozufällig weil sie zwar zufällig Aussehen, aber vorgegeben sind)

binären zweiphasigen Modulationen auf der Trägerfrequenz mit einer Wechselfrequenz von 1023 MHz und

wiederholt sich dadurch mit einer Periodendauer von 1 Millisekunde. Der Code wurde ausgewählt um gute

Empfangseigenschaften zu ermöglichen. Der C/A Code wird auch als "ziviler" Code bezeichnet.

AK, 20.05.2023 Seite 46 document.doc

Page 47: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

Carrier - Träger

Eine Radiowelle mit wenigstens einem charakteristischen Merkmal, zum Beispiel Frequenz, Amplitude oder

Phase welches durch Modulation gegenüber einer vorgegebenen Referenz verändert werden kann. So wird bei

UKW-Radio (auch als FM - Frequenz Modulation bekannt) eine feste Trägerfrequenzverändert (also moduliert)

um Daten (die Musik) zu übertragen. Beim Mittelwellen-Radio (auch AM - Amplituden Modulation genannt)

wird die Amplitude (also Wellenhöhe) verändert um die Informatin zu übertragen.

 

Carrier-Aided Tracking - Trägerfrequenz gestütze Verfolgung

Eine Strategie der Signalverarbeitung, die das GPS Trägersignal dazu verwendet eine besonders gutes

Einrasten des Empfängers auf den Pseudozufallscode zu erreichen.

 

Carrier Frequency - Trägerfrequenz

Die Ausgangsfrequenz des Radiosenders bevor sie moduliert wird. Die GPS L1 Trägerfrequenz ist

beispielsweise 1575.42 MHz.

 

Carrier Phase - Trägerphase

GPS Messungen die auf dem L1 oder L2 Trägersignal basieren.

 

Cartesian/Geocentric Coordinates - Kartesische Geozentrische Koordinaten

Ein Koordinatensysystem zur Positionsbestimmung das seinen Ursprung im Erdmittelpunkt hat und die x- und

y- Achse in der Äquatorebene. Typischerweise geht die x-Achse durch den Greewichmeridian (Nullmeridian)

und die z-Achse entspricht der Rotationsachse der Erde.

 

Channel - Kanal

Ein Kanal eines GPS Empfängers besteht aus den Schaltkreisen, die benötigt werden um das Signal eines

einzelnen GPS Satelliten zu empfangen.

 

Chip - wie bit jedoch ohne Dateninformation

Ein chip ist im Prinzip das gleiche wie ein bit, also eine "0" oder einer "1". Der Begriff chip wird immer dann

verwendet, wenn keine Daten übertragen werden. Ein Chip ist auch ein integrierter elektronischer

Schaltkreis.

 

Chip rate - Chip Rate

Anzahl der "Chips" pro Sekunde. Beim C/A Code des GPS wäre die "Chip rate" 1023 MHz.

 

Circular Error Probable - CEP - "Wahrscheinlicher Fehlerkreis"

In einer kreisförmigen Normalverteilung entspricht dies dem Radius des Kreises, in dem 50 % der

Einzelmessungen liegen, oder dem Radius des Kreises, innerhalb der man sich mit einer Wahrscheinlichkeit

von 50 % befindet.

 

Clock bias - Uhrenverschiebung

Die Zeitdifferenz zwischen der von der Uhr angezeigten Zeit und der wahren Universalzeit (UTC).

 

AK, 20.05.2023 Seite 47 document.doc

Page 48: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Clock Offset - Uhrenabweichung

Ein konstanter Unterschied in der Zeitanzeige zwischen zwei Uhren.

 

Code Division Multiple Access - CDMA

Eine Methode, eine Frequenz durch mehrere Sender gemeinsam zu verwenden wobei jedoch jeder einen

eigenen Code besitzt. GPS verwendet CDMA Techniken mit Gold´s Codes wegen ihrer eindeutigen

Kreuzkorrelations-Eigenschaften.

 

Code Phase GPS - Codephasen GPS

Gps Messungen die mit Hilfe des Pseudozufallscodes (C/A oder P) und nicht mit der Trägerfrequenz arbeiten.

Dies ist die normale Betriebsart, die übliche Empfänger verwenden.

 

Control Point - Kontrollpunkt

Ein Punkt dessen Koordinaten zugewiesen wurden. Diese Koordinaten können konstant gehalten und für

weitere Vermessungen verwendet werden.

 

Control Segment - Kontrollsegment

Ein weltweites Netzwerk von GPS-Monitor- und Kontrollstationen die die Genauigkeit der Positionen der

Satelliten und deren Uhren garantieren.

 

Coordinate System - Koordinatensystem

Eine von vielen Kartensystemen die dazu verwendet werden, Positionen anzugeben. Ein Beispiel ist das

Längen-/Breitengradsystem.

 

Cycle Slip - Periodenverschiebung

Eine Unterbrechung der gemessenen Taktung des Trägersignals die durch einen zeitweiligen Verlust der

Synchronisation der GPS Empfängerelektronik mit dem Signal.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Data Message - Datennachricht

Eine Nachricht die das GPS Signal enthält und die Satellitenpositionen, Uhrenkorrekturen und

Gesundheitszustand der Satelliten enthält. Die Nachricht enthält auch grobe Informationen über andere

Satelliten des Netzwerks.

 

Datum - Datum

Ein Datum ist eine horizontales oder vertikales Referenzsystem für Landvermessungen. Horizontale Datums

verwenden meist Ellipsoide, das State Plane Koordinaten System oder das Universale Transversale Merkator

Gitternetz (UTM). Vertikale Datums beziehen sich meist auf den Geoid. Der technische Forstschritt führt zu

immer genaueren Positionsangaben für die selben geographischen Punkte. Um neuere Positionsdaten in

Verbindung mit früher gesammelten Daten zu verwenden ist es notwendig die verschiedenen Datums und

Koordinatensysteme in Einklang zu bringen. Beispiele für Datums sind NAD-27 (North American Datum 1927)

und WGS-84 (World Geodetic System 1984). Die modernen GPS Empfänger sind in der Lage die gemessenen

AK, 20.05.2023 Seite 48 document.doc

Page 49: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Positionsdaten in verschiedenen Datumsformaten auszugeben. Dabei ist darauf zu achten, dass das

Datumsformat des eventuell verwendeten Kartenmaterials in GPS Empfänger eingestellt ist um keine

übermässigen Fehler in den Positionsbestimmungen zu erhalten. Die Fehler können schnell mehrere hundert

Meter ausmachen.

 

Differential GPS - DGPS - Differenzial GPS - DGPS

Eine Technik um die Genauigkeit der Positionsbestimmung zu verbessern. Dabei wird an einem sehr genau

bekannten Punkt die Abweichung der gemessenen Position von der tatsächlichen Position als Korrekturfaktor

für weitere Empfänger verwendet, welche die gleichen Satelliten in der gleichen Gegend empfangen. Dies

kann entweder in Echtzeit über Radiosignale oder durch spätere Nachberechnung geschehen.

 

Differential Correction - Differenzialkorrektur

Ein Prozess um system- und naturbedingte Fehler der GPS Signale zu eliminieren. Dazu wird ein weiterer GPS

Empfänger an einer genau bekannten Position benötigt. Dieser Empfänger vergleicht die für seinen

Standpunkt gemessene Position mit der tatsächlichen. Die Differenz dieser Werte (daher Differenzial GPS)

entspricht dem Fehler den die übertragenen GPS Signale enthalten und kann zur Korrektur verwendet

werden. Dies kann entweder in Echtzeit oder in Nachberechnungen für Positionsbestimmungen andere GPS

Empfänger verwendet werden, die zur gleichen Zeit die gleichen Satelliten zur Positionsbestimmung

verwendet haben.

 

Digital - Digital

Im Allgmeinen wird Information entweder Analog oder Digital übermittelt und gespeichert. Information in

digitaler Form besteht aus einer Anzahl von Einsen und Nullen. Computer verwenden für die meisten

Verfahren digitale Technik.

 

Dilution of Precision - DOP - Verdünnung der Präzision

Eine Beschreibung für den ausschliesslich aufgrund geometrischer Gegebenheiten zustandekommenden

Beitrag zur Ungenauigkeit der Positionsbestimmung. Standardbezeichnungen hierfür sind: GDOP:

Geometrisch (3 Positionskoordinaten plus die Zeitverschiebung der Lösung); PDOP: Position (3 Koordinaten);

HDOP: Horizontal (Zwei horizintale Koordinaten); VDOP: Vertikal (nur Höhe); TDOP: Time (Zeit) (Nur die

Uhrenabweichung); RDOP: Relativ (Auf 60 Sekunden normiert)

 

Distance Root Mean Square - drms - Mittlere Quadratische Abweichung

Quadratischer Mittelwert der Abweichung der Entfernungen zwischen den wahren Positionen und den

Messwerten mehrer Messungen. Bei GPS wird meist 2 drms verwendet. Dies ist ein Kreis in dem mindestens

95 % aller Messwerte die an einem Punkt gemacht wurden liegen.

 

Dithering - Vermischung

Die gezielte Einführung von digitalem Rauschen. Dieses Verfahren wird durch das DoD (Department of

Defense; Amerikanisches Verteidigungsministerium) dazu verwendet, die Genauigkeit der GPS Signale

künstlich zu verfälschen um die "Selective Availability" zu erzeugen.

 

Doppler-Aiding - Doppler-Unterstützung

Ein Signalverarbeitungsverfahren das eine gemessene Dopplerverschiebung des Signals dazu verwendet das

AK, 20.05.2023 Seite 49 document.doc

Page 50: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

GPS Signal besser auswerten zu können. Hierdurch werden genauere Geschwindigkeits und

Positionsbestimmungen ermöglicht.

 

Doppler Shift - Dopplerverschiebung

Die scheinbare Änderung der Frequenz eines Signals die durch eine Bewegung des Senders und Empfängers

relativ zueinander verursacht wird. Typischstes Beispiel ist die Änderung der wahrgenommen Frequenz eines

vorbeifahrenden Krankenwagens. (Hoher Ton - Wagen nähert sich; Tiefer Ton - Wagen entfernt sich.)

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Earth-Centered Earth-Fixed - ECEF - Erd-zentral Erd-bezogen

Ein kartesisches Koordinatensystem, bei dem die X-Richtung den Schnittpunkt zwischen dem Nullmeridian

(Greenwich) und dem Äquator darstellt. Die Vektoren rotieren mit der Erddrehung, die Z-Richtung entspricht

der Erdachse.

 

Eccentricity - Exzentrizität

Das Verhältnis der Abstände zwischen jeweils dem Ellipsenmittelpunkt und den beiden Brennpunkten auf den

Hauptachsen.

 

EGNOS (European Geostationary Navigation Overlay Service)

Läßt sich etwa mit "Europäischer Zusatz-Navigationsdienst" übersetzen. Das Europäische Pendant zu WAAS

(siehe dort)

 

 

Elevation - Höhe (Elevation)

Die Höhe über einem Referenzpunkt. Beispielsweise die Höhe über Normal Null (dem Meeresspiegel) oder der

vertikale Abstand über dem Geoid. Manchmal ist damit auch die Höhe eines Satelliten in Grad über dem

Horizont gemeint.

 

Elevation Mask Angle - Höhenbegrenzungswinkel

Normalerweise ein vom Benutzer wählbarer Winkel (in Grad), wobei Satelliten, die tiefer als dieser stehen,

zwar verfolgt aber nicht für die Positionsberechnungen verwendet werden. Dieses Verfahren wird

angewendet, um Interferenzen durch Brechung der Signale in der Ionosphäre, Mehrwegfehler und

Sichtbeschränkungen wie Gebäude und Bäume zu vermeiden.

 

Ellipsoid - Ellipsoid

In der Geodäsie eine mathematische Figur die dadurch entsteht, dass man eine Ellipse um ihre kürzere Achse

rotieren lässt. Es ist gleichbedeutend mit einem Sphäroid. Ein Ellipsoid wird durch zwei Parameter definiert:

Die halbe Länge der Hauptachse a (= Äquatorradius) und die Abflachung f = (a-b)/a, wobei b die halbe Länge

der Nebenachse ist. Abgeflachte und dreiachsige Ellipsoide sind jeweils als solche gekennzeichet.

 

Ellipsoid Height - Ellipsoide Höhe

Der gemessene vertikale Abstand zum Ellipsoid. Nicht identisch mit der Höhe über N.N. (Meereshöhe).

AK, 20.05.2023 Seite 50 document.doc

Page 51: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

Ephemeris - Ephemeriden

Die Vorhersagen der momentanen Satellitenpositionen die in der Datennachricht übermittelt werden. Sie

bestehen aus einer Liste der genauen Positionen eines Himmelskörpers als eine Funktion der Zeit. Die Daten

können in Echtzeit als "übertragene Ephemeriden" (broadcast ephemeris" oder nachberechnet als "präzise

Ephemeriden" (precise ephemeris) vorliegen.

 

Epoch - Zeitabschnitt

Messintervall oder Datenfrequenz, wenn beispielsweise alle 15 Sekunden eine Messung durchgeführt wird.

 

 

ESTB - EGNOS satellite test bed

Testsystem des EGNOS-Systems (siehe dort).

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Fast-Multiplexing Channel

siehe Fast-switching channel

 

Fast-Switching Channel - schnelle Kanalumschaltung

Mit Hilfe eines einzelnen Empfängerkanals werden schnell nacheinander die Entfernungen zu mehreren

Satelliten bestimmt. "Schnell" meint dabei, dass die Zeit, die zum Umschalten benötigt wird kurz genug ist (2 -

5 Millisekunden), um trotzdem die Datennachricht zu erfassen.

 

Frequency Band - Frequenzband

Ein bestimmter Frequenzbereich innerhalb des elektromagnetischen Spektrums.

 

Frequency Spectrum - Frequenzspektrum

Die Verteilung der Signalamplituden als Funktion der Frequenz der zugrundeliegenden Signalwellen.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

GALILEO

Europäisches Satellitennavigationssystem. Momentan in Planung und soll bis 2008 betriebsbereit sein. Das

System soll kompatibel zum GPS-System werden.

 

 

Geodesy - Geodäsie

Die Wissenschaft, die sich mit der Bestimmung der Größe und der Form der Erde (Geoid) durch direkte

Messung beschäftigt.

 

AK, 20.05.2023 Seite 51 document.doc

Page 52: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Geodetic Datum - Geodätisches Datum

Ein mathematisches Modell, das so gewählt ist, dass es möglichst gut einen Teil oder das gesamte Geoid

beschreibt. Es wird durch ein Ellipsoid und das Verhältnis zwischen dem Ellipsoid und einem Punkt auf der

topographischen Oberfläche der Erde beschrieben, der als Ursprung des Datums festgelegt wird.

 

Geodetic Surveys - Geodätische Vermessung

Globale Vermessungen zur Erstellung von weltweiten Referenz- oder Kontrollpunkten als Basis zur Exakten

Landvermessung.

 

Geoid - Geoid

Äquipotentialfläche der Schwerkraft. Gibt die mittlere Meereshöhe an. Man kann sich diese Fläche auch über

die Kontinente hinausgehend vorstellen. Diese Fläche ist überall senkrecht zur Gravitationskraft.

 

Geoid Height - Geoidhöhe

Die Höhe über dem Geoid wird oft als Höhe über Normal Null (N.N., Meereshöhe) bezeichnet.

 

Geometric Dilution of Precision (GDOP) - Geometrische Präzisions"verdünnung"

siehe Dilution of Precision

 

Global Navigation Satellite System - GLONASS

Das russische Äquivalent zum amerikanischen NAVSTAR GPS. GLONASS wurde ebenfalls für eine weltweiter

Satellitenabdeckung entworfen. GLONASS verwendet bei Vollausbau drei Orbitalflächen mit je acht Satelliten.

Die GLONASS-Satelliten fallen häufiger aus, als sie ersetzt werden, was zu einer herabgesetzten

Leistungsfähigkeit des Systems führt.

 

Global Navigation Satellite System - GNSS - Globales Satelliten Navigationssystem

Ein Organisationskonzept welches GPS, GLONASS und andere weltraum- und bodenbasierende Segemente

zusammenfasst um alle Arten der Navigation zu unterstützen.

 

Global Positioning System - GPS - Globales Positionierungs System

Ein vom DOD (Department of Defense, amerikanisches Verteidigungsminsiterium) ersonnenes, realisiertes und

betriebenes System, das aus 24 Satelliten besteht, welche die Erde in einer nominellen Höhe von 17700 km

umkreisen. GPS Satelliten senden ein Signal aus, das die genaue Ortsbestimmung eines GPS Empfängers

ermöglicht. Die Empfänger können ihre Position ermitteln, wenn sie feststehend sind, sich auf der

Erdoberfläche in der Erdatmosphäre oder in niederen Umlaufbahnen bewegen. GPS wird sowohl in der Luft-,

Land- und Seefahrtnavigation als auch bei der Landvermessung und anderen Anwendungen eingesetzt, bei der

es auf genaue Positionsbestimmung ankommt. Das GPS-Signal wird jedem auf oder in der Nähe des Planeten

kostenlos zur Verfügung gestellt, der einen GPS-Empfänger besitzt und eine uneingeschränkte "Sicht" auf die

Satelliten hat.

 

GPS ICD-200

Das "GPS Schnittstellen Kontroll Dokument" ist ein Regierungsdokument das die komplette technische

Beschreibung zur Schnittstelle zwischen den Satelliten und den Benutzern beschreibt.

 

AK, 20.05.2023 Seite 52 document.doc

Page 53: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Handover Word - HOW - Übergabewort

Der Datenblock in der GPS-Nachricht, die die Informationen zur Synchronisation zur Umschaltung von der

Nutzung des C/A-Code zum P-Code enthält.

 

Hardware

Die physischen Komponenten des Systems, die Befehle abarbeiten um eine Aufgabe zu erfüllen. Als Vergleich

dient häufig der Computer. Hier besteht die Hardware aus dem Gehäuse, der Hauptplatine, Prozessor,

Speicher usw.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Integrity - Integrität

Die Fähigkeit eines Systems, bei Fehlfunktion die Benutzer rechtzeitig davor zu warnen, dass es aufgrund von

Fehlern nicht zur Navigation benutzt werden sollte.

 

Interface - Schnittstelle

Eine gemeinsame Grenze zwischen unterschiedlichen Systemen oder Programmen. Eine Schnittstelle ist auch

der Geräteteil, der die Zusammenarbeit von zwei oder mehreren Systemen ermöglicht.

 

Ionosphere - Ionosphäre

Der Bereich aus geladenen Teilchen zwischen der Stratosphäre und der Exosphäre etwa 80 - 400 Kilometer

über der Erdoberfläche. Dieser Bereich stellt ein nichthomogenes und dispersives (zerstreuendes) medium für

Radiowellen dar.

 

Ionospheric Delay - Ionosphärische Verzögerung

Eine Radiowelle, die sich durch die Ionosphäre ausbreitet erfährt eine gewisse Verzögerung. Die Stärke der

Phasenverzögerung hängt vom Elektronengehalt der Ionosphäre ab und beeinträchtigt die Trägersignale. Die

Gruppenverzögerung hängt auch von der Streuwirkung der Ionosphäre ab und beeinflusst die

Signalmodulation (Codes). Die Phasen- und Gruppenverzögerung hat die gleiche Grössenordnung aber

unterschiedliche Vorzeichen.

 

Ionospheric Refraction - Ionosphärische Brechung

Die Änderung der Ausbreitungsgeschwindigkeit eines Signals, während es die Ionosphäre durchquert.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

AK, 20.05.2023 Seite 53 document.doc

Page 54: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Kalman Filter

Eine numerische Methode, die dazu verwendet wird, ein zeitabhängiges Signal in Gegenwart von Rauschen zu

verfolgen.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

L-Band

Der Frequenzbereich der Radiowellen zwischen 390 MHz und 1550 MHz. Die GPS-Trägerfrequenzen

(1227.6 MHz und 1575.42 MHz) liegen im L-Band.

 

L1 Signal

Das erste L-Band Signal, welches von jedem GPS-Satellit ausgesendet wird. Das L1-Signal enthält den C/A und

den P-Code und die Navigationsdaten.

 

L2 Signal

Das zweite L-band Signal wird auf 1227.60 MHz ausgestrahlt und enthält den P-code und die

Navigationsdaten.

 

Loxodrome - Loxodrom

Verbindungslinie zwischen zwei Punkten auf der Erde, die alle Meridiane (Längenkreise) im gleichen Winkel

schneidet. Auf einer Karte mit Mercatorprojektion eine gerade Linie. Navigation auf einer Loxodromen erlaubt

einen konstanten Steuerkurs. Siehe auch Orthodrome und hier.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

MDT - Mobile Data Terminal - Mobiles Datenterminal

Ein Gerät, typischerweise in einem Fahrzeug eingebaut, welches einen kleinen Bildschirm, eine Tastatur oder

eine andere Benutzerschnittstelle enthält und unterschiedliche Speicher- und Verarbeitungskapazität besitzt.

Im Zeitalter der Garmin eTrex schwer vorstellbar.

 

Monitor Stations - Monitorstationen

Eine der weltweiten Gruppe von Stationen, die im GPS Kontrollsegment dazu dienen, die Satellitenuhren und

Umlaufbahnenparameter zu verfolgen. Die von den Monitorstationen gesammelten Daten werden zu einer

Hauptkontrollstation weitergeleitet. Hier werden Korrekturen errechnet, die von dort bei Bedarf an die

Satelliten gesandt werden.

 

MSAS (Multi-Functional Satellite Augmentation System)

Das japanische Pendant zu WAAS (siehe dort)

 

 

Multichannel Receiver - Mehrkanalempfänger

Ein Empfänger, der mehrer unabhängige Kanäle enthält, von denen jeder das Signal eines Satelliten

AK, 20.05.2023 Seite 54 document.doc

Page 55: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

verarbeiten kann, damit die Position durch simultane Berechnungen mehrerer Pseuderanges durchgeführt

werden können.

 

Multipath - Mehrwegeffekt

Fehler die durch Interferenz hervorgerufen werden, die dadurch ntsteht, dass das Signal den Empfänger auf

zwei unterschiedlichen Wegen erreicht hat. Meist wird dies durch die Reflektion des Signals an

nahegelegenen Objekten (Häuser, Felsen) hervorgerufen, die Radiowellen reflektieren. Signale die einen

längeren Weg durchlaufen erzeugen fälschlicherweise grösseren Pseudoranges und führen damit zu

Positionsfehlern.

 

Multiplexing Channel - Kanalmultiplexer

Ein Empfängerkanal, der eine Serie von Signalen von unterschiedlichen Satelliten in schneller Folge

abarbeitet.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

NAD-27

Nordamerikanisches Kartendatum von 1927. Dies ist ein überflüssig gewordenes horizontales Datumsformat

für Nordamerika. NAD 27 beruht auf einer früher Schätzung der Erdform von 1866 die auch als Clarke

Sphäroid bekannt ist. Diese wurde ausschliesslich an die Form der Vereinigten Staaten angepasst und

verwendet ein spezielles Paar Koordinaten der Erdoberfläche als Referenzzentrum.

 

NAD-83

Nordamerikanisches Datumsformat von 1983. NAD 83 beruht auf einem präziseren geodätischen

Referenzsystem von 1980 (GRS 80).

 

NAVD-88

Nordamerikanisches vertikales Datum von 1988. Ein Versuch der "National Geodetic Survey" (NGS) (nationale

Geodätische Vermessung) das Nordamerikanische vertikale Datum zu korrigieren. Die NAVD 88 - Korrektur

entfernt Störugen des kontinentweiten vertikalen geodätischen Höhenreferenzsystems.

 

Nanosecond - Nanosekunde

Eine Milliardstel Sekunde (0,000 000 001 s).

 

Nav Message - Nav Nachricht

Die 1500-bit Navigationsnachricht die mit 50 bps (bit pro Sekunde) auf den L1 und/oder L2 Frequenzen

ausgestrahlt wird. Diese Nachricht enthält die Systemzeit, Uhrenkontrollparameter, Modelparameter für die

ionosphärische Verzögerung sowie die Bahndaten und Gesundheitszustände der Satelliten.

 

NAVSTAR

Der Name der der amerikanischen GPS Satellitenkonstellation gegeben wurde. NAVSTAR ist ein Acronym aus

NAVigation Satellite Timing und Ranging. (Navigationssatelliten Zeit und Entfernungsmessung). Die

endgültige Konstellation besteht aus sechs Orbitalebenen, von denen jede vier Satelliten enthält.

AK, 20.05.2023 Seite 55 document.doc

Page 56: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

NMEA

Im Zusammenhang mit GPS hört man häufig die Abkürzung NMEA im Zusammenhang mit den "NMEA-

Datensätzen". NMEA steht für National Marine Electronics Association, also die Nationale Vereinigung für

Marineelektronik der Vereinigten Staaten. Diese Vereinigung hat ein Reihe von Standard-Datensätzen zur

Kommunikation verschiedener elektronischer Geräte in der Seefahrt entwickelt, die tatsächlich

weitestgehende Kompatibilität gewährleistet. Näheres zu den NMEA-Daten im Zusammenhang mit GPS findet

sich hier.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Observation - Beobachtung

Die Zeitspanne in denen die GPS-Datenvon zwei oder mehr GPS-Empfängern gesammelt werden. Dies dient

später bei der Landvermessung zu Korrekturrechnungen.

 

Orthodrome - Orthodrom (Grosskreis)

Kürzeste Verbindungslinie zwischen zwei Punkten auf der Erde. Sie erscheint auf einer Karte in

Mercatorprojektion als Kurve. Siehe auch Loxodrome und hier.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

P-code

Der genaue Code des GPS-Signals. Üblicherweise wird dieser Code nur von den amerikanischen und alliierten

militärischen Streitkräften verwendet. Eine sehr lange Sequenz aus binären Pseudozufallsdaten, die mit einer

Übertragungsgeschwindigkeit von 10,23 MHz übertragen wird und sich alle 167 Tage wiederholt. Jedes ein-

Wochen Segment dieses Codes ist eindeutig einem Satelliten zuzuordnen und wird jede Woche zurückgesetzt.

 

PDOP - Position Dilution of Precision - "Verdünnung" der Positionsgenauigkeit

Eine einheitenlose Zahl, die den Zusammenhang zwischen den Fehlern der Empfängerposition und der

Satellitenposition angibt. Dieser Fehler ist eine Funktion der Stellung der Satelliten zueinander deren Daten

für die Bestimmung herangezogen werden. (siehe auch DOP). Geometrisch ist PDOP indirekt proportional zum

Pyramidenvolumen, das sich dadurch ergibt, dass man Linien zwischen dem Empfänger und den vier

beobachteten Satelliten zieht. Kleine Zahlenwerte wie "3" sind gute Werte für die Positionsgenauigkeit,

während höhere Werte eine schlechtere Genauigkeit anzeigen. Kleine PDOP-Werte deuten darauf hin, dass die

Satelliten weit voneinander entfernt stehen.

 

PDOP Mask - PDOP Maske

Meist ein vom Benutzer einzugebendes oberes Limit, welche maximalen PDOP-Werte toleriert werden sollen.

Wenn der PDOP-Wert einen vorher definierters Limit überschreitet werden keine GPS-Daten mehr

ausgewertet bis der PDOP-Wert wieder unter den Grenzwert sinkt.

 

AK, 20.05.2023 Seite 56 document.doc

Page 57: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Perigee - Perigee

Der Punkt in einer Satellitenumlaufbahn mit der geringsten Entfernung zum Erdzentrum.

 

Phase Lock - Phaseneinrastung

Eine Technik bei der die Phase eines Oszillatorsignals so eingestellt wird, dass sie exakt der Phase eines

Referenzsignals folgt. Der Empfänger vergleicht zunächst die Phasen zweier Signale und verwendet dann die

resultierende Differenz dazu, die Oszillatorfrequenz der Referenz einzustellen. Diese Technik entfent

Phasenverschiebungen wenn die beiden Signale dann verglichen werden.

 

pierce point - Durchtrittspunkt

Wird im Zusammenhang mit SBAS (WAAS/EGNOS) Systemen verwendet und bezeichnet den Punkt an dem die

Signallinie zwischen Satellit und Empfänger die Ionosphäre durchkreuzt.

 

Point Positioning - Punktpositionierung

Eine geographische Position, die von nur einem Empfänger errechnet wird.

 

Position - Position

Der Längengrad, Breitengrad und die Höhe eines Punkts. Zur Position wird häufig eine Schätzung des Fehlers

angegeben.

 

Post-Processed Differential GPS - Nachberechnetes Differential-GPS

Wenn GPS-Daten zu einem späteren Zeitpunkt zur Differnezial-Korrektur nachberechnet werden, benötigt der

stationäre und der bewegte Empfänger keinen Datenverbindung während der Messung. Jeder Empfänger

zeichnet unabhängig Daten auf, die zu einem späteren Zeitpunkt mit Hilfe anderer Empängerdaten aus dem

gleichen Beobachtungszeitraum korrigiert werden können. Während der Messung müssen bei allen

Empfängern die gleichen Satelliten beobachtet werden.

 

Precise (or Protected) Code (P-Code) - Genauer (oder geschützter) Code

Eine Sequenz von Pseudozufallsbinärcode auf der GPS-Trägerfrequenz die mit 10,23 MHz übermittlelt wird

und sich jeweils nach 267 Tages wiederholt. Jedes ein-Wochen Code-Segment ist eindeutig einem Satelliten

zugeordnet und wird jede Woche zurückgesetzt.

 

Precise Positioning Service (PPS) - Präziser Positionsbestimmungs-Service

Die höchste erreichbare militärische dynamische Positionsbestimmungsgenauigkeit, die durch das GPS-

System zur Verfügung gestellt wird. Dabei wird der auf zwei Frequenzen ausgestrahlte P-Code verwendet.

 

Proportional error - Proportionaler Fehler

Eine Methode die Positionsgenauigkeit auszudrücken. Er wird als Positionsfehler geteilt durch die Entfernung

zum Ursprung des verwendeten Koordinatensystems ausgedrückt und in Teilen pro Million (ppm) angegeben.

 

Pseudolite (shortened form of pseudo-satellite) - Pseudo-lite (Kurz für Pseudo-Satellit)

Ein Bodengebundenes Sender, der einen GPS-Satelliten nachahmt. Dies dient zu Verbesserung der

Geometrischen Anordnung der Satelliten in einem begrenzten Bereich. Der Datenteil des Signals kann auch

Differenzialkorrekturen enthalten die von den Empfängern zur Fehlerkorrektur verwendet werden können.

AK, 20.05.2023 Seite 57 document.doc

Page 58: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

PRN - Pseudorandom Noise - Pseudozufallsrauschen

Eine Reihe von Einsen und Nullen, die wie Rauschen zufällig verteilt scheinen, jedoch exakt reproduziert

werden können. Ihre wichtigste Eigenschaft ist ihr geringer Autokorrelationswert für alle Verzögerungen und

Verschiebungen ausser bei exakter Übereinstimmung. Jeder GPS-Satellit hat eindeutige C/A und P

Pseudozufalls-Codes.

 

Pseudorange - Pseudobereich

Eine Entfernungsmessung die auf der Korrelation eines von einem Satelliten ausgestrahlten Codes und eines

lokal vom Empfänger erzeugten Codes beruht und nicht bezüglich Synchronisationsfehlern zwischen der

Sender- und Empfängeruhr korrigiert ist.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Radionavigation - Radionavigation

Eine Methode zur Erlangung von Informationen, die zur Positionsbestimmung zur Navigation notwendig sind.

Diese Methode arbeitet unter Zuhilfenahme der Ausbreitungseigenschaften von Radiosignalen. GPS ist eine

Methode der Radionavigation.

 

 

Range - Bereich

Ein fester Abstand zwischen zwei Punkten wie zwischen einem Start-Wegepunkt und einem End-Wegepunkt

oder zwischen einem Satelliten und einem GPS-Empfänger.

 

Range Rate - Bereichsrate

Die Änderungsrate des Bereichs zwischen einem Satelliten und einem Empfänger. Die Entfernung zwischen

dem Satelliten und dem Empfänger ändert sich aufgrund der Bewegung des Satelliten und des Beobachters.

Diese Änderungsrate wird durch Messung der Dopplerverschiebung der Frequenz des Trägersignals

gemessen.

 

Radio Technical Commission for Maritime (services)- RTCM

RTCM ist ein standardisiertes Format zur Datenübertragung.

 

Real-Time Differential GPS - Echtzeit Differenzial GPS

Ein Datenaufnahmeprozess, bei dem ein GPS-Empfänger in Echtzeit Korrekturdaten von einer anderen Quelle

bekommt um die Effekte der SA (selective availability) und anderer Fehler zu herauszufiltern. Eine Methode

um Korrekturdaten zu erhalten besteht darin einen GPS-Empfänger auf einer genau bekannten Position

aufzustellen (Basisstation). Dieser Empfänger errechnet und sendet dann Korrektursignale über VHF oder

Mobiltelefon aus. Der bewegte Empfänger muss mit einem Zusatzgerät zum Empfang der Korrekturdaten

ausgestattet sein, damit die Daten in die aktuelle Positonsbestimmung mit einbezogen werden können. Andere

AK, 20.05.2023 Seite 58 document.doc

Page 59: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Quellen für solche Korrekturen sind Satellitenbasierte Systeme wie OMNISTAR. (siehe auch WAAS und

EGNOS)

 

Relative Navigation - Relative Navigation

Eine der relativen Positionierung ähnliche Technik, jedoch können sich einer oder beide Punkte bewegen. Eine

Datenverbindung dient dazu, Fehlerangaben zwischen den beiden sich bewegenden Fahrzeugen oder

Flugzeugen zu übermitteln und die Positionsgenauigkeit zu verbessern.

 

Relative Positioning - Relative Positionsbestimmung

Der Vorgang der Bestimmung der relativen Entfernung zwischen zwei Orten. Im Falle von GPS wird an jedem

der beiden Orte ein Empfänger plaziert. Beide Empfänger machen simultane Messungen mit Hilfe der

gleichen Serie von Satelliten während eines bestimmten Zeitraums. Diese Technik erlaubt es den Empfängern

bestimmte Fehlerquellen zu eliminieren die für beide Empfänger gelten wie Uhrenfehler der Satelliten,

Bahndatenfehler und Ausbreitungsverzögerungen.

 

Reliability - Verlässlichkeit

Die Wahrscheinlichkeit, dass eine bestimmte Funktion bei gegebenen Bedingungen ohne Ausfall eine

bestimmte Zeit lang ausgeführt wird.

 

RINEX - Empfängerunabhängiges Datenaformat

RINEX (Receiver INdependent EXchange format) ist eine Anzahl von Standardbefehlen und Formaten, die den

Austausch von Daten zwischen unterschiedlichen GPS Geräten und Nachverarbeitungssoftware erlaubt.

Dieses Datenformat enthält Definitionen für Zeitangaben, Phasen und Bereiche.

 

Rover -" Fahrzeug"

Als Rover wird der mobile GPS Empfänger während einer relativen Messung zu einer Basisstation bezeichnet.

Die Empfängerposition kann relativ zu einer oder mehreren Basisstationen angegeben werden.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

SA - Selective availability (Selektive Verfügbarkeit)

siehe Selektive

 

Satellite Configuration - Satellitenkonfiguration

Die Konstellation der Satellitenzu einem bestimmten Zeitpunkt aus der Sicht eines oder einer Gruppe von

Benutzern.

 

Satellite Constellation - Satellitenkonstellation

Die Anordnung einer Gruppe von Satelliten im Raum. Im Falle von GPS besteht die vollständig betriebsbereite

Konstellation aus sechs Orbitalebenen, die jeweils vier Satelliten enthalten. Das GLONASS-System besitzt drei

Orbitalebenen zu je acht Satelliten.

 

AK, 20.05.2023 Seite 59 document.doc

Page 60: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Satellite Elevation Mask - Satelliten Höhemaske

Üblicherweise eine benutzerdefinierbarer Grenzwert, der festlegt wie hoch ein Satellit über dem Horizont

stehen muss, damit der Empfänger dessen Daten zur Berechnung der Position heranzieht. Satelliten unterhalb

dieser Maske werden zwar verfolgt, die Daten gehen jedoch nicht in die Berechnung ein, da die Daten

horizontnaher Satelliten grössere atmosphärenbedingte Fehler aufweisen.

 

Selective Availability - SA - Selektive Verfügbarkeit

Ein DOD (Department of Defense; Amerikanisches Verteidigungsministerium) Programm, das dazu verwendet

wurde, die Genauigkeit der Pseudorange Messungen zu verringern, indem beim für nichtmilitärische

Empfänger verfügbaren Signaldie Zeit- und Zeit und Bahndaten verändert wurden. Die Verwendung von SA

wurde am 1. Mai 2000 eingestellt.

 

SNR (Signal to Noise Ratio) - Signal-Rausch Verhältnis

Eine Messung des Signalinhalts relativ zum Rauschen des Signals. Das Signal-Rausch Verhältnis sollte so hoch

wie möglich sein.

 

Space Segment - "Weltraumsegment"

Der Teil des GPS-Systems, der sich im Weltraum befindet. Dazu gehören die GPS-Satelliten und jegliche

Zusatzraumfahrzeuge, die GPS-Zusatzinformationen zur Verfügung stellen (z.B. Differentialkorrekturen,

Integritätsnachrichten usw.)

 

spacial decorrelation- Verlust des räumlichen Zusammenhangs

Der Begriff wird in Zusammenhang mit Differenzial-GPS verwendet und bezeichnet die Verschlechterung der

Korrektur durch das Differential-System mit zunehmender Entfernung des Benutzers zum DGPS-Sender (siehe

auch unter EGNOS/WAAS).

 

Spread Spectrum - Streuspektrum

Das empfangene GPS-Signal ist breitbandig und schwach (-160 dbW). Das L-Band Signal ist mit einem PRN

code moduliert, um die Energie des Signals über eine größere Bandbreite auszudehnen als die der

Signalinformationen. Das ermöglicht es, alle Satelliten eindeutig zu empfangen und man erhält eine gewisse

Robustheit gegenüber Rauschen und Mehrwegeffekten.

 

Spherical Error Probable - SEP - Wahrscheinlicher Sphärischer Fehler

Der Radius einer Kugel, innerhalb derer man sich mit 50 % Wahrscheinlichkeit befindet. SEP ist das

dreidimensionale Analogon zu CEP (Circular Error Probable; Wahrscheinlicher Fehlerkreis)

 

SPS - Standard Positioning Service

 

Squaring-Type Channel - "Quadriereder Kanal"

Ein GPS-Empfängerkanal, der das Empfangene Signal mit sich selbst multipliziert um eine zweite

Oberschwingung des Trägersignals zu erhalten,welches die Codemodulation nicht enthält. Wird in "Codelosen"

Empfängerkanälen verwendet.

 

AK, 20.05.2023 Seite 60 document.doc

Page 61: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Standard Deviation (Sigma) - Standardabweichung (Sigma)

Die Messung der Verteilung der zufälligen Fehler um den Mittelwert. Wenn eine große Anzahl von Messungen

durchgeführt wird, ist die Standardabweichung die Wurzel der Summe der Quadrate der Abweichungen vom

Mittelwert geteilt durch die Anzahl der Messungen minus eins.

 

Standard Positioning Service (SPS) - Standard Positionsbestimmungsdienst

Die normale ziviel nutzbare Positionsbestimmungsgenauigkeit, die den C/A-Code auf einer Frequenz

verwendet. Mit eingeschalteter selektiver Verfügbarkeit wurde garantiert, dass 95 % aller Messungen besser

als 100 Meter Genauigkeit besitzen (2 drms).

 

Static Positioning - Statische Positionsbestimmung

Ortsbestimmung durch einen stationären Empfänger. Dies erlaubt eine Reihe von Mittelungs und Differenzen-

Berechnungen.

 

SV - (Satellite vehicle) - Satellit

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Tropospheric Correction - Troposphärenkorrektur

Eine Korrektur, die Bestimmungsfehler durch Effekte berücksichtigt, die durch die Troposphäre verursacht

werden.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

Universal Time Coordinated (UTC) - Koordinierte Weltzeit

Eine internationales hochgenaues und stabiles Atomuhrensystem, das durch Schaltsekunden möglichst nahe

an der Weltzeit gehalten wird und bezüglich saisonaler Unterschiede der Erdrotationsgeschwindigkeit

korrigiert ist. Das System wird vom U.S. Naval Observatory betrieben. Die GPS-Zeit ist direkt mit der UTC-Zeit

gekoppelt. UTC-GPS=x Sekunden (1988 war x=5 Sekunden)

 

User Segment - Benutzersegment

Dies sind die GPS-Empfangsgeräte selbst.

 

URA - user range accuracy

siehe user range accuracy.

 

 

User Interface - Benutzerschnittstelle

Die Hardware und das Betriebssystem mit dessen Hilfe der Benutzer Prozeduren der Ausstattung (GPS

Empfänger) ausführt und wodurch das Gerät dem Benutzer Informationen zur Verfügung stellt. Oder einfacher

gesagt: Die Tasten und die Anzeige.

 

AK, 20.05.2023 Seite 61 document.doc

Page 62: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

User Range Accuracy - URA - Bereichsgenauigkeit beim Benutzer

Der Anteil des Fehlers zur Bereichsbestimmung der durch eine einzelne Fehlerquelle zustande kommt

(Offensichtliche Uhrenfehler und Ungenauigkeiten in der Bahnvoraussage). Diese werden in Bereichseinheiten

umgewandelt, wobei davon ausgegangen wird, dass die Fehler von allen anderen Fehlerursachen unabhängig

sind. Werte kleiner 10 sind gut.

 

User Segment - Benutzersegment

Der Teil des gesamten GPS-Systems das die Empfängner der GPS-Signale umfasst.

 

UTC - universal time coordinated

siehe universal time coordinated

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

WAAS (Wide Area Augmentation System) - Europäischer Zusatznavigationsdienst

WAAS ist ein System, in dem mehrere Bodenstationen, die Referenzstationen und mehrere geostationäre

Satelliten präzise DGPS-Korrekturen den dafür vorbereiteten GPS-Empfängern zur Verfügung stellen. WAAS

bietet höhere Genauigkeiten anhand von erweiterten GPS-Satellitensignalen und betritt so die nächste Ebene

der GPS-Genauigkeit. Das um die WAAS-Daten erweiterte GPS-Signal korrigiert Fehler in den GPS-

Signaldaten, die durch ionosphärische Störungen, Uhren- und Satellitenbahnfehler verursacht werden. Seit

Dezember 1999 ist WAAS nahezu durchgängig in Betrieb. Es wurde für die amerikanische Luftfahrtbehörde

FAA für hohe Genauigkeit bei Landeanflügen entwickelt. Das WAAS-Signal ist für zivile Nutzung zugänglich

und bietet sowohl auf dem Land wie auch auf See oder in der Luft eine weiterreichende Abdeckung, als sie

bisher durch landgestützte DGPS-Systeme ermöglicht wurde.

 

 

World Geodetic System - Weltweites geodätische System

Ein einheitlicher Satz von Parametern, der die Größe und Form der Erde, die Positionen eines Netzwerks von

Punkten in Bezug zum Schwerpunkt der Erde, Umrechnungsformeln der wichtigsten geodätischen Datums

und das Potential der Erde beschreibt. Üblicherweise werden harmonische Koeffizienten angegeben.

 

WGS-84 (World Geodetic System 1984) - Weltweites geodätische System vo 1984

Das mathematische Ellipsoid, welches vom GPS-System seit Januar 1987 verwendet wird.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

AK, 20.05.2023 Seite 62 document.doc

Page 63: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Y code - Y Code

die verschlüsselte Version des P-Codes. Dieser Code ist nur für militärische Anwendungen bestimmt.

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 

 

GPS-Monitor

 powered by

  Antaris® Positioning Engine 

Zur Erklärung der Grafiken

 

Aktuelle Daten - aktuelle Uhrzeit: 11:38 UTC

 

Verteilungsplot der horizontalen Position über die letzten 24 Stunden

 

AK, 20.05.2023 Seite 63 document.doc

Page 64: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Verteilungsplot der Höhe über die letzten 24 Stunden

 

AK, 20.05.2023 Seite 64 document.doc

Page 65: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Verlauf der Position im Vergleich zum Mittelwert für Breitengrad, Längengrad und Höhe in den letzten 24 Stunden

 

AK, 20.05.2023 Seite 65 document.doc

Page 66: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Verlauf der Position im Vergleich zum Mittelwert für Breitengrad, Längengrad und Höhe in den letzten 365 Tagen

 

Verlauf der Genauigkeit für die horizontale Position und Höhe in den letzten 365 Tagen

 

AK, 20.05.2023 Seite 66 document.doc

Page 67: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Fortlaufender Skyplot mit Daten der letzten 7 Tage

Archivdaten

2004

Jul 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Aug 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Sep 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Oct 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Nov 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30Dec 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2005

Jan 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Feb 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28Mar 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31Apr 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

 

 

Herzlichen Dank an die Firma u-blox für das RCB-LJ GPS-Modul.

Die Daten auf dieser Seite sind nach bestem Wissen und Gewissen aus den NMEA-Daten des Empfängermoduls aufbereitet. Für Fehler in den Rohdaten oder durch die Datenaufbereitung besteht keinerlei Haftung durch die Betreiber dieser Seite.

 

GPS-Konstellation und -Status

Satellitenkonstellation

AK, 20.05.2023 Seite 67 document.doc

Page 68: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Aktuelle Konstellation der GPS-Satelliten

 

Aktive Satelliten: 0

 

Statusmeldungen

Meldung vom: 15.04.2005 - JDay: 105 - Alle Zeiten UTC. 

Satellit PRN: - Allgemeine Meldungen -  

von: bis:  

- - keine Meldungen

- - keine Meldungen

- - keine Meldungen

- - keine Meldungen

 

Satellit PRN: 07  

von: bis:  

03.04.2005 - 22:38 - Ungeplanter Ausfall: Satellit bis auf weiteres unbenutzbar.

03.04.2005 - 22:38 13.04.2005 - 17:40Zusammenfassung der effektiven ungeplanten Unterbrechungszeit.

 

Satellit PRN: 11  

von: bis:  

06.04.2005 - 19:45 07.04.2005 - 07:45Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der Atomuhr oder Softwaretest.

07.04.2005 - 14:00 08.04.2005 - 02:00 Neufestlegung einer Unterbrechungszeit.

07.04.2005 - 15:26 07.04.2005 - 17:47 Zusammenfassung der effektiven Unterbrechungszeiten.

 

Satellit PRN: 13  

von: bis:  

31.03.2005 - 13:00 01.04.2005 - 01:00 Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der

AK, 20.05.2023 Seite 68 document.doc

Page 69: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Atomuhr oder Softwaretest.

31.03.2005 - 15:46 31.03.2005 - 19:15 Zusammenfassung der effektiven Unterbrechungszeiten.

 

Satellit PRN: 14  

von: bis:  

08.04.2005 - 21:30 09.04.2005 - 09:30Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der Atomuhr oder Softwaretest.

08.04.2005 - 14:00 09.04.2005 - 02:00 Neufestlegung einer Unterbrechungszeit.

08.04.2005 - 14:00 - Absage einer Unterbrechungszeit.

 

Satellit PRN: 18  

von: bis:  

14.04.2005 - 17:00 15.04.2005 - 05:00Geplanter Ausfall: Delta-V Manöver - Bahnkorrektur des Satelliten.

14.04.2005 - 17:40 15.04.2005 - 00:26 Zusammenfassung der effektiven Unterbrechungszeiten.

 

Satellit PRN: 20  

von: bis:  

15.04.2005 - 17:00 16.04.2005 - 05:00Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der Atomuhr oder Softwaretest.

 

Satellit PRN: 21  

von: bis:  

04.04.2005 - 22:30 05.04.2005 - 10:30Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der Atomuhr oder Softwaretest.

04.04.2005 - 16:00 05.04.2005 - 04:00 Neufestlegung einer Unterbrechungszeit.

04.04.2005 - 19:30 04.04.2005 - 21:41 Zusammenfassung der effektiven Unterbrechungszeiten.

 

Satellit PRN: 22  

von: bis:  

13.04.2005 - 19:45 14.04.2005 - 07:45Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der Atomuhr oder Softwaretest.

13.04.2005 - 21:11 13.04.2005 - 23:58 Zusammenfassung der effektiven Unterbrechungszeiten.

 

Satellit PRN: 24  

von: bis:  

09.03.2005 - 15:45 10.03.2005 - 03:45Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der Atomuhr oder Softwaretest.

15.03.2005 - 12:45 16.03.2005 - 12:45Geplanter Ausfall: Delta-V Manöver - Bahnkorrektur des Satelliten.

09.03.2005 - 15:59 09.03.2005 - 19:00 Zusammenfassung der effektiven Unterbrechungszeiten.

15.03.2005 - 13:10 16.03.2005 - 02:42 Zusammenfassung der effektiven Unterbrechungszeiten.

 

Satellit PRN: 26  

von: bis:  

28.03.2005 - 01:45 28.03.2005 - 13:45Geplanter Ausfall: Delta-V Manöver - Bahnkorrektur des Satelliten.

29.03.2005 - 01:45 29.03.2005 - 13:45 Neufestlegung einer Unterbrechungszeit.

29.03.2005 - 02:09 29.03.2005 - 10:08 Zusammenfassung der effektiven Unterbrechungszeiten.

 

Satellit PRN: 28  

AK, 20.05.2023 Seite 69 document.doc

Page 70: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

von: bis:  

11.04.2005 - 14:00 12.04.2005 - 02:00Geplanter Ausfall: Wartung - Aktivierung der Ionenpumpe der Atomuhr oder Softwaretest.

11.04.2005 - 14:00 - Absage einer Unterbrechungszeit.

 

Satellit PRN: 31  

von: bis:  

28.12.2004 - 00:42 04.04.2005 - 09:13Zusammenfassung der effektiven ungeplanten Unterbrechungszeit.

14.04.2005 - 16:35 - Ungeplanter Ausfall: Satellit bis auf weiteres unbenutzbar.

14.04.2005 - 16:34 - Ungeplanter Ausfall: Satellit bis auf weiteres unbenutzbar.

 

Für besonders Interessierte gibt es hier (englisch) noch detailliertere Informationen über den aktuellen

Zustand der einzelnen Satelliten.

 

Daten für die Erstellung der Konstellationsgrafik: http://www.navcen.uscg.gov/Ftp/gps/YUMA/yuma.txtDatenbasis der NANUs (NANU = Notice Advisory to Navstar Users): http://www.navcen.uscg.gov/Ftp/gps/status.txt

Das Programm zur Auswertung der Daten wurde nach bestem Wissen und Gewissen erstellt. Für eventuelle Fehler bzw. den Folgen daraus übernehme ich keine Verantwortung. Die Grafik für die Umlaufbahnen berücksichtigt keine Elliptik der Bahnen, da die GPS-Umlaufbahnen nahezu kreisförmig sind.

 

Längen und Breitengrade

Koordinatensysteme zur Positionsangabe auf der Oberfläche der Erde werden schon seit Jahrhunderten

verwendet. In der westlichen Welt wurde der Äquator, die Wendekreise des Krebs und Steinbocks und dann

die Breiten- und Längengrade verwendet um Positionen auf der Erde zu beschreiben. Östliche Kartographen

wie Phei Hsiu benutzten andere rechtwinklige Systeme bereits im Jahre 270 nach Christus.

Im Laufe der Geschichte wurden vielerlei Einheiten für Längen und Winkelmessung eingesetzt. Der Meter

steht sowohl mit der Längen als auch der Winkelentfernung in Verbindung, ist er doch im späten 18.

Jahrhundert als der zehnmillionste Teil der Entfernung vom Pol zum Äquator definiert worden. Heute ist das

am meisten verwendete Koordinatensystem der Breitengrad, Längengrad und die Höhe. Der Nullmeridian und

der Äquator sind die Referenzflächen zur Definition der Breiten und Länge.

 

Breitengrade

Nachfolgend wollen wir die Erde als kugelförmig betrachten,

was sie in erster Näherung ja auch zu sein scheint. Die Erde

dreht sich in genau 24 Stunden einmal um ihre eigene Achse.

Genau gesagt definiert diese Drehung diese Achse. Stellt man

sich eine richtige Achse vor, wie ein Globus sie besitzt, so

"durchstößt" diese Achse die Erde an zwei Punkten, dem

Nordpol und dem Südpol. Diese Punkte sind allerdings nicht

mit den magnetischen Polen der Erde identisch, also die Punkte

AK, 20.05.2023 Seite 70 document.doc

Längen und Breitengrade

Page 71: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

zu denen ein Kompass zeigt. Leider sind diese Punkte deutlich von den geographischen Polen verschoben, was

vor allem der schifffahrenden Zunft schon immer viele graue Haare beschert hat. Genau in der Mitte zwischen

Nordpol und Südpol befindet sich der Äquator, der senkrecht zur Erdachse steht. Dieser erste Breitenkreis

wird als Nullpunkt für die Messung definiert. Ausgehend hiervon misst man den Winkel in Graden nach

Norden und Süden jeweils bis 90 ° und gibt dies als nördliche bzw. südliche Breite an. Hierdurch entstehen

weitere Breitenkreise mit deren Hilfe man eine Position auf der Erde immerhin schon auf eine kreisförmige

Linie um die Erde angeben kann. Navigationstechnisch ist die Breite auch relativ einfach über den

Sonnenstand oder die Sterne zu bestimmen und deshalb schon seit dem Ende des 15. Jahrhunderts zur

Navigation benutzt worden. So gibt beispielsweise auf der Nordhalbkugel die Höhe des Polarsterns über dem

Horizont den Breitengrad an. Am Äquator befindet er sich genau am Horizont, am Nordpol genau "über Kopf".

Dass der Polarstern recht genau in "Verlängerung" der Erdachse am Himmel steht, sieht man sehr gut an

Langzeitaufnahmen vom Himmel. Dabei bilden alle Sterne als Kreise bzw. Kreissegmente ab, lediglich der Polarstern bleibt ein Punkt.

Die Erde hat einen Radius von 6370 Kilometern und damit einen Umfang von etwa 40000 km. Daraus ergibt

sich ein Abstand der ganzzahligen Breitengrade von etwa 111 km. Ein Grad ist in 60 Bogenminuten und diese

wieder jeweils in 60 Bogensekunden aufgeteilt. Eine Bogenminute, also 1/60 eines Grades umfasst damit

1,85 km. Wie zufällig ist das genau eine Nautische Meile (Seemeile). Das ist natürlich kein Zufall, sondern die

so furchtbar krumme Einheit der Nautischen Meile wurde auf obige Weise definiert und macht das Ablesen

von Entfernungen aus Karten mit Gradeinteilung einfacher.

Neben dem Äquator und den Polen gibt es noch vier weitere "wichtige" Breitenkreise. Das sind zum einen die

Polarkreise, diese liegen jeweils bei 66,55° (66° 33') N bzw. S. Sie zeigen den Übergang der gemäßigten zu

den polaren Regionen an und markieren auch die Breitenkreise, oberhalb bzw. unterhalb derer die Sonne zum

Zeitpunkt der Sonnenwenden nicht mehr auf- bzw. untergeht. Dieses Phänomen rührt vom Neigungswinkel

der Erde von 23,45 ° gegenüber der Bahn um die Sonne her.

Die beiden anderen wichtigen Breitengrade sind die Wendekreise. Der nördliche Wendekreis liegt bei 23,45°

(23° 27') nördlicher Breite. Hier steht etwa am 21. Juni die Sonne mittags senkrecht am Himmel. Der

Wendekreis wird auch als Wendekreis des Krebses bezeichnet, da sich zur Zeit dieser Sonnenwende die Sonne

zu früheren Zeiten in diesem Sternbild befand. Der südliche Wendekreis oder Wendekreis des Steinbocks

AK, 20.05.2023 Seite 71 document.doc

Langzeitbelichtung mit dem Polarstern im Zentrum

Page 72: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

befindet sich bei 23,45° südlicher Breite. Die Wintersonnenwende findet etwa am 21. Dezember statt.

Ansicht der Erde etwa zum Zeitpunkt der Sommersonnenwende (links) und der Wintersonnenwende (rechts)

 

Ganz nebenbei sollte man vielleicht noch erwähnen, dass die Erdachse nicht immer gleich stark geneigt ist.

Diese Neigung verändert sich langsam.

 Jahr Neigung der Erdachse

1900 23° 27' 8.2"

1978 23° 26' 21.0"

2000 23° 26' 32.0"

 

Diese Neigung ist nicht zu verwechseln mit der Präzession, also der Taumelbewegung der Erdachse. Diese

Taumelbewegung um den Pol der Ekliptik vollzieht sich einmal innerhalb von 25700 Jahren und sorgt

vermutlich teilweise für die immer wiederkehrenden Eiszeiten. Siehe auch hier für weitere Informationen.

 

Längengrade

Zusätzlich zu den Breitenkreisen werden noch Längenkreise eingeführt. Dies sind Kreise die senkrecht auf

dem Äquator stehen und durch beide Pole führen. Da man hier jedoch keinen gegebenen Nullpunkt wie den

Äquator zur Verfügung stehen hat, wurden einige Zeit lang unterschiedliche Nullmeridiane verwendet und

erst 1883 auf einer internationalen geodätischen Konferenz in Rom festgelegt, dass in Zukunft der

Nullmeridian durch die Sternwarte im englischen Greenwich gehen sollte. Ein Grund für die Wahl gerade

dieses Ortes für den Nullmeridian ist, dass damit auch die Datumsgrenze durch den Pazifik, also

weitestgehend unbewohntes Gebiet geht. Da die Drehung der Erde keinen Anfang und kein Ende hat, war es

erst sehr spät möglich, den Längengrad auf dem man sich befindet zu bestimmen. Dieses Kunststück wurde

erst möglich, als es im 18. Jahrhundert gelang, Uhren zu bauen die über einen längeren Zeitraum genau

gehen. Mit deren Hilfe kann dann die Zeit des Sonnenhöchststands an einem unbekannten Ort im Vergleich

zum Sonnenhöchststand am Nullmeridian exakt bestimmt werden. Erst im 18. Jahrhundert war also eine

"genaue" Bestimmung der Position überall auf der Erde möglich geworden.

Die Längengrade werden in östlicher und westliche Richtung ausgehend vom Nullmeridian gemessen, reichen

also von 180° Ost bis 180° West. Häufig sieht man auch anstatt des Zusatzes N, S, O (im englischen E) und W

negative Werte für Längen- und oder Breitengrad. Dabei gilt, dass negative Werte nach Süden bzw. Westen

AK, 20.05.2023 Seite 72 document.doc

Page 73: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

zeigen. Wer wissen will, wieviele (ganzzahlige) Längen- bzw. Breitengrade es gibt, findet hier noch etwas

interessantes.

 

Grade für Richtungsangaben

Grade werden außer für die

Angabe von Längen und

Breitengraden (und

Temperaturen) auch zur

Angabe von Richtungen

verwendet. Hier gilt, dass man

anders als in der Mathematik

(da ist es rechts) mit 0° oben

bzw. im Norden anfängt. Man

zählt dann im Uhrzeigersinn

(auch hier anders als in der

Mathematik) bis 360° und

gelangt wieder nach Norden.

Dazwischen befinden sich bei 90° Osten, bei 180° Süden und bei 270° Westen. Es gibt noch weitere vier

Zwischenstufen wie NE (45°) und nochmals

 

Großkreise

Grosskreise lassen sich am einfachsten im

Zusammenhang mit den "eigenartigen"

Flugrouten von Transatlantikflügen erklären.

Man mag sich bei Anblick der Flugroute

eines Fluges beispielsweise von Frankfurt

nach Los Angeles eingezeichnet auf einer

"normalen", meist in Mercator Projektion

gezeichneten Karte fragen: Warum fliegen

die immer über Grönland, wenn es doch

direkt viel näher wäre. Hier spielt uns die Kartenprojektion und die Rundung der Erde einen Streich. Sehen

wir uns auf nebenstehender Grafik einmal an, wie die in etwa geflogene Route (gelb) und die vermeintlich

kürzeste Route (violett) auf der Karte an. In Wirklichkeit wird meist nicht so weit über Kanada geflogen, aber

das hat wohl mit den Windverhältnissen und der Luftraumeinteilung über den USA zu tun. Während die gelbe

Linie einen Umweg über Grönland zu machen scheint, ist die Strecke mit etwa 9300 km um über 1000 km

kürzer als die "direkte" violette Linie mit 10600 km. Warum das so ist, wird deutlich, wenn man sich die Erde

dreidimensional als Kugel betrachtet.

AK, 20.05.2023 Seite 73 document.doc

Richtungsangaben (Kompassrose). Die grosse Teilung sind 22,5°Schritte, die kleine Teilung 5° Schritte.

Vergleich der Flugroute auf dem Grosskreis und der "direkten" Linie auf der Karte.

Page 74: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Auf dem Bild rechts sind wieder die "direkte"

Linie in violett und die kürzeste Linie in gelb

eingezeichnet. Hier wird jetzt auch deutlich,

dass der Umweg obenrum über Grönland

kein Umweg ist, sondern tatsächlich der

kürzeste Weg. Hingegen ist die violette Linie

ein Umweg der uns viel zu weit südlich führt.

Die kürzeste Linie von A nach B auf einer

Kugel führt immer über einen Großkreis. Ein

Großkreis ist ein Kreis, der den gleichen

Radius wie die Kugel selbst hat. Bewegt man

sich auf einem Grosskreis, ist das eine gerade

Linie. So ist beispielsweise der Äquator ein

Großkreis, alle Längengrade sind Großkreise und es gibt beliebige weitere, wie der auf der nebenstehenden

Zeichnung eingezeichnete gelbe Kreis, auf den man senkrecht draufsieht. Die Breitengradkreise sind (bis auf

den Äquator) keine Großkreise, deren Radien nehmen ja in Richtung der Pole bis auf Null ab. So schneiden

auch alle Großkreise den Äquator in zwei Punkten (was die Breitengradkreise nicht tun). Auf der Karte im

obere Bild sind durch die Projektion die Großkreise von West nach Ost umso stärker gekrümmt, je weiter sie

in der Mitte vom Äquator zu den Polen reichen. Der Äquator selbst ist auch auf dieser Karte eine Gerade. Die

Längengrade, die ja ebenfalls Großkreise sind, sind bei diesen Karten immer Geraden, von Nord nach Süd

fliegt man keine "Kurve", man kann einfach den Längengraden folgen.

Kapitäne von Luft- und Wasserfahrzeugen kenne die gelbe Linie als Orthodrom und die violette Linie als

Loxodrom. Letztere hat natürlich den einen Vorteil, dass auf einer Mercator-Karte eine gerade Linie zwischen

Anfangspunkt und Endepunkt der Reise gezogen werden kann und dann die Linie alle Meridiane

(Längengrade) im gleichen Winkel schneidet. Das bedeutet, man kann nach einem konstanten Kurs auf dem

Kompass fahren oder fliegen und kommt (wenn auch auf Umwegen) zum Ziel. Würde man auf der violetten

Kurve immer weiter fahren, so käme man auf einem spirlaförmigen Kurs mit immer enger werdenen "Runden"

irgendwann am Südpol an, während einen die gelbe Linie nach einer Umrundung der Erde wieder an den

Ausgangspunkt zurückbringt.

 

Kartenprojektionen

Kartenprojektionen versuchen der Oberfläche der Erde oder einen Teil davon auf einer ebenen Fläche

abzubilden. Aufgrund der Krümmung der Erde in allen Richtungen ist das nur mit Einschränkungen möglich.

Die Schale einer Orange läßt sich auch nicht einfach so flach auf dem Tisch ausbreiten. Man muss die

Oberfläche einer Kugel immer auf irgendeine Art auf eine zweidimensionale Fläche projezieren um sie

abbilden zu können.

Eigenschaften der Kartenprojektionen

AK, 20.05.2023 Seite 74 document.doc

Vergleich der Flugroute auf dem Großkreis und der "direkten" Linie auf der Erdkugel.

Page 75: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Durch diesen Abbildungsprozess kommt es immer zu einigen Verfälschungen der Konformität, Entfernung,

Richtung und/oder Größe. Manche Projektionen minimieren einige dieser Fehler auf Kosten anderer. Andere

versuchen alle diese Eigenschaften nur mäßig zu verfälschen. Dies wird natürlich umso gravierender, je

größer das Gebiet ist, über das sich die Karte erstreckt. Nachfolgend werden einige Eigenschaften aufgezählt,

die Karten haben sollten und können. Man muss sich aber bewusst sein, dass bestenfalls ein Globus alle diese

Eigenschaften auf einmal haben kann.

 

Gleichförmig (konform)

Man bezeichnet eine Kartenprojektion als gleichförmig, wenn der Masstab an jedem Punkt der Karte in jeder

Richtung identisch ist. Der Massstab kann dann allerdings nicht überall der gleiche sein. Meridiane

(Längengrade) and Parallelen (Breitengrade) schneiden sich in rechten Winkeln. Formen werden auf

gleichförmigen Karten lokal erhalten. Eine Karte kann nicht gleichzeitig formengetreu und flächengetreu sein.

 

Entfernungsgetreu (Äquidistant)

Eine Karte wird als Äquidistant bezeichnet, wenn sie Entfernungen vom Zentrum der Karte genauso

wiedergibt, wie alle anderen Entfernungen auf der Karte. Unter Äquidistant wird manchmal auch verstanden,

wenn die Abstände im Netz der Längen- und Breitengrade auf der Karte gleich sind.

 

Richtungsgetreu

Eine Karte ist richtungstreu, wenn die Azimute (Winkel von einem Punkt auf einer Linie zu einem anderen

Punkt) in allen Richtungen korrekt wiedergegeben werden. Eine Mercatorkarte ist richtungstreu.

 

Maßstabsgetreu

Eine Karte ist maßstabsgetreu, wenn das Verhältnis zwischen einer Entfernung auf der Karte und der gleichen

Entfernung auf der Erde überall auf der Karte das Gleiche ist.

 

Flächengetreu

Eine Karte ist flächentreu, wenn sie Flächen so darstellt, dass Wenn eine Karte Flächen auf der gesamten

Karte so darstellt, dass alle Flächen auf der Karte das gleiche Verhältnis zu den Flächen auf der Erde haben,

die sie darstellen. Zur Flächentreue sei folgendes interessantes Beispiel gezeigt: Afrika hat als einer der

größten Kontinente (zweitgrößter nach Asien) eine Fläche von 29 800 000 km², Grönland als größte Insel der

Erde nur 2 175 600 km² (also eine Fläche die um das 13,7 fache kleiner ist!). Auf einer Karte in Mercator

Projektion sieht Grönland ebenso groß aus wie Afrika. Die azimutale Lambert Projektion hingegen ist

flächengetreu und gibt Grönland im Flächenvergleich zu Afrika richtig wieder. (Die Karten der nachfolgenden

Abbildung wurde mit diesem Online-Kartengenerator erzeugt.)

 

AK, 20.05.2023 Seite 75 document.doc

Page 76: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Größenvergleich zwischen Grönland und Afrika in der richtungs- aber nicht flächengetreuen Mercatorprojektion (links) und in der flächengetreuen Lambert-Projektion (rechts)

 

Einteilung der Kartenprojektionen

Es gibt mittlerweile ein große Anzahl Kartenprojektionen, die jedoch nicht alle echte Projektionen sind in dem

Sinn, dass sie durch Lichtstrahlen die einen Globus durch- oder beleuchten darstellbar sind. Zahlreiche

wichtige Projektionen werden auf mathematischem Weg erzielt. Bei den "echten" Projektionen, deren

zustandekommen wesentlich leichter vorstellbar ist, gibt es drei Hauptgruppen, die nachfolgend kurz

beschrieben werden sollen.

 

Planare oder azimutale Projektionen

Bei einer planaren Projektion wird, wie der Name schon sagt, die Kugeloberfläche auf eine Ebene projeziert.

Hierbei sind zunächst drei Projektionsarten zu unterscheiden.

 

Projektionsarten der azimutalen Projektion

 

Während bei der orthografischen Projektion mit parallelen Lichtstrahlen projeziert wird, "sitzt" bei der

stereografischen Projektion die Lichtquelle an der hinteren Wand der Kugel und bei der gnomonischen

Projektion im Zentrum (Gnomonik ist übrigens die Lehre von Sonnenuhren; ein Gnomon der Stab der

Sonnenuhr der den Schatten wirft).

Weiterhin unterscheidet man, ob die Fläche auf die projeziert wird, die Kugel am Äquator berührt (äquatoriale

Projektion), an einem der Pole (polare Projektion) oder irgendwo dazwischen (schiefwinklige oder

zwischenständige Projektion). Neben der tangentialen Projektion, wo die Ebene die Kugel in einem Punkt

berührt, gibt es noch die Variante, dass die Ebene die Kugel schneidet. Folgende Bilder zeigen einige der

unterschiedlichen Möglichkeiten.

 

Während bei der orthografischen Projektion mit parallelen Lichtstrahlen projeziert wird, "sitzt" bei der

stereografischen Projektion die Lichtquelle an der hinteren Wand der Kugel und bei der gnomonischen

AK, 20.05.2023 Seite 76 document.doc

Page 77: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Projektion im Zentrum (Gnomonik ist übrigens die Lehre von Sonnenuhren; ein Gnomon der Stab der

Sonnenuhr der den Schatten wirft).

Weiterhin unterscheidet man, ob die Fläche auf die projeziert wird, die Kugel am Äquator berührt (äquatoriale

Projektion), an einem der Pole (polare Projektion) oder irgendwo dazwischen (schiefwinklige oder

zwischenständige Projektion). Neben der tangentialen Projektion, wo die Ebene die Kugel in einem Punkt

berührt, gibt es noch die Variante, dass die Ebene die Kugel schneidet. Folgende Bilder zeigen einige der

unterschiedlichen Möglichkeiten.

 

orthografische planare äquatoriale (links) und orthografische planare polare Projektion (rechts)

 

Die orthographische planare Projektion ist eine perspektivische

Projektion aus unendlicher Entfernung. Aus diesem Grund wird sie

häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum

wiederzugeben. Wie auch bei der Lambertprojektion und der

stereographischen Projektion kann nur eine Hemisphäre auf einmal

dargestellt werden. Die Projektion ist weder flächengetreu noch

gleichförmig, außerdem nimmt die Verzerrung zum Rand der

Hemisphäre stark zu. Die Richtungen vom Zentrum der Projektion aus

sind wahre Richtungen. Diese Projektion war den Griechen und Ägyptern bereits vor mehr als 2000 Jahren bekannt.

 

stereografische planare äquatoriale (links) und gnomonische planare äquatoriale Projektion (rechts)

 

AK, 20.05.2023 Seite 77 document.doc

orthographische planare (schiefwinklige) Projektion

Page 78: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Das auffälligste Merkmal der azimutal äquidistanten Projektion ist die

Tatsache, dass Entfernungen, die vom Mittelpunkt der Karte gemessen

werden, wahre Entfernungen sind. Entsprechend definiert ein Kreis um den

Mittelpunkt der Projektion Punkte, die alle gleich weit von diesem Punkt

entfernt sind. Die gilt jedoch nur für den tentralen Punkt, für den die Karte

hergestellt ist. Die Projektion als polare Ansicht ist mindestens einige hundert

Jahre bekannt. Diese Projektion ist nützlich zur globalen

Entfernungsabschätzung von einem gegebenen auf der Karte zentralen Punkt aus.

Die polare stereografische Projektion ist eine gleichförmige azimutale Projektion die bis zu den Griechen

zurückdatiert. Diese Projektion wird vor allem zur Kartographie der Polregionen verwendet. In der polaren

Ausführung sind alle Meridiane gerade Linien

und Breitenkreise sind Kreise oder Kreissegmente.

Die Lambert azimutale Projektion wurde 1772 von Lambert entwickelt und wird üblicherweise zur Projektion

von großen Regionen wie Kontinenten und Hemisphären verwendet. Sie ist eine azimutale, flächentreue

Projektion aber sie ist nicht perspektivisch. Die Verzerrung ist Null im Mittelpunkt der Projektion und nimmt

radial von diesem Punkt nach außen zu. Diese Projektion ist nicht mit der Lambert conformal Projektion zu

verwechseln, die sehr häufig anzuteffen ist und eine Kegelprojektion ist. Die ähnlich aussehende

orthografische planare Projektion ist zum Vergleich nicht flächentreu, Flächen zu den Rändern hin werden

dort stark verzerrt wiedergegeben.

 

AK, 20.05.2023 Seite 78 document.doc

Azimutal äquidistante Projektion (Quelle)

Polare stereografische Projektion (Quelle)

Lambert azimutale Projektion (Quelle)

Page 79: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Zylindrische Projektionen Alle zylindrischen Projektionen kommen

dadurch zustande, dass eine Kugelfläche Bei

der tangentiale Zylinderprojektion berührt der

Zylinder die Kugel an einem Grosskreis (z.B.

Äquator). Die Projektion entsteht dadurch, dass

eine Lichtquelle im Zentrum der Erdkugel die Kontinente auf der Zylinderoberfläche abbildet.

Die Mercatorprojektion ist eine solche Projektion. Gerhard Kremer (1512-1594), genannt Mercator stellte

diese Projektion 1569 das erste mal in Duisburg vor. Der große Vorteil der Mercatorprojektion ist, dass sie

richtungsgetreu oder winkeltreu ist, Loxodrome (Kursgleichen; Linien mit konstanter Richtung) werden immer

als Geraden wiedergegeben. Grosskreise hingegen werden (mit Ausnahme des Äquators) als gekrümmte

Linien wiedergegeben. Ein entscheidender Nachteil der Mercatorprojektion ist die extrem starke

Grossenverzerrung zu den Polen hin, wie am Beispiel Afrika und

Grönland oben deutlich gemacht wurde.

Ähnlich der Mercatorprojektion ist die äquidistante zylindrische Projektion. Hier wird die Projektion

mathematisch so korrigiert, dass die Abstände der Breitengrade gleich sind. Diese Projektion ist daher auch

unter dem Namen "Plate Carée" bekannt. Die Projektion ist beispielsweise and der Wand der NASA Mission

Control zu sehen. In dieser Projektion werden die Gebiete Nahe der Pole nur in Ost-West-Richtung gedehnt

und sind damit weniger verzerrt als bei der Mercator-Projektion. Alle Meridiane (Längengrade) und

AK, 20.05.2023 Seite 79 document.doc

Zylindrische Mercatorprojektion als Beispiel für eine tangentiale Zylinderprojektion

Mercator Projektion (Quelle)

Plate Carée Projektion (Quelle)

Page 80: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Breitengrade sind gerade Linien.

Eine weitere Variante der Zylinderprojektionen ist, dass der Zylinder die Kugel nicht in einem Grosskreis

sondern in zwei Kleinkreisen schneidet, der Radius des

Für eine Zylinderprojektion muss der Zylinder die Kugel nicht am Äquator berühren. Es sind auch

schiefwinklige Projektionen möglich. Wird der Zylinder gegenüber der Kugel im 90° gedreht, so gelangt man

zu transversalen Zylinderprojektionen. Im Bild rechts die transversale Mercatorprojektion. Diese

Projektionsart wird auch Gauss-Krüger-Projektion genannt. Viele bekannte Koordinatensysteme für Karten

(Grids) verwenden diese Projektion. So das UTM-System, Gauß-Krüger (German Grid), British Grid, Irish Grid,

Finnish Grid, Swedish Grid und Taiwan Grid. Für die Verwendung dieser Projektion auf Karten wird nicht von

einer Lichtquelle in der Kugelmitte ausgehend alles projeziert sondern ein jeweils nur wenige Grade breite

schmale Streifen. Die Meridiane, an denen sich Kugel und Zylinder berühren, nennt man Bezugsmeridiane.

Jede der Streifen besitzt einen Bezugsmeridian, an dem die Projektion verzerrungsfrei ist. Dadurch, dass die

Streifen nur sehr schmal sind, lassen sich die Verzerrungen minimieren. Mehr zur transversalen

Zylinderprojektion beim Thema "Grids".

 

Kegelprojektion Bei Kegelprojektionen wird die Kugeloberfläche auf einen geeigneten

Kegel projeziert. Auch hier kann der Kegel die Kugel in einem Kreis

berühren oder in zwei Kreisen schneiden. Die Berührungs- oder

Schnittkreise sind immer Kleinkreise. Die Form des Kegels und der

Berührungskreis entscheiden über das Aussehen der Projektion. Wie bei

den meisten Projektionen ist die Verzerrung umso größer, je größer das

abgebildete Gebiet ist. Wie bereits oben erwähnt ist die Lambert

conformal Projektion eine der bekanntesten Kegelprojektionen. Dabei

handelt es sich um eine Kegelprojektion mit zwei Schnittkreisen

zwischen Kugel und Kegel. Diese verzerrungsfrei wiedergegebenen Breitengrade werden dann als Standardparallelen bezeichnet.

AK, 20.05.2023 Seite 80 document.doc

Transversale Zylinderprojektion

Konisch tangentiale Projektion

Page 81: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Wer noch ein wenig mit verschiedenen Projektionen "spielen" will, sei auf das Java-Applet hier verwiesen

(englische Seite).

 

 

Kartenbezugssysteme

Der Begriff "map datum"

Zunächst etwas zum Begriff selbst: Der englische Begriff "map datum" lässt sich leider nur wenig

zufriedenstellend ins Deutsche übersetzen. Das Wort "Kartendatum" klingt im Deutschen seltsam, gängiger ist

"Kartenbezugssystem".

 

Die Form der Erde

Frühe Vorstellungen der Form der Erde führten zu Beschreibungen der Erde als Auster

(Die Babylonier 3000 vor Christus), einer rechteckigen Schachtel, eine kreisrunde Scheibe,

einer zylindrischen Säule, einer Kugel oder einer sehr runden Birne (Columbus in seinem

letzten Lebensjahr). Flache Modelle der Erde werden noch immer zur Flächenvermessung

verwendet, wenn die Entfernungen klein genug sind, so dass die Erdkrümmung

vernachlässigt werden kann (weniger als 10 km). Kugelmodelle der Erde beschreiben die

Erde als Kugel mit einem bestimmten Radius und werden häufig für Kurzstreckennavigation (VOR/DME) und

für globale Entfernungsabschätzungen verwendet. Sphärische Modelle versagen allerdings bei der

Beschreibung der tatsächlichen Form der Erde.

Ellipsoide, Geoide und topografische Oberflächen

Die leichte Abflachung der Erde an den Polen resultiert in einem Unterschied von ca. 20 Kilometern zwischen

dem durchschnittlichen Kugelradius und dem tatsächlich gemessenen Polradius der Erde. Oder anders gesagt,

der Durchmesser am Äquator ist um etwa 1/300 größer als der an den Polen. Für genaue Entfernungs- und

Richtungsberechnungen über große Distanzen werden elliptische Modelle der Erde benötigt. Loran-C und GPS

Navigationsgeräte verwenden elliptische Modelle der Erde für die Berechnung der Position und

Wegpunkinformation. Elliptische Modelle definieren ein Ellipsoid über einen äquatorialen und eine polaren

Radius. Bei der Erde ist der äquatoriale Radius die Haupt-halbachse (semi-major axis) und der polare Radius

die Neben-halbachse (semi-minor axis). Die besten dieser Modelle können die Erdoberfläche auf etwa hundert

Meter genau, bezogen auf eine geglättete Meeresoberfläche, beschreiben. Zur weiteren Verfeinerung können

dann noch Unterschiede zwischen der tatsächlichen Meeresoberfläche (wenn überall Meer wäre) und dem

Ellipsoid angegeben werden. Auf diese Weise erhält man Geoide zur Beschreibung der Erde. Das Wort Geoid

kommt übrigens aus dem Griechischen und bedeutet etwa "erdförmig".

 

AK, 20.05.2023 Seite 81 document.doc

Die Erde

Page 82: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

WGS-84 Geoid als farbiges Relief (dünne weisse Linien zeigen die Kontinente) Der tiefste Punkt(violett) ist -107 m, der höchste (rot) 85,4 m. (Quelle)

Man gelangt also in mehreren Vereinfachungsstufen von der topografischen Oberfläche der Erde zu einem

beschreibenden Ellipsoid. Die topografische Oberfläche der Erde beschreibt die Erde, so wie sie tatsächlich

ist, mit allen Hügeln, Bergen, Gräben usw. Diese Oberfläche ist extrem detailliert und verändert sich zudem noch ständig.

Die Meereshöhe ist die durchschnittliche Höhe der Ozeane. Gezeitenkräfte und lokale

Gravitationsunterschiede bewirken weltweite Unterschiede dieser Höhe im Bereich von Hunderten von

Metern. Wäre überall auf der Erde nur Wasser, so hätte aufgrund der Gravitationsunterschiede die Erde

trotzallem weder die Form einer Kugel noch die eines einfachen Ellipsoiden.

Gravitationsmodelle versuchen nun die Variationen des Gravitationsfeldes im Detail zu beschreiben. Die

Wichtigkeit dieses Vorgehens erklärt sich aus der Idee des Nivellierens. Vermessungsarbeiten gehen von einer

planen Fläche aus, die senkrecht zur Richtung eines Bleilots steht, welches direkt auf den Schwerpunkt der

Erde zeigt. Lokale Unterschiede in der Gravitation, bedingt durch Unterschiede im Material des Erdkerns und

der Oberfläche machen diese Gravitationsoberfläche irregulär. Genau diese Oberfläche mit gleicher

Gravitation bezeichnet man nun als Geoid. Dieser berücksichtigt also wie gesagt keine Berge und Täler,

lediglich Unterschiede in der Gravitation. Trotzdem erkennt man an Geoidmodellen grob die Kontinente

wieder, da die Landmassen die Gravitation beeinflussen. Das Geoid gibt also sozusagen Normal-Null für die

gesamten Erde an. So definiert das WGS-84 Geoid Höhen für jeden Punkt auf der gesamten Erde.

Das U.S. National Imagery and Mapping Agency (NIMA) veröffentlicht beispielsweise ein 10 x 10 ° Netz der

Geoidhöhen des WGS-84 Geoids. Über eine lineare Interpolation lässt sich für jede Position aus den

nächstgelegenen Netzpunkten die Geoidhöhe berechnen. Somit lässt sich auch mit begrenztem Speicherplatz

in GPS-Geräten ein recht exaktes Abbild des Geoids erzeugen. Es gibt jedoch auch genauere Geoid-Daten,

beispielsweise mit 0.25 ° Abständen. Auf den Seiten der NIMA gibt es Daten zum WGS-84 Geoid zum

AK, 20.05.2023 Seite 82 document.doc

Stark (ca. 15000 fach) überhöhtes 3D-Modell des WGS-84 Geoids (Quelle)

Page 83: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Herunterladen.

Das Ellipsoid als nächste Vereinfachungsstufe versucht nun, den Geoiden möglichst gut zu beschreiben. Seit

Ende des 18. Jahrhunderts ist bekannt, dass die Erde eine ellipsoide Form hat. Aus nebenstehender

zweidimensionalen Zeichnung mit Ellipsen anstatt Ellipsoiden wird deutlich, dass das nicht immer ganz

einfach ist. Auch funktioniert das nicht für alle Punkte auf der Erde mit dem gleichen Ellipsoiden gleich gut.

So passt beispielsweise die blaue Ellipse überall halbwegs gut zur tatsächlichen Form der Erde (orange) aber

nirgendwo perfekt. Dieses Ellipsoid würde etwa dem WGS84 Ellipsoiden entsprechen. Die rote Ellipse

hingegen passt sehr gut im Bereich rechts oben, ansonsten allerdings nicht so gut. Die grüne Ellipse hingegen

passt überall sehr schecht mit Ausnahme eines relativ kleinen Bereichs links unten. Die blaue Ellipse passt

links unten und links oben ganz gut.

Diese Tatsache, dass die Ellipsoid nur immer für kleine Bereiche passen, ist der Grund dafür, dass es heute so

viele verschiedene Referenzellipsoide und damit auch Kartenbezugssysteme gibt. Zum einen wurden

bestehende Systeme verbessert, zum anderen verwenden verschiedene Länder und Behörden jeweils

Ellipsoide, die für Ihren Aufgabenbereich oder ihr Land im besten passen, so wie im Bild oben die rote oder

grüne Ellipse. Das Referenzellipsoid ist vom Kartenbezugssystem unabhängig, aber das Kartendatum beruht

auf einem bestimmten Referenzellipsoid.

 

GPS und Höhenangaben

Im Zusammenhang mit Ellipsoiden steht auch die Art, wie GPS-Geräte die Höhe bestimmen bzw. angeben.

Was hat es denn mit Normal Null (N.N.) auf sich und gibt es einen weltweit einheitlichen Meeresspiegel?

Höhenangaben in Deutschland beispielsweise beziehen sich auf den Amsterdamer Pegel, der mittleren

Wasserstand der Nordsee repräsentiert. Als Referenzpunkt wurde 1879 ein Normalhöhenpunkt an der

Berliner Sternwarte gewählt der mit 37,000 m über N.N. bestimmt wurde. Im Jahre 1912 wurde wegen Abriss

der Sternwarte eine neuer Bezugspunkt gewählt. Dieser liegt östlich von Berlin bei Hoppegarten und liegt

54,638 m über N.N.

Die österrreichische Landesvermessung bezieht sich hingegen auf eine Marke am Pegel von Triest (Adria). Die

schweizerische Landesvermessung auf das Mittelmeer bei Marseille. Der Referenzpunkt ist der Felsblock

"Pierre du Niton" im Genfer See mit 373,600 m über N.N. Die russische und andere osteuropäische

AK, 20.05.2023 Seite 83 document.doc

Unterschiedliche Ellipsoide passen in unterschiedlichen Gebieten der Erde

Page 84: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Landesvermessungen beziehen ihr N.N. auf den Wasserstand der Ostsee am Kronstädter Pegel in St.

Petersburg. Man sieht also, dass es weder eine in Europa noch weltweit einheitliche Meereshöhe gibt. So ist

beispielsweise der Unterschied zwischen "Null" in Deutschland und der Schweiz 27 cm und es empfiehlt sich

speziell beim Brückenbau diesen Unterschied zu beachten und richtig zu korrigieren. Siehe hier.

Unterschiede zwischen Ellipsoid, Geoid (Mittlere Meereshöhe) und der tatsächlichen Erdoberfläche.

 

Wie bereits besprochen soll das Ellipsoid ungefähr die Form der Erde widerspiegeln, ist darin jedoch durch die

Möglichkeiten der Form eines Ellipsoids beschränkt. Das Geoid gibt die Gestalt der Erde wieder, wenn sie

komplett mit Wasser bedeckt wäre und nur die Gravitation einen Einfluss auf die Höhen an jedem Punkt hätte.

Die tatsächliche Erdoberfläche unterscheidet sich hiervon mehr oder weniger stark. An Land kommen

topologische Gegebenheiten hinzu, auf den Meeren entspricht die Oberfläche im wesentlichen der

Geoidoberfläche. Lediglich der Einfluss von Gezeiten, Strömungen und Winden hat hier Abweichungen zur

Folge. Folgende Definitionen sind von Interesse:

 

Geoidhöhe Abstand des Geoids vom geodätischen Ellipsoid, außerhalb des Ellipsoids positiv.

Ellipsoidische Höhe Der Abstand eines Punktes vom Bezugsellipsoid, gemessen längs der Ellipsoidnormalen.

Orthometrische Höhe Der Abstand eines Punktes über dem Geoid gemessen längs der gekrümmten Lotlinie durch den Punkt (Höhe über dem mittleren Meeresniveau) an der Erdoberfläche. Außerhalb des Geoids liegende Höhen sind positiv.

 

GPS-Geräte bestimmen zunächst die Höhe über dem Ellipsoid (Ellipsoidische Höhe). Mit Hilfe von

Geoidinformationen, die als Raster des Geoids im Gerät eingespeichert sind, wird für die aktuelle Position das

Geoid interpoliert und dann die Höhe bezogen auf das Geoid berechnet und angezeigt. Aus dieser

Interpolation des Geoids ergeben sich leichte Unterschiede zum tatsächlichen Geoid, die aber nicht ins

Gewicht fallen, da die Höhenmessung mittels Handheld-GPS-Geräten sowieso nicht so exakt durchführbar ist.

Diese ist um etwa einen Faktor 1,5 weniger gut als die horizontalen Messungen der Position. GPS Geräte

zeigen also die Höhe über einem theoretischen Meeresspiegel für den jeweiligen Ort an, der wiederum auf

dem Meer sehr gut mit dem tatsächlichen Meeresspiegel übereinstimmen sollte.

 

Referenzellipsoide

Referenzellipsoide werden üblicherweise durch eine Haupt-halbachse (Äquatorradius) und eine Abflachung

(das Verhältnis zwischen Äquator- und Polradius) beschrieben. Andere Parameter wie die Neben-halbachse

AK, 20.05.2023 Seite 84 document.doc

Page 85: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

(Polradius) und die Exzentrizität können aus diesen Angaben berechnet werden. Damit die Abflachung nicht in

Zahlen wie 0,003... angegeben werden muss, verwendet man den Kehrwert 1/Abflachung und erhält "schöne"

Zahlen. Nachfolgende Tabelle enthält eine kleine Auswahl von Referenzellipsoiden.

 Bezeichnung Haupt-halbachse 1/Abflachung

Bessel 1841 6377397,155 299,1528128

Fischer 1968 6378150,0 298,3

International 6378388,0 297,0

WGS 60 6378165,0 298,3

WGS 66 6378145,0 298,25

WGS 72 6378135,0 298,26

WGS 84 6378137,0 298,257223563

 

Hier findet sich alle Kartenbezugssysteme aus dem Programm Geotrans (englisch) der NIMA mit Positionen

zwischen den verschiedenen Kartenbezugssystemen konvertiert werden können.

Kartendatum

Für das Kartendatum WGS 84 wird das Ellipsoid

WGS 84 unverändert übernommen, der Mittelpunkt

des Ellipsoids und der Mittelpunkt des

Koordinatensystems liegen im Schwerpunkt der Erde.

Für andere Kartendatums jedoch wird zuweilen das

Ellipsoids gegenüber dem Erdschwerpunkt

verschoben. Auf dem zweidimensionalen Bild oben

sind die Mittelpunkte der Ellispoide eingezeichnet und

man erkennt, dass sie nicht alle am gleichen Ort sind.

Auf dem Bild rechts wird dieser Sachverhalt nochmals

in 3D dargestellt. Die kleine grüne Kugel ist der

Mittelpunkt eines Referenzellipsoids, dessen Ursprung

vom Erdmittelpunkt aus verschoben ist. Nachfolgend einige Beispiele einer deratigen Verschiebung in den

drei Achsen (X, Y, Z). Das zeigt, dass selbst mit gleichem Ellipsoid zuweilen unterschiedliche Koordinaten

herauskommen können, die vom Gebiet, das die Karte zeigt abhängig sind. So basieren beispielsweise sowohl

das deutsche wie auch das schweizer Koordinatensystem auf dem Bessel 1841-Ellipsoid, das schweizer CH-

1903 Kartendatum unterscheidet sich jedoch vom Potsdam-Datum durch eine Verschiebung des

Koordintenursprungs. Nachfolgend sind noch einige Beispiele für die verschiebungen von Ellipsoide für

verschiedene Kartenbezugssysteme aufgeführt:

 

  Kartenbezugssystem Ellipsoid X Y Z Einsatzgebiet

WGS 84 WGS 84 0 0 0 weltweit

Massawa Bessel 1841 639 405 60 Äthiopien

European 1950 International 1924 -112 -77 -145 Tunesien

European 1950 International 1924 -84 -107 -120 Portugal, Spanien

 

AK, 20.05.2023 Seite 85 document.doc

Verschiebung des Ursprungs

Page 86: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Sollen Positionsangaben zwischen verschiedenen Kartenbezugssystemen umgerechnet werden ist nicht nur

die Verschiebung des Ellipsoids zu berücksichtigen sondern zudem noch die unterschiedlichen Radien der

Ellipsoide wenn die Bezugssystem auf unterschiedlichen Referenzellipsoiden beruhen. Hier sind über 200

Kartenbezugssysteme und deren Umrechnungsparameter zu WGS84 einsehbar. Dadurch kann mit jedem GPS

der Benutzerdefinierte Kartenbezugssysteme unterstützt jedes der Bezugssysteme verwendet werden.

 

Positionsverschiebung durch falsches Kartendatum

Wie wir gesehen haben, sind sehr viele Parameter daran beteiligt, bis man eine Position auf der Erde

beispielsweise in Längen- und Breitengrad angeben kann. Dementsprechend kritisch ist auch die Wahl des

richtigen Kartendatums beim Arbeiten mit dem GPS und beispielsweise die Angabe des Kartendatums bei der

Weitergabe von Koordinaten und dem Arbeiten mit Karten. Ein falsches Kartendatum kann zu Fehlern bei der

Positionsbestimmung von mehreren hundert Metern führen.

Zur Verdeutlichung folgendes Beispiel: Ein Bayer hat Freunde in aller Welt und will diese ins Hofbräuhaus

nach München einladen. Alle seine Freunde haben ein GPS-Gerät, kennen sich aber ansonsten in München

nicht aus. Er teilt den Freunden folgende Koordinaten des Hofbräuhauses mit:

N 48° 08.265'  E 11° 34.796'

 

Die Freunde geben die Koordinaten in Ihre GPS-Geräte ein und ...

finden das Höfbräuhaus nicht. Jedenfalls nicht auf Anhieb.

Warum das?

Jeder der Freunde hat sein GPS-

Gerät auf ein Kartendatum gestellt,

das er sehr häufig für die Arbeit im

eigenen Land braucht. So hat der

Schweizer CH-1903 eingestellt, der

Japaner TOKYO und der

Südafrikaner CAPE. Der Bayer

hingegen hatte WGS 84 eingestellt

(Der blaue Kreis zeigt die wahre

Position).

Beispielsweise für das

Bezugssystem TOKYO sind die

angegebenen Koordinaten um über

700 m "falsch". Dies ist

zugegebenermassen ein wenig

konstruiert, da sich

glücklicherweise vor allem beim

Arbeiten mit GPS immer mehr das

System WGS 84 durchsetzt und

meist auch gemeint ist, wenn man

nichts angibt, (die Geräte sind

üblicherweise auch so voreingestellt). Aber dennoch gilt: Bei der Angabe von Koordinaten sollte das

AK, 20.05.2023 Seite 86 document.doc

Koordinatenverschiebung durch unterschiedliche Kartendatums

Page 87: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Bezugssystem nicht vergessen werden. Es ist auch möglich, verschiedene Kartenbezugssysteme ineinander

umzurechnen, jedoch sollte man das der Einfachheit halber den GPS-Geräten (die mittlerweile fast alle

erdenklichen Systeme beherrschen) oder Computerprogrammen überlassen, weshalb dies hier nicht

besprochen wird.

 

Bei der Arbeit mit Karten, also dem Auslesen und Einzeichnen von Koordinaten aus und in Karten sollte aber

unbedingt darauf geachtet werden, das richtige Bezugssystem zu wählen. Dieses ist meist nicht WGS 84 und

sollte eigentlich irgendwo auf der Karte angegeben sein. Das ist es leider nicht immer und das Herausfinden

des verwendeten Bezugssystems gestaltet sich häufig als sehr, sehr schwierig.

Wer allerdings bei einer Wanderung nur einfach sichergehen will, dass er sein Auto an einer Position

wiederfindet, die er zu Beginn gespeichert hat, muss sich glücklicherweise hierüber keine Sorgen machen.

Im übrigen hat das Kartenbezugssystem nichts mit der Art der Angabe der Koordinaten zu tun. Das für

verschiedene Karten und Länder unterschiedliche "Grid" ist völlig unabhängiges Thema und wird hier

besprochen.

 

Links:

 

Geoinformatik-Lexikon der Universität Rostock

Seite mit Parametern der Bezugssysteme

 

Grids

"Grids" oder Kartennetze stellen eigentlich nichts anderes dar, als eine andere Schreibweise für Längen- und

Breitengrad einer Position auf der Erde. Man mag sich fragen, warum man dann nicht gleich bei Längen- und

Breitengraden bleibt.

Der Grund ist, dass die metrischen Grids einige Vorteile gegenüber dem Gradsystem haben. Dies hängt zum

Teil mit den Kartenprojektionen zusammen, mit denen die Koordinatensysteme verwendet werden. Der

Hauptgrund ist, dass ein Längengrad auf der Erde am Äquator (111 km) eine wesentlich größere Strecke in

Kilometern ist, als in Polnähe (z.B. am 48sten Breitengrad 74 km). Für eine Karte ist es günstig, wenn der

Massstab auf der ganzen Karte der gleiche ist. Dann ist aber der Abstand der Längengrade auf der Karte nicht

überall gleich. Eine einfache Mercatorprojektion erfüllt diese Bedingung für große Gebiete, wie wir am

Beispiel Grönland - Afrika im Kapitel Kartenprojektionen sehen, nicht. Hier sind nach der Projektion die

Abstände der Längengrade konstant.

Nun ist das Ausmessen oder Eintragen einer Position auf der Karte wesentlich einfacher, wenn den

Koordinaten auf der Karte ein rechtwinkliges Gitter mit gleichen Abständen zugrunde liegt. Auch

Entfernungen lassen sich so vernünftig ausmessen. Wie gesagt kann keine der einfachen Kartenprojektionen

für große Gebiete dies leisten.

Zunächst ein Beispiel für ein kleines Gebiet.

 

Swissgrid

AK, 20.05.2023 Seite 87 document.doc

Page 88: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Für kleinere Länder ist eine einfache Projektion ausreichend. Als kleines

Land gilt hier beispielsweise die Schweiz. Das schweizer

Koordinatensystem Swissgrid ergibt sich folgendermassen. Zunächst

geht man von einem Bessel-Ellipsoiden zur Beschreibung der Erde aus

(siehe Kartendatum). Über eine (winkeltreue) schiefachsige Zylinder

(Mercator) Projektion erhält man die Kartenabbildung. Die Achse des

abbildenden Zylinders liegt dabei in der Meridianebene des

Fundamentalpunkts, für den die Position der alten Sternwarte in der

Hauptstadt Bern gewählt wurde. Im Fundamentalpunkt ist die Abbildung

längentreu (Skalenfaktor=1). Die Meridianebende des

Fundamentalpunkts ist die Ebene die durch den Erdmittelpunkt und den

Längengrad von Bern beschrieben wird. Sieht man sich typische

Koordiaten des Schweizer Koordinatensystems (z.B. 616274  271397)

an, so fällt folgendes auf.

Die x-Koordinaten sind in der

ganzen Schweiz immer deutlich

größer als die y-Koordinaten und es

gibt keine negativen Werte. Dies

dient dazu, Verwechslungen

zwischen positiven und negativen

und auch zwischen den x und den y

Koordinaten zu vermeiden. Als 0,0-

Punkt wurde ein Punkt gewählt, der

weit ausserhalb der Schweiz (in der

Nähe von Bordeaux, Frankreich) liegt. Die alte Sternwarte in Bern hat exakt die Koordianten 600000  200000.

Die Koordinaten geben also die Entfernung in Metern vom "Ursprung" an. Durch die rechtwinklige Anordnung

der Koordinaten und die gleichen Abstände lassen sich leicht Koordinaten aus Karten ausmessen und in

Positionen in Karten entragen. Um sich dies zu erleichtern kann man sich leicht jeweils für Karten eines

Massstabes Schablonen zum Eintragen oder Auslesen von Koordinaten machen. Hier gibt es Beispiele dafür

(englisch).

Gauss-Krüger oder German Grid

Für größere Gebiete wird die

Verzerrung durch die einfache

transversale Mercator-Projektion zu

gross. Daher behilft man sich,

indem man nicht das gesamte

Gebiet auf einmal projeziert,

sondern immer nur kleinere

Bereiche. So basieren die amtlichen

deutschen topographischen Karten

AK, 20.05.2023 Seite 88 document.doc

Projektion für das schweizer Koordinatensystem

Schweizer Koordinatensystem

Projektion für das Gauss-Krüger oder German-Grid System

Page 89: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

darauf, dass zunächst wieder vom Bessel Ellipsoid ausgegangen wird. Anschliessend werden für die Fläche der

Bundesrepublik über transversale Mercatorprojektionen (siehe Kartenprojektionen) jeweils etwa 3 ° breite

Streifen um die Meridiane 6°, 9°, 12° und 15° projeziert. Die Streifen sind also etwa 200 km breit. Dadurch,

dass mehrere Streifen projeziert werden, wird die Verzerrung, die mit wachsendem Abstand zum

Mittelmeridian der Projektion zunimmt, minimiert. Auf der Abbildung links ist einer der projezierten Streifen

zu sehen (schwarz), rechts wie die Streifen angeordnet werden. Wie man sieht, lassen sich die Streifen nicht

nahtlos über große Flächen aneinander fügen. Diese Erfahrung macht man auch, wenn man versucht, mehrere

Karten in der Gauss-Krüger Projektion aneinander zu kleben. Im Prinzip kann man sich aber mit den Karten

wieder fast eine Kugel bauen.

Die Koordinaten selbst sind metrisch, geben also Meter oder Kilometer an. Dabei hat der Mittelmeridian einen

Rechtswert (Ost-West-Richtung) von 500000 m (dieses vorgehen ist auch bekannt als "false-easting"). Es dient

wieder dazu, negative Werte zu vermeiden. Als Hochwert wird der Abstand in Metern vom Äquator mit 0 m

gerechnet. Zur Erklärung der Koordinaten ein Beispiel: 4 392006 5328980.

Die erste Zahl gibt den Mittelmeridian an, wobei die Zahl mit 3 zu multiplizieren ist, um den tatsächlichen

Längengrad zu erhalten. In diesem Fall ist das also 12 ° (östliche Länge). Der 12. Längengrad (östlich) hätte

die Gauss-Krüger-Koordinaten 4 500000. Der oben angegebene Punkt befindet sich mit einem Rechtswert von

392006 m also 107,994 km westlich (links) vom 12 ° Längengrad. Der Hochwert gibt an, dass der Punkt sich

5328,980 Kilometer vom Äquator aus nördlich befindet. Das entspricht bei einem Erdumfang von 40000

Kilometern oder 10000 Kilometern zwischen Äquator und Nordpol also etwa knapp unter dem 48sten

Breitengrad (90 ° / 10 000 km * 5329 km = 47,9 °). Da in ganz Deutschland die Rechtswerte 6-stellig und die

Hochwerte 7-stellig sind, ist eine Verwechslung ausgeschlossen. Ein Online-Lexikon zum Thema Geoinformatik

und speziell der Gauss-Krüger-Projektion gibt es hier von der Universität Rostock.

 

UTM-Grid

Das UTM-Grid ist prinzipiell sehr ähnlich aufgebaut, wie das Gauss-Krüger-Grid. Da es für nahezu die ganze

Welt (mit Ausnahme der Polregionen) gedacht ist, ist es ebenfalls in Zonen unterteilt. Die Zentralmeridiane für

die Projektion haben einen Abstand von 6 °. Dadurch erhält man 60 Streifen (Zonen) die jeweils von 84 ° Nord

bis 80 ° Süd reichen. Die Polregionen werden demnach vom UTM-System nicht abgedeckt. Wie beim German-

Grid wird auf das Zonensystem ein rechtwinkliges Koordinatensystem gelegt.

Als Ursprung für jede Zone wird wieder der Schnittpunkt des Äquators mit dem jeweiligen Zentralmeridian

gewählt. Für Positionen auf der Nordhalbkugel ist der Rechtswert des Zentralmeridian (false easting) 500 000,

der Hochwert für den Äquator (false northing) ist 0. Für Positionen der Südhalbkugel besitzt der Äquator den

Hochwert 10000000, die Hochwerte auf der Südhalbkugel reichen also von etwa 1 000 000 bis 10 000 000, die

der Nordhalbkugel von 0 bis nahezu 10 000 000.

Zusätzlich zu den Koordinaten wird häufig noch die Zone als Zahlen-Buchstaben-Kombination angegeben. Die

60 Zonen sind in Ost-Westrichtung so eingeteilt und nummeriert, dass der Nullmeridian (Greenwich) genau

die Grenze zwischen der Zone 30 und 31 ist. Die Zonen von Süd nach Nord sind 8° hoch und werden mit

Buchstaben bezeichnet. Angefangen wird mit dem Buchstaben C von 80 ° Süd bis 78 ° Süd. Es gibt kein I und

kein O um Verwechslungen mit der 1 oder 0 zu vermeiden.

In Nordeuropa gibt es einige Besonderheiten der Zoneneinteilung. So wurde beispielsweise die Zone 32 V

etwas auf Kosten der Zone 31 V verbreitert, um Norwegen nicht unnötig in zwei Zonen zu zerschneiden. Hier

AK, 20.05.2023 Seite 89 document.doc

Page 90: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

findet sich eine Weltkarte mit allen eingezeichneten Zonen. Deutschland befindet sich in den Zonen 31, 32

und 33 (Ost-West) und T und U (Süd-Nord), die Schweiz bis auf ein sehr kleines Gebiet im Westen (3,5 x 9 km)

in Zone 32 T.

Die Koordianten des UTM Systems geben Positionen auf bis zu 1 Meter genau an. Ein Beispiel für UTM

Koordinaten sieht folgendermassen aus: 32 U 615338 5327433 (WGS84). Der Punkt liegt also in Zone 32 U,

also irgendwo zischen 6 ° und 12 ° Ost und zwischen 48 ° und 56 ° Nord. Der x-Wert ist mit 615338 Metern

um 115238 Meter größer als der Ursprung dieser Zone (9 ° Ost), also bei etwas mehr als 10 ° Ost. Den

Hochwert kennen wir so ähnlich schon vom Beispiel für die Gauss-Krüger-Koordinten.

Tatsächlich handelt es sich um den selben Punkt. Der Hochwert ist jetzt allerdings um 1547 Meter kleiner.

Zunächst scheint dies eigenartig, wo doch beide Systeme den Äquator als Ursprung für die Hochwerte haben.

Zwei Dinge sind für diese Abweichung verantwortlich. Um Verzerrungen bei der Projektion minimieren zu

können, obwohl 6 ° breite Streifen verwendet werden, wird bei der Projektion der Erde auf den Zylinder ein

Zylinder verwendet, der kleiner ist, als der Erdradius (Schnittzylinderprojektion). Dadurch wird der

Mittelmeridian verkürzt. Der Verkürzungsfaktor beträgt 0,9996. Die Entfernung eines Punktes auf dem

Mittelmeridain vom Äquator wird damit kürzer gemessen, als er wirklich ist. An den Rändern der projezierten

Streifen erhöht sich in der Äquatorregion dieser Faktor auf bis zu 1,0010. Entfernungen in UTM-Koordinaten

sind also nicht exakt auf Entfernungen im Gauss-Krüger-System zu übertragen.

Ein weiterer Grund für den Unterschied der Koordinaten ist das verwendete Ellipsoid. Bei Gauss-Krüger wird

das Bessel-Ellipsoid verwendet, bei den oben angegebenen UTM Koordinaten das WGS84 Ellipsoid.

Während das UTM-System eigentlich sehr einfach und zuverlässig zur Weitergabe von Koordinaten wirkt,

birgt es ein grosses Risiko. Ursprünglich wird für UTM Koordinaten für für Europa das Hayford-Ellipsoid

(International 1950), für Nordamerika das von Clarke 1866, für Afrika das von Clarke 1880 als Norm

verwendet. Der Warschauer Pakt verwendete das Ellipsoid von Krassowskij. Wo die Grenze zwische Europa

und Afrika bei grenznahen Koordianten liegt, bzw. nach welchem Ellipsoid Koordinaten auf Landkarten im

Zweifelsfall berechnet wurden ist nicht immer leicht zu erraten.

Gesetztes Ziel ist aber weltweit für alle UTM-Koordinaten das WGS84 Ellipsoid zu verwenden.

 

Präzision, Richtigkeit und Genauigkeit

Hier nun kurze Erläuterung der drei Begriffe Präzision, Richtigkeit und Genauigkeit. Diese Begriffe wird nicht

immer so ganz korrekt verwendet (auch auf diesen Seiten nicht) aber man sollte sich der eigentlichen

Bedeutung bewusst sein.

 

Präzision (precision)

Die Präzision ist ein Maß für die Übereinstimmung zwischen unabhängigen Messergebnissen unter festen

Bedingungen. Liegen also mehrere Messwerte dicht beieinander, so hat die Messmethode eine hohe Präzision.

Das bedeutet aber noch nicht, dass die gemessenen Werte auch richtig sind. Sie könnten präzise falsch sein.

Dies ist beispielsweise im zweiten Bild unten der Fall. Hier könnten durch einen systematischen Fehler (bei

GPS z.B. durch falsches Kartendatum) die Wert zwar sehr präzise bestimmt worden sein, aber eben

verschoben sein.

AK, 20.05.2023 Seite 90 document.doc

Page 91: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

Richtigkeit (trueness, accuracy of the mean)

Die Richtigkeit ist ein Maß für die Übereinstimmung zwischen dem aus einem großen Datensatz erhaltenen

Mittelwert und dem anerkannten Referenzwert. Wenn also der Mittelwert aus vielen Messungen gut dem dem

wahren Wert übereinstimmt, so ist die Richtigkeit hoch. Dies sagt nichts darüber aus, wie stark die einzelnen

Werte streuen.

 

Genauigkeit (accuracy)

Der Begriff Genauigkeit wird (fälschlicherweise) häufig mit Präzision gleichgesetzt. Die Genauigkeit ist ein Maß für die Übereinstimmung zwischen dem (einzelnen) Messergebnis und dem wahren Wert der Messgröße. Eine hoher Genauigkeit kann man also nur erreichen, wenn sowohl die Präzision als auch die Richtigkeit gut sind.

Unterschied zwischen Präzision und Richtigkeit. Nur im ersten Fall erhält man auch eine hohe Genauigkeit.

 

 

Die Erdatmosphäre

Vertikaler Aufbau der Atmosphäre

AK, 20.05.2023 Seite 91 document.doc

Page 92: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 Aufbau der Atmosphäre (Quelle unbekannt)

 

Troposphäre

Die Troposphäre reicht bis in 10 - 12 km Höhe. In ihr spielen sich alle wetterrelevanten Phänomene, wie z.B.

die Wolkenbildung, ab. Physikalisch ist sie durch eine mittlere stetige Temperaturabnahme mit zunehmender

Höhe gekennzeichnet. Die obere Grenze der Troposphäre ist die Tropopause. Die Lage der Tropopause ist

stark von der geographischen Breite und der Jahreszeit abhängig. Sie erreicht ihr Maximum von 17 - 18 km

über den Tropen. Über den Polen beträgt sie nur ca. 8 km. Die Troposphäre enthält 80 % der Masse der

gesamten Atmosphäre. Die Troposphäre enthält auch fast den gesamten Wassersampf der Atmosphäre. In

ihrer untersten Schicht, der 1 - 2,5 km mächtigen planetarischen Grenzschicht bewirtk der Einfluß der

Erdoberfläche starke Veränderungen der meteorologischen Parameter Temperatur, Wind und Feuchtigkeit. In

der Höhe der Tropopause liegt die Temperatur bei etwa -60 °C. Hier treten auch die sogenannten

Strahlströme (engl. jet streams) als relativ schmale Bänder mit sehr hohen Windgeschwindigkeiten (bis

500 km/h) auf. Im Bereich dieser Strahlströme laufen ständig wichtige Prozesse ab, die zu einer vertikalen

Aufspaltung, Auflösung oder Neubildung der Tropopause führen.

 

Stratosphäre

AK, 20.05.2023 Seite 92 document.doc

Page 93: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 Ozongehalt in derAtmosphäre (Quelle unbekannt)

Die Stratosphäre (12 - 50 km) schließt nach oben an die Troposphäre an. Charakteristisch ist der deutliche

Anstieg der Ozonkonzentration mit einem Maximum in etwa 30 km Höhe. Auch die Temperatur steigt in dieser

Sphäre wieder an und liegt in 50 km Höhe bei ca. 0°C. Diese Erwärmung wird wesentlich durch das Ozon

verursacht, welches der kurzwelligen Anteil der Sonnenstrahlung absorbiert. Deshalb ist die Ozonschicht für

das Leben auf der Erde von größter Wichtigkeit. Die Stratosphäre ist praktisch wolkenfrei, da wegen der

extrem niedrigen Temperaturen in der Tropopause auch der Transport von Wasserdampf aus der Troposphäre

in die Stratosphäre so gering ist, dass die Stratosphäre praktisch keinen Wasserdampf enthält. Die

Stratosphäre läßt sich in eine untere Stratosphäre unterteilen, die eine gleichbleibende Temperatur von -56 °C

besitzt und einer oberen Stratosphäre oberhalb von 20 km Höhe. Hier steigt infolge der Strahlungsabsorption

die Temperatur bis auf durchschnittlich 0 °C an. Wegen dieses Temperaturanstiegs mit der Höhe

(vergleichbar mit einer Inversionswetterlage), finden Vertikalbewegungen nur sehr begrenzt statt. In den

unteren 30 km der Atmosphäre konzentrieren sich nahezu 99% der gesamtem Masse der Atmosphäre.

 

Mesosphäre

Die Mesosphäre (50 - 85 km) ist wieder durch eine stetige Temperaturabnahme gekennzeichnet, die ihr

Minimum mit fast -100 °C in ca. 80 km Höhe erreicht. Dies ist gleichzeitig die obere Grenze der Mesosphäre.

 

Thermosphäre

In der Thermosphäre (85 - 500 km) lassen sich wegen der geringen Teilchendichte praktisch keine

Temperaturen sondern nur Strahlungsenergien bestimmen.

 

Exosphäre

Die Exosphäre (> 500 km) schließt sich je nach Definition in 500 - 1000 km Höhe an. Hier ist der Druck bereits

so niedrig, daß von einem Vakuum gesprochen werden kann.

 

Andere Gliederungsmöglichkeiten

AK, 20.05.2023 Seite 93 document.doc

Page 94: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Neben der obigen Differenzierung, die auf dem Temperaturgradienten beruht, kann je nach Betrachtung der

Atmosphäre auch eine Einteilung nach anderen Kriterien gefunden werden.

Der Grad der Ionisierung gliedert die Atmosphäre in die Neutrosphäre, die sich vom Boden bis in etwa 80 km

Höhe erstreckt, die Ionosphäre von 80 - 1000 km und die Protonosphäre. Oberhalb der Stratosphäre gibt es

kein Ozon, daß die energiereiche Strahlung der Sonne absorbieren könnte, daher stellt sich in

charakteristischen Schichtungen ein hoher Ionisierungsgrad ein, die Ionosphäre wird in D (80 - 100 km), E

(um 100 km) und F-Schichten (F1: 150 - 250 km; F2: 250 - 500 km) unterteilt, die insbesondere in der

Nachrichtentechnik eine wichtige Rolle spielen, da an diesen Schichten Radiowellen (Kurzwelle) reflektiert

werden. Darüber, schon in der Exosphäre, findet man nur noch ionisierte Wasserstoffatome, also Protonen, die

dieser Sphäre ihren Namen geben.

Die Zusammensetzung der Atmosphäre ist ein weiteres Unterscheidungskriterium. Die untere Atmosphäre ist

bis auf wenige Ausnahmen gut durchmischt und wird daher als Homosphäre bezeichnet. In der Homosphäre

befindet sich die überwiegende Masse der Atmosphäre, nämlich über 100 000 mal so viel wie in dem gesamten

darüber liegenden Teil der Gashülle. Ab etwa 80 bis 100 km Höhe erfolgt eine Ausrichtung nach dem

Molekulargewicht, mit dem Höchsten unten und dem Niedrigsten oben. Diesen Bereich nennt man

Heterosphäre.

Die Reibung in der Atmosphäre ist ebenfalls ein Unterscheidungsmerkmal. Es wird die Peplosphäre von der

freien Atmosphäre unterschieden. Die Peplosphäre reicht je nach Orographie bis in ca. 2 km Höhe. Bekannter

ist die Bezeichnung Grenzschicht, oder englisch boundary-layer.

 

Die Zusammensetzung der Atmosphäre

Die atmosphärische Luft der Erde ist ein Gasgemisch mit den Hauptbestandteilen Stickstoff, Sauerstoff, Argon

und Kohlendioxid. Weiterhin sind Spuren der Edelgase Helium, Neon, Krypton und Xenon enthalten. Bis zu

einer Höhe von rund 20 km ist fast stets Wasserdampf in stark schwankenden Anteilen (bis zu 4 Vol.-%) in der

Luft enthalten.

 Mittlere Zusammensetzung von trockener

Luft in der TroposphäreVolumenanteil in % in ppm (parts per million)

Anteile pro Million

Stickstoff 78,08      780 800    Sauerstoff 20,95      209 500    Argon 0,934          9340    Neon 0,0018    18    Helium 0,0005    5    Krypton 0,0001    1    Xenon 0,000009  0,09 Kohlendioxid 0,035     350    Methan 0,00017   1,7  Distickstoffmonoxid 0,00003   0,3  Kohlenmonoxid* 0,00002   0,2  Wasserstoff 0,00005   0,5  

*Kohlenmonoxid zeigt starke zeitliche Schwankungen

AK, 20.05.2023 Seite 94 document.doc

Page 95: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

Weiterhin enthält die Atmosphäre noch Spurengase wie Schwefel- und Stickstoffbverbindungen

(Schwefeldioxid, Ammoniak, Stickstoffmonoxid, Stickstoffdioxid), Ozon, organische Halogenverbindungen und

in der Atmosphäre erzeugte Radikale. Die Lufthülle enthält außerdem noch feste und flüssige Teilchen

unterschiedlicher Natur und Herkunft als Schwebeteilchen, Staubpartikel und Aerosole.

Der Anteil Wasser in der Atmosphäre, der wie gesagt bis zu 4 % beträgt, kommt in allen Aggregatzuständen in

der Atmosphäre vor. Bis zu 80 % der Gesamtmenge des Wassers in der Atmosphäre sind unterhalb von 3000 m

Höhe. In der Stratosphäre fehlt Wasser mit 1 - 10 ppb (parts per billion; Anteile pro Milliarde). Trotz dieser

vergleichsweise geringen Mengen spielt das Wasser in der Atmosphäre eine besonders wichtige Rolle. Infolge

von Phasnewechsel zwischen gasförmig, flüssig und fest ist es an Energieumsetzungen und damit auch an der

Wetterentwicklung wesentlich beteiligt. Auf Grund der Adsorptipnseigenschaften im Infrarotbereich ist

Wasser für die Erwärmung der Erdatmosphäre von grosser Bedeutung.

 

Die Funktionen der Atmosphäre

o Schutz der Lebewesen vor schädlicher bzw. tödlicher Strahlung aus dem Weltraum (Filter für

UV- und Röntgenstrahlung der Sonne).

o Durchlassen von lebenswichtigem Sonnenlicht zu den Oberflächen der Kontinente und Ozeane

(Energiequelle).

o Schutz vor schneller Auskühlung und Überhitzung (z.B. Wärmeausgleich zwischen Tag und

Nacht).

o Ermöglicht eine durchschnittliche Erdoberflächentemperatur von ca. + 15 °C anstatt -18 °C.

o Transport von Energie (fühlbare Wärme der Luft und latente Wärme des Wasserdampfs) aus

Bereichen in Äquatornähe in mittlere und höhere Breiten.

o Transport von Wasserdampf-Feuchtigkeit durch die dynamischen Prozesse der allgemeinen

Zirkulation, wodurch die Niederschlagsverteilung bestimmt wird.

o Hauptspeicher für Stickstoff (Für Pflanzen wichtig).

o Reservoir für Kohlendioxid und Sauerstoff.

o Ist einbezogen in verschiedene lebensnotwendige Stoffkreisläufe.

o Verteilung und Abbau (Oxidation, Reaktionen mit Radikalen, Photolyse) von natürlichen und

anthropogenen (durch Menschen verursachte) Emissionen.

o Schutz vor kleineren Meteoriten, die wegen der großen Reibung beim Eintritt in die Atmosphäre verglühen und die Erdoberfläche nicht erreichen.

AK, 20.05.2023 Seite 95 document.doc

Page 96: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 Die schützende Atmosphäre ist im Vergleich zum Durchmesser der Erde nur hauchdünn (Quelle unbekannt) .

 

Nordpol

Geografischer Nordpol

Der geografische Nordpol ist der Punkt, an dem die gedachte Erdachse die Erdoberfläche durchstößt. Es ist

der Schnittpunkt aller Längengrade und die geografische Position N 90 ° 0,0 ' E 0 ° 0,0 ' (Eigentlich es gibt

keinen bzw. alle Längengrade an dieser Position). Siehe auch die Seite "Längen- und Breitengrade".

 

Magnetischer NordpolMit dem magnetischen Nordpol wird meist der

Magnetpol bezeichnet, der sich in der Nähe des

geografischen Nordpols befindet. Tatsächlich sollte

dieser aber als magnetischer Südpol bezeichnet

werden, da sich der Nordpol eines Magneten (z.B. der

eines Kompass) zu diesem hin ausrichtet und sich

bekanntlich entgegengesetzte Pole anziehen. Dieser

Nordmagnetpol ist also der Punkt, an dem die

Magnetfeldlinien, ausgehend vom magnetischen Pol

im Süden zusammenlaufen. Die Magnetfeldlinien der

Erde "sehen" im wesentlichen aus, wie die eines

grossen Stabmagneten. Die magnetischen Pole selbst

wandern abhängig von der Stärke der Sonnenaktivität

von Tag zu Tag um bis zu 80 km. Insgesamt gesehen

wandert der Nordpol momentan langsam durch den

Norden Kanadas. Nachdem der magnetische Pol lange Zeit Richtung Süden gewandert war, wandert er seit

etwa 1900 wieder in Richtung geografischem Norpol. Das langfristige Wandern des Pols hängt mit den

geologischen Aktivitäten im Erdinneren zusammen und läßt sich recht gut über einige Jahre voraussagen.

Missweisung

AK, 20.05.2023 Seite 96 document.doc

Wanderung des Nordmagnetpols über die Jahrhunderte (Quelle)

Page 97: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Aufgrund dieser Tatsache, dass der

magnetische Pol im Norden nicht

mit dem geografischen Nordpol

übereinstimmt und auch sonst die

Magnetfeldlinien nicht sehr ideal

verlaufen, zeigt der Kompass fast

nirgendwo exakt nach Norden,

sondern je nachdem, wo man sich

befindet mehr nach Osten oder

mehr nach Westen. Dies kann in

einzelnen Gebieten Abweichungen

von bis zu 180 ° ausmachen, der

Kompass zeigt dann also nach

Süden.

Da diese Missweisung (Deklination)

vor allem für die Schiffahrt von

großer Bedeutung ist oder

zumindest war, werden auch vor allem hier sogenannte Isogonenkarten verwendet, in die die Missweisung für

das befahrene Gebiet eingetragen ist.

Hier (englisch) gibt es die Möglichkeit, sich online die Kompassmissweisung berechnen zu lassen und

nachfolgendes Bild zeigt eine Isogonenkarte der Welt für das Jahr 2002. Da sich diese Missweisung über die

Jahre verändert, ist es wichtig, zu wissen, für wann die Werte, die in einer Karte

eingetragen sind auch gelten.

Häufig findet man auch in normalen Karten einen Hinweis auf die mittlere Missweisung im abgebildeten

Gebiet. Dabei wird häufig die Missweisung in zwei Teile aufgeteilt. Zum einen wie stark das verwendeten

Kartengitter (Grid) vom tatsächlichen Norden (TN) abweicht und weiterhin die Kompassabweichung vom

tatsächlichen Nordpol. Das Bild rechts zeigt, wie diese Angaben aussehen können. Der Winkel zwischen

Norden und dem Gitternetznorden beträgt in diesem Beispiel 0° 32' W, die Deklination des Kompass in diesem

Gebiet 13° 44' W. Für Mitteleuropa ist die Deklination nahe bei Null und nimmt bis mindestens zum Jahr 2005

AK, 20.05.2023 Seite 97 document.doc

Isogonenkarte für 2002 (Link zur Berechnung eigener Karten)

Angabe der Deklination auf Karten.

Page 98: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

noch weiter ab.

Norden und GPS-Geräte

Bei modernen GPS-Geräten hat man die Möglichkeit zwischen verschiedenen "Norden" zu wählen. Wie in

obiger Zeichung gibt es ein wahres Norden (true north), das die Richtung zum Breitengrad N 90° weist. Das

ist sozusagen für das GPS-Gerät das naheliegende Norden (eigentlich das einzige, dass er selbst kann). Dann

gibt es das magnetische Norden, das ist entsprechend für einen Kompass das naheliegende Norden. Arbeitet

man mit einer Kombination aus Kompass und GPS, so ist man zuweilen froh, wenn man den GPS entsprechend

auf magnetisch Norden (magnetic north) umstellen kann. Dazu hat der GPS eine vereinfachte Isogonenkarte

gespeichert und korrigiert entsprechend die Missweisung, nur andersherum. Manche GPS-Geräte haben auch

zusätzlich einen Magnetkompass eingebaut (damit sie die Richtung auch im Stillstand anzeigen können). Das

Gitternetz-Norden (grid north) ist schliesslich noch eine Option, auf die man viele GPS-Geräte einstellen kann.

Die erleichtert das Abgleichen zwischen Karte und angezeigter Richtung am GPS. Normalerweise ist die

Einstellung auf wahres Norden empfehlenswert, da weiss man dann auch wie man dran ist und muss sich

keine Gedanken um die Missweisung zu machen.

 

Sternzeit

Die Sternzeit wird aus der Umdrehung der Erde gegenüber dem Hintergrund der in großer Entfernung

stehenden Sterne abgeleitet, kann also aus nächtlichen Beobachtungen des Sternenhimmels bestimmt werden.

Einen Sterntag definiert man in erster Näherung als die Zeitspanne zwischen zwei aufeinanderfolgenden

Meridiandurchgängen eines Sterns. Dabei ist der Meridian eines Beobachtungsortes der Großkreis auf der

Himmelskugel, der durch die beiden Himmelspole und durch den Zenit des Beobachtungsortes geht. Anders

ausgedrückt ist der Meridian der vom Erdmittelpunkt aus auf die Himmelskugel projizierte Längenkreis des

Beobachtungsortes. Der Meridiandurchgang ist daher die präzisierte Festlegung des Zeitpunktes, zu dem

umgangssprachlich "der Stern genau im Süden steht" (zumindesten für Beobachter auf der Nordhalbkugel der

Erde). Die Dauer eines Sterntages in Einheiten der Weltzeit beträgt 23h 56m 04,0905 s.

 

Bestimmung der Länge des Sterntags

Um die Länge eines Sterntages präziser zu definieren und auch um für die Sternzeit einen Nullpunkt der

Zeitzählung festlegen zu können, müssen zunächst die Begriffe 'Stundenwinkel', 'Ekliptik', 'Himmelsäquator'

und 'Frühlingspunkt' erläutert werden. Durch einen beliebigen Punkt des Himmels -- z.B. den Ort eines Sterns

-- und die beiden Himmelspole läßt sich eindeutig ein weiterer Großkreis festlegen, der im allgemeinen nicht

mit dem Meridian zusammenfällt, sondern diesen an den Himmelspolen schneidet. Der Schnittwinkel wird als

Stundenwinkel bezeichnet. Er wird allerdings üblicherweise nicht im Gradmaß angegeben, sondern in

Stunden, Minuten und Sekunden (daher der Name). Der Vollkreis von 360 Grad entspricht dabei exakt 24

Stunden. Infolge der Erdrotation wächst der Stundenwinkel während eines Sterntages um 24 Stunden.

 

Himmelsäquator und Frühlingspunkt

Der Himmelsäquator ist die Menge aller Punkte der Himmelskugel, die 90 Grad von beiden Himmelspolen

entfernt sind, oder auch der vom Erdmittelpunkt her an die Himmelskugel projizierte Erdäquator. Die Ekliptik

AK, 20.05.2023 Seite 98 document.doc

Page 99: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

ist die Bahn, die die Sonne im Laufe eines Jahres zwischen den Sternen zieht. Himmelsäquator und Ekliptik

fallen nicht zusammen (eine Folge der Schrägstellung der Erdachse), sondern schneiden sich in zwei Punkten,

deren einer als Frühlingspunkt bezeichnet wird.

 

0 Uhr Sternzeit

Als 0 Uhr Sternzeit wird nun der Meridiandurchgang des Frühlingspunktes definiert, was sich verallgemeinern

läßt zur Feststellung: 'Die Sternzeit ist der Stundenwinkel des Frühlingspunktes.' Der Frühlingspunkt ist

natürlich ein fiktiver Punkt auf der Himmelskugel und läßt sich deshalb nicht direkt beobachten. Aus den

bekannten Koordinaten beobachteter Sterne kann aber auf die Lage des Frühlingspunkts geschlossen werden.

Aus dem oben gesagten wird auch deutlich, daß ein Sterntag die Zeitspanne zwischen zwei

Meridiandurchgängen des Frühlingspunktes ist. Nach dieser endgültigen Definition ist der Sterntag um rund

9 Millisekunden kürzer als nach der eingangs vorgestellten Definition, eine Folge der Tatsache, daß der

Frühlingspunkt sich wegen der Präzession der Erdachse gegenüber den Sternen verschiebt.

Wegen des Bezugs auf den Meridian führt die obige Definition zu einer Sternzeit, die ortsabhängig ist. Um auf

eine weltweit einheitliche Sternzeit zu kommen, bezieht man sich auf den Meridian von Greenwich und

bezeichnet die so erhaltene Zeitskala als 'Greenwich Mean Siderial Time' (GMST). Um zwischen GMST und

der lokalen Sternzeit umrechnen zu können, muß die geographische Länge des Beobachtungsortes bekannt

sein.

 

Bedeutung der Sternzeit

Die Bedeutung der Sternzeit liegt zum einen in der Möglichkeit, aus ihr und den Koordinaten eines Sternes

(speziell der Rektaszension) den Stundenwinkel und damit die momentane scheinbare Position des Sternes zu

errechnen (die sich ja wegen der Erdrotation ständig ändert). Zum anderen bildet die Sternzeit eine der

Grundlagen der Weltzeit UTC.

 

(Dieser Text wurde mit freundlicher Genehmigung von Chris   Kronberg von der Webseite http://www.maa.mhn.de/Scholar/dt_times.html übernommen, auf der es noch interessante weitergehende Informationen zur astronomischen Zeitmessung gibt. Der Autor dieses Textes ist Dirk   Husfeld .)

 

NMEA-0183 Daten

Worum es sich dabei handelt

Die NMEA (National Marine Electronics Association, Nationale Vereinigung für Marineelektronik) engagiert

sich für die Ausbildung und den Fortschritt der Marine-Elektronikindustrie und dem Markt, den diese bedient.

Es handelt sich dabei um eine nicht auf Profit ausgelegte Vereinigung von Herstellern, Vertreibern,

Ausbildungsinstitutionen und anderen mit Interesse an diesem Markt (frei aus "NMEA News"). Genaueres

über die NMEA findet sich hier (englisch).

 

Wozu die Daten gut sind

Mit Hilfe der weitestgehend standardisierten NMEA-Daten gelingt es sehr leicht, die Daten praktisch jedes

GPS-Geräts mit einem Navigations- und Kartenprogramm auf dem PC, Laptop oder Handheld zu verwenden.

AK, 20.05.2023 Seite 99 document.doc

Page 100: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Sogenannte GPS-Mäuse (GPS-Empfänger ohne Display nur mit serieller Schnittstelle) kommunizieren

ausschliesslich auf diese Art mit Ihrer Aussenwelt. In der Seefahrt werden Kursplotter und ähnliches mit Hilfe

von NMEA-Datensätzen mit Positionsdaten versorgt.

 

Das Protokoll NMEA-0183

Die NMEA hat nun unter anderem den Standard NMEA-1083 definiert, um einen Datenaustausch zwischen

verschiedenen Geräten aus der Marineelektronik zu ermöglichen. Die NMEA-0180,0182 und 0183 Standards

(die ersten beiden sind nicht mehr von Bedeutung) sehen pro "Netz" ein Sendegerät und diverse

Empfangsgeräte vor. Der Sender soll Daten nach dem RS-232-Standard (vom PC als Datenformat der COM-

Schnittstellen bekannt) ausgeben. Die Datenrate beträgt 4800 baud (ca. 600 bytes/Sekunde) und es ist in

diesem Standard kein Stecker oder ähnliches definiert. Die Anschlussart bleibt also dem Hersteller überlassen,

weswegen alle Geräte unterschiedliche Stecker benötigen.

Die Einschränkung, dass es nur einen Sender geben darf sorgt dafür, dass nicht wild durcheinandergequatscht

wird. Sollen die Daten von mehreren Geräten zusammengefasst werden, braucht man mindestens ein Gerät,

dass auch als Empfänger arbeitet und alle erhaltenen Daten in einen neues "Netz" wieder kombiniert

einspeist.

 

Die Daten werden im ASCII-Format (American Standard Code for Information Interchange, Amerikanischer

Standard Code für Informationsaustausch) übertragen. Dabei sind alle druckbaren Zeichen sowie Carriage-

Return (CR, Waagenrücklauf) und Line-Feed (LF, Neue Zeile) erlaubt und die Daten werden in der Form von

Sätzen übertragen. Jeder dieser Sätze beginnt mir dem Zeichen "$", einer zwei Zeichen langen

Senderkennung, einer drei Zeichen langen Satzkennung und dann folgt eine Reihe von Datensätzen, die mit

Kommas unterteilt werden. Schliesslich wird der Satz mit einer optionalen Prüfsumme und einer CR/LF

abgeschlossen. Jeder Satz kann inklusive des führenden "$" und den beiden CR/LF bis zu 82 Zeichen

enthalten. Ist ein Datenfeld in einem Satz zwar vorgesehen aber nicht verfügbar, so wird er einfach

weggelassen, das dazugehörige Komma zur Trennung der Datensätze wird aber ohne Leerzeichen beibehalten.

Durch Zählen der Kommas kann ein Empfänger dann aus jeden Satz die entsprechenden Informationen richtig

zuordnen.

Die meist optionale Prüfsumme besteht aus einem "*" und zwei Hexadezimalzahlen, die sich durch ein

(bitweise) exklusiv-oder (1+1=0, 1+0=1, 0+0=0) aller Zeichen zwischen dem "$" und dem "*" berechnen. Bei

manchen Sätzen ist die Prüfsumme notwendig.

Der Standard erlaubt weiterhin einzelnen Herstellern eigene (proprietäre) Satzformate. Diese fangen mit "$P"

an, gefolgt von der drei Buchstaben langen Herstellerkennung. Anschliessend folgen die Daten.

Einige gängige Senderkennung sind:

 GP GPS Empfänger

LC Loran-C Empfänger (älteres Positionsbestimmungssystem)

OM Omega Navigations Empfänger (altes Radionavigationssystem; ausser Betrieb)

II Integrated Instrumentation (z.B. AutoHelm Seatalk System; Autopiloten)

 

Die Datensätze der unterschiedlichen Geräte können sehr viele verschiedene Informationen beinhalten,

darunter Position, Geschwindigkeit, Richtung, Wassertiefe, Wassertemperatur, Wegpunkte,

Windgeschwindigkeit usw.

 

AK, 20.05.2023 Seite 100 document.doc

Page 101: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Nachfolgend sollen beispielhaft die Daten, die ein Garmin etrex Vista ausgibt näher beschrieben werden. Ein

praktisches Programm um sich unter anderem NMEA-0183 Daten anzusehen ist Visual-GPS.

Wichtig ist, dass das Datenformat des GPS auf NMEA umgestellt wird (heisst beim Vista genau: NMEA

In/NMEA Out). Die Daten werden dann einmal alle zwei Sekunden über die Schnittstelle ausgegeben. Viele

PC-Navigations- und Kartenprogramme mit Anschlussmöglichkeit für GPS-Empfänger erwarten im übrigen

auch das NMEA-Format zur Navigation. Funktioniert das Zusammenspiel zwischen GPS und einem PC-

Programm nicht, sollte man also sowohl kontrollieren, ob man den GPS an der richtigen seriellen Schnittstelle

(COM1 oder COM2) angeschlossen hat, als auch überprüfen, ob das Ausgabeformat am GPS auf NMEA

eingestellt ist.

Ein kompletter Block Daten sieht dann beispielsweise beim Garmin etrex Vista (Software Version 2.41)

folgendermassen aus:

 

$GPRMC,191410,A,4735.5634,N,00739.3538,E,0.0,0.0,181102,0.4,E,A*19$GPRMB,A,9.99,L,,Exit,4726.8323,N,00820.4822,E,29.212,107.2,,V,A*69$GPGGA,191410,4735.5634,N,00739.3538,E,1,04,4.4,351.5,M,48.0,M,,*45$GPGSA,A,3,,,,15,17,18,23,,,,,,4.7,4.4,1.5*3F$GPGSV,2,1,08,02,59,282,00,03,42,287,00,06,16,094,00,15,80,090,48*79$GPGLL,4735.5634,N,00739.3538,E,191410,A,A*4A$GPBOD,221.9,T,221.5,M,Exit,*6B$GPVTG,0.0,T,359.6,M,0.0,N,0.0,K*47$PGRME,24.7,M,23.5,M,34.1,M*1D$PGRMZ,1012,f*36$PGRMM,WGS 84*06$HCHDG,170.4,,,0.4,E*03$GPRTE,1,1,c,*37

 

Wenn die Navigation mit einer Route aktiviert wurde, können noch weitere Sätze hinzukommen, die die Route

beschreiben. Interessant ist auch, dass anscheinend je nach leicht Softwareversion unterschiedliche

Datensätze ausgegeben werden.

Nachfolgend sind noch einige Datensätze im einzelnen aufgeschlüsselt:

Der GPRMC-Datensatz (RMC = recommended minimum sentence C, empfohlener Minimumdatensatz) ist eine

Empfehlung für das Minimum, was ein GPS-Empfänger ausgeben soll.

 

$GPRMC,191410,A,4735.5634,N,00739.3538,E,0.0,0.0,181102,0.4,E,A*19       ^      ^ ^           ^            ^   ^   ^      ^     ^ ^       |      | |           |            |   |   |      |     | |       |      | |        |            |   |   |      |     | Prüfsumme       |      | |           |            |   |   |      |     |       |      | |           |            |   |   |      |     Modus (A,D,E,N,S)       |      | |           |            |   |   |      |       |      | |           |            |   |   |      magnetische       |      | |           |            |   |   |      Deklination 0.4° E       |      | |           |            |   |   |       |      | |           |            |   |   Datum: 18.11.02       |      | |           |            |   |        |      | |           |            |   wahrer Kurs (ohne Bewegung 0)       |      | |           |            |        |      | |           |            Geschwindigkeit über Grund (Knoten)       |      | |           |       |      | |           007° 39.3538' östliche Länge       |      | |        |      | 47° 35.5634' nördliche Breite       |      |       |      Empfängerwarnung, A = Daten OK, V = Warnung       |       Uhrzeit der Positionsbestimmung: 19:14:10 UTC-Zeit

 

AK, 20.05.2023 Seite 101 document.doc

Page 102: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Das Datenfeld Modus ist erst in NMEA Version 2.3 eingeführt worden und kann sein: A = Autonom; D =

Differentiell; E = geschätzt (Estimated); N = ungültig (Not valid); S = Simulator

 

Der GPGGA-Datensatz enthält die wichtigsten Informationen zur GPS-Position und Genauigkeit.

 

$GPGGA,191410,4735.5634,N,00739.3538,E,1,04,4.4,351.5,M,48.0,M,,*45       ^      ^           ^            ^ ^  ^   ^       ^            |      |           |            | |  |   |       |           |      |           |            | |  |   |       Höhe über dem       |      |           |            | |  |   |       Ellipsoid (WGS84)       |      |           |            | |  |   |       in Metern (48.0,M)       |      |           |            | |  |   | |      |           |            | |  |   Höhe über Meer (über Geoid)       |      |           |            | |  |   in Metern (351.5,M)       |      |           |            | |  |       |      |           |            | |  HDOP (horizontal dilution       |      |           |            | |  of precision) Genauigkeit       |      |           |            | |       |      |           |            | Anzahl der erfassten Satelliten       |      |           |            |        |      |           |            Qualität der Messung       |      |           |            (0 = ungültig)       |      |           |            (1 = GPS)       |      |           |            (2 = DGPS)       |      |           |            (6 = geschätzt nur NMEA-0183 2.3)       |      |           |        |      |           Längengrad       |      |       |      Breitengrad        |       Uhrzeit

 

Der GPGSA-Datensatz (SA=satellites active, aktive Satelliten) enthält Informationen über die PRN-Nummern

der Satelliten, deren Signale zur Positionsbestimmung verwendet werden.

 

$GPGSA,A,3,,,,15,17,18,23,,,,,,4.7,4.4,1.5*3F       ^ ^ ^                   ^   ^   ^       | | |                   |   |   |       | | |                   |   |   VDOP (vertikale Genauigkeit)       | | |                   |   |       | | |                   |   HDOP (horizontale Genauigkeit)       | | |                   |       | | |                   PDOP (Genauigkeit)       | | |       | | PRN-Nummern von maximal 12 Satelliten       | |       | Art der Positionsbestimmung (3 = 3D-fix)       |                             (2 = 2D-fix)       |                             (1 = kein Fix)       |       Auto-Auswahl 2D oder 3D Bestimmung

 

Der GPGSV-Datensatz (SV=satellites in view, sichtbare Satelliten) enthält Informationen über Satelliten, die

zur Zeit möglicherweise empfangen werden können und Informationen zu deren Position, Signalstärke usw.

Da pro Satz nur die Informationen von vier Satelliten übertragen werden können (Beschränkung auf 82

Zeichen), kann es bis zu drei solche Datensätze geben.

 

$GPGSV,2,1,08,02,59,282,00,03,42,287,00,06,16,094,00,15,80,090,48*79

 

AK, 20.05.2023 Seite 102 document.doc

Page 103: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Der GPGLL-Datensatz ist ein Überbleibsel aus der Zeit, als es nur LORAN-C als Navigationssystem gab und

enthält die geographische Position. Das GPS-Gerät emuliert sozusagen den LORAN-C Empfänger.

 

$GPGLL,4735.5634,N,00739.3538,E,191410,A,A*4A

 

Der GPBOD-Datensatz gibt Informationen zur Richtung vom Startpunk zum Zielpunkt an. Der Kurs wird als

wahrer (T=true) und magnetischer (M=magnetic) Kurs zum benannten Zielpunkt (hier 'Exit', da keiner

angegeben ist) ausgegeben.

 

$GPBOD,221.9,T,221.5,M,Exit,*6B

 

Der GPVTG-Datensatz enthält Daten zur Bewegungsgeschwindigkeit und Richtung.

 

$GPVTG,0.0,T,359.6,M,0.0,N,0.0,K*47       ^     ^       ^     ^       |     |       |     |       |     |       |     Geschwindigkeit über Grund in km/h (K)       |     |       |       |     |       Geschwindigkeit über Grund in Knoten (N)       |     |             |     Kurs (magnetisch, M)            |       Kurs (wahr, T)

 

Die folgenden drei Datensätze sind Garmin-eigene Datensätze, was die Kürzel P (proprietary) und GRM

(Garmin).

Der PGRME-Datensatz enthält den geschätzen Fehler der horizontalen und vertikalen Position. Die Angaben

sind jeweils in Meter. Der erste Wert ist der horizontale, der zweite der vertikale und der dritte ein

sphärischer Fehler (Kugelradius einer "Fehlerkugel").

 

$PGRME,24.7,M,23.5,M,34.1,M*1D

 

Der PGRMZ-Datensatz enthält die Höhe in Fuss.

 

$PGRMZ,1012,f*36

 

Der PGRMM-Datensatz enthält das verwendete horizontale Datum. Zu beachten ist, dass die

Positionsangaben aus den Navigationsdatensätzen sich auf das hier angegebene Datum beziehen.

 

$PGRMM,WGS 84*06

 

AK, 20.05.2023 Seite 103 document.doc

Page 104: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Der HCHDG-Datensatz enthält Angaben vom Magnetkompass, den nur wenige GPS-Geräte besitzen (vista,

summit, GPS76s). Es sind Daten zur Richtung (170.4°) und Deklination (auch als 'deviation' bezeichnet;

Abweichung von magnetisch Nord zu wahrem Nord, siehe auch hier).

 

$HCHDG,170.4,,,0.4,E*03

 

Der GPRTE-Datensatz schliesslich enthält Angaben zur programmierten Route. Zum Zeitpunkt des angebenen

Datenblocks war keine Route definiert, ansonsten würde der Satz wesentlich mehr Informationen enthalten.

 

$GPRTE,1,1,c,*37

 

Andere GPS-Geräte enthalten teilweise andere herstellerspezifische Datensätze, die für die Position

wichtigsten sind jedoch immer enthalten.

 

Detailliertere Informationen zur NMEA-0183 Datenstrutur findet sich hier (englisch).

 

Stecker für Garmin GPS

Für die Verbindung der GPS-Geräte mit einem Computer werden Kabel benötigt. Während bei manchen

Geräten die entsprechenden Kabel für eine Verbindung mit dem PC mitgeliefert werden, kostet ein eventueller

nachträglicher Kauf eines Originalkabels richtig Geld. Auch wer selbst ein spezielles Kabel für eine

Verbindung mit PDAs und Palms oder für eine externe Stromversorgung bauen möchte, hat häufig das

Problem, dass er einen passenden Stecker benötigt.

Steckertypen und Belegung

In Europa gibt es zwei unterschiedliche Steckersysteme bei den von Garmin vertriebenen GPS-Geräten. Die "klassiche" Variante mit einem Rundstecker und die "neue" Version, die mit der etrex-Serie eingeführt wurde mit eckigem Stecker. Für die in Europa nicht erhältliche Rino-Serie gibt es noch eine dritte Variante. Die Steckerbelegung der beiden Stecker und die Belegung der seriellen Schnittstelle am PC ist aus nachfolgenden Grafiken ersichtlich und ist teilweise auch im jeweilige Gerätehandbuch zu finden.

AK, 20.05.2023 Seite 104 document.doc

Page 105: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

   

Steckerbelegung bei Garmin GPS (jeweils Blick auf den GPS bzw. Computer)

 

Die obigen Abbildungen zeigen jeweils den Blick auf den entsprechenden GPS bzw. auf die serielle

Schnittstelle des Computers. Bei der externen Einspeisung der Betriebsspannung ist zu beachten, dass die

verschiedenen Geräte unterschiedliche maximale Versurgungsspannungen brauchen bzw. vertragen.

Nachfolgend eine kleine Tabelle (Quelle: Garmin und hier) mit den Versorgungsspannungen der Geräte.

 erlaubter

Spannungsbereich

empfohlene

Spannung

Gerätetyp

3 – 3.25 3 eMap, eTrex, Geko (eckiger Stecker)

3 – 3.25 3 Rino (kleiner runder Stecker)

5 – 8 6 GPS 12, GPS 38, GPS 40 (runder Stecker mit Loch in der Mitte)

5 – 40 12 GPS 95XL

6 – 40 12 GPSMAP 175, GPSMAP 195, GPSMAP 295

8 – 40 12 GPS 89, GPS 90, GPS 92

9 – 33 12 GPSCOM 190

10 – 18 12 GPSMAP 168 Sounder

10 – 32 12

GPS II, GPS II+, GPS III, GPS III Pilot, GPS III+, GPS 12CX, GPS 12MAP, GPS 12XL, GPS 45, GPS 45XL, GPS 48, GPS 120, GPS 120XL, GPS 126, GPS 128, GPSmap 60C(S), GPSMAP 130, GPSMAP 135 Sounder, GPSMAP 162, GPSMAP 180, GPSMAP 185 Sounder, GPSMAP 205, GPSMAP 210, GPSMAP 215, GPSMAP 220, GPSMAP 225, GPSMAP 230, GPSMAP 235 Sounder, StreetPilot, StreetPilot ColorMap

11 – 33 12GMA 340, GPS 100AUD, GPS 100PRT, GPS 100STD, GPS 150, GPS 150XL, GPS 155TSO, GPS 155XLTSO, GPS 165TSO, GPS 400, GTX 320, GTX 327

12 – 18 12 GPS 125 Sounder

14 14 GNC 250, GNC 250XL, GNC 300, GNC 300XLTSO

28 28 GNC 420, GNS 430, GNS 530

Ich übernehme keine Garantie für die Richtigkeit und Vollständigkeit dieser Tabelle.

 

Das Pfranc-Prinzip

Da Garmin keine einzelnen Stecker verkauft, war es lange Zeit unmöglich an echte Stecker zu kommen und

man war gezwungen irgendwelche Eigenbauten einzusetzen.

Im Jahre 1996 hatte ein gewisser Lawrence Berg (Larry) die Idee, selbst gespritze Kunststoffstecker für seinen

Garmin-GPS herzustellen. Da er eine Spritzgussmaschine zur Verfügung hatte, hat er sich eine entsprechende

AK, 20.05.2023 Seite 105 document.doc

Page 106: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Form hergestellt und gleich mehrere Stecker angefertigt. Im zu dieser Zeit noch recht neuen Internet hat sich

unter den Garmin-Nutzern schnell verbreitet, dass Larry solche Stecker hatte und zunächst hat er viele

Stecker kostenlos unter den Garmin-Besitzern verteilt. Der Aufwand wurde immer größer und irgendwann

kam es soweit, dass die Stecker im Gegenzug zu einem Versprechen abgegeben wurden, nach Erhalt der

Stecker einen bestimmten Betrag zu zahlen. Obwohl sich ein gewisser "Listenpreis" eingebürgert hat, ist

dieser nicht Fix sondern davon abhängig, wie zufrieden man mit den Steckern ist.

Und mittlerweile gibt es fast auf der ganzen Welt (62 in 50 Ländern im März 2004) "Niederlassungen",

sogenannte Pfrancs, die Stecker in Ihrem Gebiet oder Land versenden. Pfranc kommt von (P)OP (Franc)hisee,

POP ist die Abkürzung für Purple Open Projects, der Firma von Larry. Viele Pfrancs bieten mittlerweile auch

verschiedene fertig konfektionierte Kabel an und noch immer basiert die "Bezahlung" auf dem Prinzip der

"Pledges" oder eben Versprechungen. Und es funktioniert.

Und Larry und seine Pfrancs haben mit der Zeit herausgefunden, dass die meisten Leute "cool" sind wie er es

bezeichnet, also durchaus verlässlich. Es ist doch erfreulich, dass die Welt eben nicht schlecht ist, wie

manchmal behauptet wird, sondern die Leute es durchaus zu schätzen wissen, dass solche Projekte existieren

und ehrlich damit umgehen.

 

Die pfranc-Homepage (englisch) ist hier zu erreichen. Sie enthält Informationen über die Stecker und

natürlich die Liste   aller   Pfrancs in der ganzen Welt.

 

Für den deutschsprachigen Raum gibt es jeweils einen Pfranc in Deutschland, in der Schweiz und eine

"Pfrancine" in Österreich. Klick auf die Namen führt auf die Seite der Pfrancs bei Pfranc.com.

 

 Deutschland  Österreich  Schweiz

Hans Trautenbergzusätzliche   Web-Seite

Kathrin Wolf Ulf Matthiesen

 

 

Für diesen "Artikel" hatte ich die drei Pfrancs per Mail kurz angeschrieben und innerhalb von 24 Stunden von

allen eine nette Antwort erhalten (vermutlich schneller, aber ich hatte mir diese Zeit genommen). Pfrancs sind

also nette Leute, deshalb seid auch nett zu ihnen.

 

Die Stecker

Mit einem herzlichen Dank an den Schweizer Pfranc Ulf für das Demomaterial hier noch ein paar Bilder der

drei angebotenen Steckervarianten:

 

pPlug

AK, 20.05.2023 Seite 106 document.doc

Page 107: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 Der pPlug für die Garmin GPS mit dem runden vierpoligen Stecker

Auf dem Bild rechts sieht man den runden pPlug einmal komplett zusammengebaut und einmal in seinen

Einzelteilen. Der Platikstopfen rechts oben dient dazu, das Mittelloch zu verschliessen. Dies dient zur

Sicherheit, denn ist das Loch verschlossen passt der Stecker nicht mehr in die Buchse für den GPS 12, GPS 38

und den GPS 40, womit man verhindern kann, dass ein Kabel ohne 6 V Spannungsregler an ein ein solches

Gerät angeschlossen wird.

Bemerkenswert finde ich, dass daran gedacht wurde, den Stecker so zu konstruieren, dass man selbst

entscheiden kann, in welcher Richtung das Kabel vom Stecker wegführen soll. Dieser Stecker ist leicht

zusammenzubauen, wenn man nicht nur Daumen hat. Aber wer ins Auge fasst, ein Kabel selbst zu löten, sollte

sowieso keine solchen Probleme haben.

 

ePlug

  Der ePlug für die Garmin etrex und die Geko-Serie und den eMap.

Das Bild rechts zeigt den ePlug, den Stecker für die etrex und geko-Serie und den eMap. Wieder links unten

der komplette Stecker und rechts die Einzelteile.

 

   Links: Biegen der Pins; Rechts: Drahttrick beim Zusammenbau.

AK, 20.05.2023 Seite 107 document.doc

Page 108: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Der Zusammenbau ist ein wenig knifflig, da die Federchen gerne herausfallen. Ich habe auf der pfranc-

Homepage aber von einem Drahttrick gelesen und finde das so genial, dass ich gleich ein Bild davon hier

zeigen möchte. Zunächst werden die Pins in die Halterung gesteckt und die Enden um 90° nach oben gebogen.

Dann steckt man einfach einen Draht (oder eine dünne aufgebogene Büroklammer) durch die Schlaufe und

kann so die Pins ganz einfach bis zum Ende der Montage in Position halten.

 

e2Plug

 Links: Biegen der Pins; Rechts: Drahttrick beim Zusammenbau.

Auf dem Bild rechts schliesslich der e2Plug, der ebenfalls für den etrex, geko und eMap passt, aber viel flacher

ist und somit z.B. besser geeignet ist, um mit Schutztasche um den GPS herum verwendet zu werden. Den

fertig zusammengebauten Stecker habe ich nicht abgebildet, da ich mir nicht sicher bin, ob man das Teil

wieder auseinander bekommt, wenn es einmal zu ist. Der Ring, den man unten sieht wird über den

Kabelansatz geschoben (vorher) und hält das Teil zusammen. Für den Zusammenbau dieses blau-

durchsichtigen Schmuckstücks braucht man den oben erwähnten Drahttrick übrigens nicht. Die Nase (Bild

rechts oben) kann bei diesem Stecker abgeschnitten werden, sie ist nicht nötig um ihn vor dem

herausrutschen zu schützen.

 

Fazit

Alle drei Stecker sind wirklich gut gemacht, sind gut zusammenzubauen und passen sehr gut. Man kann sich

eigentlich nichts Besseres vorstellen.

 

 

GPS im Flugzeug

Umfrage

Wie die Umfrage unter den Besuchern vom Juni 2003 hier auf den GPS-Seiten von kowoma zeigt, haben bisher

nicht allzuviele Leute Ihren GPS (so sie denn überhaupt einen haben) auf Flügen in Passagierflugzeugen

AK, 20.05.2023 Seite 108 document.doc

Page 109: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

benutzt. Von 320 abgegebenen Stimmen waren es immerhin 83 % (266 Stimmen). Lediglich 14 % (45

Stimmen) haben ihr GPS-Gerät bereits auf Flügen verwendet und 9 Leute (3 %) wollten ihr GPS gerne

benützen, durften dann aber nicht.

 

Funktioniert mein GPS im Flugzeug überhaupt?

Es sollte mit ziemlich jedem Handheld-GPS möglich sein, einen akzeptablen Satellitenempfang in

Passagierflugzeugen zu erreichen, sofern man einen Fensterplatz hat. Hat man diesen nicht, kann man das

Gerät gleich eingepackt lassen. Es kommt aber auch an Fenstern vereinzelt vor, dass aufgrund der

ungünstigen Position von Satelliten und Flugzeug keine Positionsbestimmung möglich ist, das wird aber

sicherlich nicht während des ganzen Fluges anhalten. Man muss das Gerät jedoch sehr nahe am Fenster

halten und ein wenig probieren, wo und wie der Empfang am besten ist.

 

Wozu soll das Ganze gut sein?

Nun, wichtig ist es sicherlich nicht, man wird sein Flugziel auch ohne GPS erreichen, der Pilot hat ja eines...

(hoffentlich, und hoffentlich nicht nur das)

Aber es ist ganz einfach sehr interessant. Neben Flughöhe und Geschwindigkeit, die ja auch oft auf den

Bordbildschirmen angezeigt werden, hat man besonders bei Geräten mit Karte einen netten Nutzen: Man hat

für alle größeren Städte, Flüsse und Seen, die man beim Blick aus dem Fenster sieht, gleich den Namen parat.

Vorausgesetzt die richtige Karte ist installiert.

 

Ist es denn erlaubt? Die Umfrage bei den Fluggesellschaften.

Gleich vornweg - hier gibt es nur eine Antwort: Vielleicht.

Ich habe parallel zur Umfrage unter den Besuchern von kowoma an alle Fluggesellschaften, die mir in den

Sinn und unter die Tastatur gekommen sind, per E-Mail oder bei deren Web-Formular die Anfrage verschickt

(je nachdem englisch oder deutsch), ob die Verwendung von GPS-Geräten an Bord erlaubt ist. Dabei habe ich

immerhin 145 Fluggesellschaften zumindest insoweit erreicht, dass eine E-Mail nicht mit Empfänger

unbekannt zurück kam, oder ein Formular keine Fehlermeldung brachte.

Interessanterweise sehen einige Fluggesellschaften anscheinend keine Kontaktaufnahme per E-Mail oder Web-

Seite vor. So beispielsweise Southwest Airlines, Ryanair, British Airways und Air-France. Ich habe zwar auch

nicht davor zurückgeschreckt, in solchen schwierigen Fällen auch an allgemeine, von mir geratene Mail-

Adressen wie support@ oder info@ zu schreiben, hatte aber nur selten Erfolg damit. Auf schriftliche Anfragen

per Brief habe ich verzichtet.

Die Wirkung auf die Anfrage war erstaunlich, ebenso die Antwortzeiten. Die schnellsten Antworten kamen am

selben Tag, 80 % der angeschriebenen Fluggesellschaften haben jedoch innerhalb eines Monats überhaupt

nicht geantwortet. Auffällig ist ein Nord-Süd-Gefälle innerhalb von Europa. Die nordeuropäischen Fluglinien

nehmen es anscheinend mit dem Kundendiest anscheinend noch sehr ernst. Das finde ich sehr lobenswert.

Unter den Fluggesellschaften die nicht geantwortet haben befinden sich sicherlich zahlreiche, bei denen ich

vielleicht überhaupt nicht das richtige Ziel erreicht habe, oder bei denen man nicht sicher sein kann, dass der

Empfänger auch des englischen mächtig war. Andererseits hatten es aber auch eigentlich renomierte

Fluggesellschaften wie: Deutsche BA, LTU, American Airlines und die Swiss anscheinend nicht nötig, meine

Anfrage überhaupt zu beantworten. Das ist nicht gerade ein Beweis für Ihre Kundennähe.

AK, 20.05.2023 Seite 109 document.doc

Page 110: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Die Qualität der Antwort korrelierte leider auch ein wenig mit der Antwortzeit, zu oft sind schnelle Antworten

auch offensichtlich unüberlegte Antworten gewesen. Nachfolgend einige besonders schöne Antworten, die

erste davon erhielt ich auch besonders schnell:

 Hapag-Lloyd-Flug:Der Transport solcher Geräte ist zwar grundsätzlich erlaubt, der Betrieb derselben aber während des kompletten Fluges wegen möglicher Interferenzen mit dem Cockpit-Instrumentarium streng verboten!!.Bei Transport von Fahrzeugen mit installierten Navigationssystemen müssen die GPS komplett deaktiviert werden.Dies entspricht den internationalen Transportvorschriften der IATA, wie Sie für alle Airlines weltweit gelten.Möglicherweise ist dies nicht die Antwort, die Sie vielleicht erhofft hatten. Aus unserer Sicht besteht aber keinerlei Notwendigkeit für Passagiere während eines Fluges ein solches Gerät zu betreiben - außer Neugier und 'Spieltrieb', die katastrophale Folgen haben könnten.

 

Ich konnte leider keinen Hinweis auf derartige Transportvorschriften der IATA finden, jedoch schreibt:

 Scandinavian Airlines:SAS policy regarding use of electronic equipment during flight, is the same as all AEA (Association of European Airlines) airlines. That means that the use of portable electronic devices (PED) that does not transmit a radio signal, may be used during the cruise portion of the flight (while the seatbelt sign is OFF). This also means that a handheld GPS receiver may be used when the seatbelt sign is OFF.All PED (even laptops, walkmans etc.) must be switched OFF during takeoff and landing (seatbelt sign ON)

 

Es ist sehr interessant, dass es offensichtlich durchaus zumindest europaweit eigentlich Richtlinien gibt,

welche Sorte Geräte in Flugzeugen benutzt werden dürfen und welche nicht. Es haben sich also schon Leute

hierüber ernsthaft Gedanken gemacht.

Delta Airlines erwähnt netterweise als einzige (mir bekannte) sogar auf Ihren Webseiten hier neben

zahlreichen anderen Geräten GPS-Empfänger mit dem Hinweis, dass der Betrieb während der "Cruise"-Phase

(Anschnallzeichen aus!) erlaubt ist (siehe Ähnlichkeit mit der Antwort von SAS oben in gelben Block).

Bei einem Flug mit EasyJet im Frühsommer 2004 habe ich im Bordmagazin die ausdrückliche Erwähnung von

GPS-Geräten und die Erlaubnis zur Verwendung wärend des normalen Fluges entdeckt.

Sehr interessant auch die Antwort von Augsburg Airlines, deren Vertreter sich zunächst dafür entschuldigt

hat, dass er zuerst die Regelungen abklären muss. Er hat netterweise nicht einfach geschrieben hat, es ist

verboten, wie vermutlich manch anderer. Wie sich dann, nachdem er sich informiert hatte (ja, soetwas gibt es)

herausstellte, (Hinweis zum Verständnis: Augsburgair fliegt ausschliesslich für die Lufthansa) hat die

Lufthansa ähnliche Regelungen wie die SAS, die swiss und Delta. Herzlichen Dank an Augsburg Air für diese

Informationen.

Wer nun in der Liste unten bei der Lufthansa nachsieht, wird trotzdem feststellen, dass hier eine negative

Antwort gegeben wurde. Nun, das war die Antwort der Lufthansa, und trotz mehrmaligem Nachfragen blieb es

dabei, obwohl die mir vorliegenden Richtlinien (Juli 2003) der Lufthansa zum Gebrauch von elektronischen

Geräten an Bord eindeutig den Gebrauch von GPS während der normalen Flugphase erlauben.

Manche Fluggesellschaften stellen GPS-Empfänger mit Radioempfängern gleich, deren Betrieb nicht erlaubt

ist. Wieder andere erlauben den Betrieb, solange das Gerät keine Antenne hat. Hier kommt einem spontan der

Gedanke: Muss die Antenne sichtbar sein? Andere Fluggesellschaften sagen: Es ist erlaubt, wenn es nicht

selbst sendet. Eine japanische Fluglinie hatte leider meine Frage nicht verstanden und schrieb, sie wären

momentan nicht am Kauf von GPS-Geräten interessiert. Schade auch.

AK, 20.05.2023 Seite 110 document.doc

Page 111: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

Ist es denn erlaubt? Fazit.

Nach allem was man über den Gebrauch von elektronischen Geräten in Flugzeugen findet, gilt folgendes:

o Wenn es sendet ist es immer verboten! (Nebenbei bemerkt: Ganz speziell fallen hierunter

Handies.)

o Während Start, Landeanflug und Landung sind alle elektronischen Geräte (ausser im

wesentlichen) Armbanduhren und Herzschrittmacher (aha!) auszuschalten. Hier gilt bei allen

Fluglinien: Sicher ist sicher, das Risiko geht keiner ein. Das sollte auch jedem Passagier klar

sein, deshalb: Bitte daran halten.

Interessanterweise scheint es jedoch auf der anderen Seite keinen einzigen wirklich nachgewiesenen bzw.

reproduzierbaren Fall zu geben, bei dem elektronische Geräte von Passagieren tatsächlich die Bordelektronik

negativ beeinflusst hätten. Aber das wird vermutlich auch wirklich keiner wollen, deshalb ist sicherlich

Vorsicht geboten und im Zweifelsfall gilt: Verboten.

Geräte die nicht dafür gebaut sind, selbst zu senden, und darunter Fallen GPS-Geräte, stellen typischerweise

kein Problem dar und könnten eigentlich erlaubt sein. Interessant in dem Zusammenhang ist dieses Dokument

(englisch), in dem GPS-Empfänger den gleichen Status haben wie CD-Player und PCs und während des

normalen Fluges verwendet werden dürfen. Regeln (englisch) der FAA (Amerikanische Luftfahrtbehörde)

sagen aber, dass keine elektronischen Geräte verwendet werden dürfen (Ausnahme: Rasierapparat(?),

Herzschrittmacher und einiges mehr), es sei denn, die Fluglinie bestätigt, dass das Gerät die Bordelektronik

nicht stört.

Ein Pilot der swiss (die ja, siehe oben, offiziell nicht geantwortet hat) hat mir in der Zwischenzeit mitgeteilt,

dass es sehr wohl eine offizielle Richtlinie zur Verwendung von GPS-Geräten bei Ihnen gibt. Diese deckt sich

mit der oben zitierten Antwort der SAS. Erlaubt, ausser bei Start und Landung.

Ist es denn erlaubt? Was nun?

Eines ist sicher: Das letzte Wort hat immer der Flugkapitän. Auch wenn auf der Homepage einer

Fluggesellschaft noch so oft steht, es ist erlaubt, wenn der Flugkapitän es verbietet, dann ist es verboten.

Aber interessanterweise sind es gerade die Piloten - die ja das beste technische Verständnis der Materie haben

und auch wissen was ein GPS ist - die in den meisten Fällen die Verwendung der Geräte erlauben werden.

Manchmal wird man anscheinend wohl gefragt, ob die Geräte "FCC approved" sind, was bedeutet, dass sie

nicht nennenswert selbst strahlen. Alle GPS-Handgeräte haben diese Zulassung, die meist auf dem Gehäuse

oder in der Anleitung zu finden ist.

Wer es also genau wissen und auf Nummer sicher gehen will, sollte beim Einsteigen oder irgendwann

zwischendurch im Cockpit nachfragen (leider nicht mehr so einfach möglich) oder nachfragen lassen (wird

meist gemacht). Die FlugbegleiterInnen selbst werden in vielen Fällen überhaupt nichts mit den Geräten

anzufangen wissen. Das kann bedeuten, dass wenn sie einen damit hantieren sehen, sie aus allen Wolken

fallen und es für ein Handy halten. Oder aber es für einen kleinen Computer oder ein Spielzeug halten und

sich überhaupt nicht dafür interessieren. Letztere Erfahrung habe ich persönlich gemacht.

 

Ergebnis der Umfrage bei den Fluggesellschafte

Leider sind die nachfolgenden Listen mit Informationen welche Fluggesellschaft die Verwendung von GPS

erlaubt und welche nicht, vermutlich nicht einmal den Speicherplatz wert, den sie verbrauchen, da ich bei

AK, 20.05.2023 Seite 111 document.doc

Page 112: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

diversen Antworten ernsthafte und begründete Zweifel habe, ob der Antwortende oder die Antwortende

wirklich wusste, worum es geht.

Ich betitele deshalb die Liste nicht mit: Fluggesellschaften, die die Verwendung erlauben bzw. verbieten

sondern mit: Haben geantwortet, dass sie die Verwendung erlauben bzw. verbieten.

 

Folgende haben geantwortet, dass sie die Verwendung erlauben:

 Fluglinie Land

Aeromexico MexikoArkia Israeli Airlines IsraelDelta Airlines USAEstonian Air EstlandEasyJet (Stand: 2004; Bordmagazin) Deutschland

Falcon Air SchwedenIcelandair IslandQantas Airways AustralienSAS Scandinavian Airlines SchwedenUS Airways USA

 

Folgende Fluggesellschaften haben geantwortet, dass sie die Verwendung nicht erlauben:

 Fluglinie Land

Aero Lloyd Deutschland

Air New Zealand Neuseeland

Air Transat Kanada

Air Mauritius Mauritius

Asiana Südkorea

Austrian Airlines Österreich

Continental Airlines USA

Croatia Airlines Kroatien

Deutsche Lufthansa Deutschland

Edelweiss Air Schweiz

Emirates Airways Vereinigte Arabische Emirate

Hapag-Lloyd Deutschland

Horizon Air USA

KLM Niederlande

Luxair Luxemburg

United Airlines USA

Virgin Atlantic Grossbritannien

Wideroe Norwegen

 

Stand der Listen ist: 01.07.2003

 

Zum Schluss

Herzlichen Dank an alle Vertreter der Fluggesellschaften, die sich wirklich die Mühe gemacht haben, eine

AK, 20.05.2023 Seite 112 document.doc

Page 113: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

fundierte und verlässliche Antwort zu geben. Und eine Mahnung an alle, die garnicht geantwortet haben und

vor allem and die, die nur der Bequemlichkeit halber mit Nein geantwortet haben. Diese möchten doch bitte

Ihren Kundenservice etwas ernster nehmen.

 

Alle Angaben sind selbstverständlich ohne Gewähr und ich übernehme wie bei allen Informationen auf www.kowoma.de weder irgendwelche Garantien noch Haftungen dafür.

 

Software

Software für den PC

Softtraxx

Softtraxx (hier Version 1.7) ist eines der wenigen deutschsprachigen nicht kommerziellen Programme zum

Thema GPS. Hauptanwendung ist Austausche von Wegpunkten, Routen und Tracks zwischen PC und Garmin-

GPS. Mehr...

 

G7ToWin

G7ToWin dient in erster Linie dazu, Wegpunkte, Routen und Tracks zwischen GPS-Geräten (Garmin, Magellan,

Lorance/Eagle) und dem PC auszutauschen. Mehr...

 

VisualGPS

Visual GPS von Apollocom ist ein Freeware-Programm zur Auswertung von NMEA0183 Datensätzen, die heute

nahezu jedes GPS-Gerät ausgeben kann. Mehr...

 

GPS 2.4

GPS 2.4 von Varol Okan bietet die Möglichkeit sich die Positionen und Umlaufbahnen der GPS-Satelliten

anschaulich vor Augen zu führen. Mehr...

 

Software für den Palm

CetusGPS

GPS-Program für den Palm. Wer den normalen gelben eTrex kennt, dem werden sehr viele der Möglichkeiten

bekannt vorkommen. Beeinhaltet die wesentlichen Funktionen die ein GPS-Gerät können muss. Deshalb vor

allem interessant für Leute mit einem Palm-Aufsteck-GPS. Mehr...

 

 

 

 

 

AK, 20.05.2023 Seite 113 document.doc

Page 114: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

 

 

 

Softtraxx von gps24.de

Softtraxx (hier Version 1.7) ist eines der wenigen deutschsprachigen nicht kommerziellen Programme zum

Thema GPS. Die momentane Hauptanwendung ist sicherlich die Übertragung von Routen, Wegpunkten und

Tracks zwischen PC und GPS. Unterstützt werden Garmin GPS-Geräte der etrex-Serie, der eMap, die GPS 70er

Serie (72 und 76) und der GPSMap176.

Das Programm speichert die Wegpunktdaten in einem leicht auch von anderen Programmen handhabbaren

Klartext-Format und bietet einige aussergewöhnliche Bearbeitungs- und Visualisierungsmöglichkeiten für die

Daten.

Eine weitere wichtige Funktionalität ist die Konvertierung von Routendaten gängiger Routenplaner

(Map&Guide, MarcoPolo, Motorrad Routenplaner) ins Garmin-eigene Datenformat, um dann die in diesen

Programmen erstellten Routen auf den GPS laden zu können.

 

Startbildschirm von softtraxx

 

Das Erste was man nach der Installation und dem Start von Softtraxx tun sollte, ist unter der Rubrik

"Pfadangaben" einen sinnvollen Pfad für die eigenen Wegpunkte auszuwählen. Tut man das nicht, findet man

nach dem ersten Herunterladen seiner Wegpunkte vom GPS diese im Hauptverzeichnis von C wieder.

Hat man dann also Wegpunkte, Tracks und Routen heruntergeladen, so werden diese im rechten Teil des Programmfensters (das leider nicht frei skaliert werden kann) angezeigt. Tracks werden in rot, Routen in blau und Wegpunkte in grün dargestellt. Die Benennung der Wegpunkte und Routen ist frei und praktischerweise unabhängig vom Wegpunktnamen im

AK, 20.05.2023 Seite 114 document.doc

Page 115: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

GPS. Beides darf nach Belieben geändert werden. Diese Funktion erreicht man durch Klick mit der rechten Maustaste auf einen Wegpunkt. Was dabei leider nicht geändert werden kann sind die Koordinaten der Wegpunkte.

Erstellen und Ändern von Routen in softtraxx

Über das Menü der rechten Maustaste erreicht man auch die Funktion zum Erstellen bzw. Ändern von Routen.

Hier lassen sich sehr komfortabel aus den vorhandenen Wegpunkten neue Routen zusammenbauen oder

bestehende Routen ändern. Es können Wegpunkte an die Route angehängt oder in die Route eingefügt werden

und die Reihenfolge kann beliebig verändert werden. Die Gesamtentfernung wird ebenfalls angezeigt.

Tracks, Routen und Wegpunkte können in eine "Karte" eingezeichnet werden. Bisher kann der Karte keine Bitmap hinterlegt werden, sondern besteht nur aus grauem Hintergrund. Es ist aber eine Möglichkeit zur Darstellung von digitalisiertem Kartenmaterial geplant. Zusätzlich können beliebige Wegpunkte mit der Funktion "in Trackumgebung zeichnen" in eine Trackdarstellung mit eingezeichnet werden. Die Karte lässt sich zoomen: Durch Aufziehen eines Rahmens von links oben nach rechts unten kann man hineinzoomen, durch Aufziehen eines Rahmens von rechts unten nach links oben wird vollständig herausgezoomt. Warum diese Zoom-out Funktion nicht durch einen einfachen Doppelklick auf die Karte gelöste wurde, der dann vielleicht jeweils die letzte Stufe zurückzoomt, bleibt wohl Geheimnis der Entwickler. Auch wird der Kartenausschnitt nicht immer korrekt dargestellt. Man darf aber nicht vergessen, dass das Programm noch in der Entwicklung ist.

AK, 20.05.2023 Seite 115 document.doc

Page 116: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Kartenansicht von softtraxx

 

Eine sonst sehr selten anzutreffende Funktion ist die Möglichkeit, das Höhenprofil eines Tracks anzuzeigen.

Besitzer von GPS-Geräten mit Höhenmesser kennen die Ansicht vom GPS-Bildschirm, häufig wünscht man sich

jedoch, dass man das Höhenprofil beispielsweise einer Wanderung zuhause dann auch ausdrucken kann. Hier

bietet softtraxx die Möglichkeit, die Höhe sowohl gegen die Zeit als auch gegen den Weg darzustellen und

natürlich auch auszudrucken.

Die Grafikdarstellung aller Ansichten lässt sich in einem eigenen Menü sehr detailliert konfigurieren.

 

Zeichnen und Drucken eines Höhenpofils in softtraxx

 

AK, 20.05.2023 Seite 116 document.doc

Page 117: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Die Funktionen in Bezug auf Datenübertragung zu Routenplaner-Software konnte ich nicht überprüfen, da ich

keine entsprechende Routenplanersoftware habe, aber es ist durchaus anzunehmen, dass das Übertragen von

dort erstellten Routen reibungslos funktioniert.

 

Fazit

Softtraxx ist eines der wenigen kostenlosen deutschsprachigen Programme zur Verarbeitung von Garmin-GPS-

Daten. Da es neben einer soliden Wegpunkte-Verwaltung ein paar wirkliche Besonderheiten wie die

Umwandlung von Routenplaner-Routen in Garmin-GPS Routen bietet und eine gute Darstellung von

aufgezeichneten Tracks und Höhenprofilen mitbringt, ist es absolut empfehlenswert. Wer zudem noch nach

einem deutschsprachigen Programm sucht, sollte mit dem Download der 1,5 MB nicht länger warten.

Es bleibt zu wünschen, dass das Programm auch weiterentwickelt wird und bald zusätzliche Funktionen

enthält, wie sie bereits auf der Internet-Seite gezeigt werden. Hoffentlich bleibt das Programm auch dann

noch kostenlos.

Auf der Download-Seite des Programms gibt es noch eine kurze Anleitung zum Download im Word-Format, auf

das man durchaus einen kurzen Blick werfen sollte.

 

Zur Seite von Softtraxx bei gps24.de

 

 

G7ToWin von Ron Henderson

G7ToWin (hier Version A.00.173) dient in erster Linie dazu, Wegpunkte, Routen und Tracks zwischen GPS-

Geräten und dem PC auszutauschen. Es gibt auch Versionen für PocketPCs. Unterstützt werden GPS-

Empfänger von Garmin, Magellan und Lowrance/Eagle jeweils mit ein paar Ausnahmen. Es wird sowohl die

serielle Schnittstelle (COM1-16) als auch die USB-Schnittstelle (neuere Garmin) unterstützt.

Bei bestimmten Geräten gibt es die Möglichkeit die Bildschirmanzeige oder die Almanachdaten des GPS

herunterzuladen. Bei Lowrance/Eagle Geräten lassen sich auch "Events" zwischen Computer und GPS

austauschen.

Die Wegpunkte, Routen und Tracks können mit G7ToWin editiert nd in verschiedenen Dateiformaten

abgespeichert werden (z.B.

OziExplorer, StreetAtlas,

Fugawi,Maptech).

Das Programm ist Freeware und

leider im Moment nur in englisch

verfügbar. Das Programm braucht

nicht installiert zu werden, sondern

ist nach dem Auspacken des ZIP-

Files sofort startklar. Das

Programm zeigt sich beim Start

recht unspektakular, was einen nicht erschrecken sollte.

AK, 20.05.2023 Seite 117 document.doc

Startbildschirm von G7ToWin

Page 118: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Das Erste, was man nach dem Start tun sollte ist, die

entsprechenden Daten für seinen GPS-Empfänger unter

File-Configuration einzutragen. Dabei ist das Wichtigste,

unter General den richtigen GPS und die Schnittstelle an

dem das Gerät angeschlossen ist, auszuwählen. Andere

Einstellungen, wie dass die Entfernung in km angezeigt

wird usw. sind mehr kosmetischer Natur. Unter dem

Reiter "Icon Property" kann man nun noch die zum

eigenen GPS-Gerät passenden Icons für die Wegpunkte

auswählen. Die anderen Reiter dienen zur Konfiguration

bei Datenaustausch mit dem Programm StreetAtlas.

Nach dem Speichern der Konfiguration (Save

Configuration) weiss G7ToWin auch beim nächsten Start noch von diesen Einstellungen.

Die am häufigsten genutzte Funktion ist sicherlich der Austausch von Wegpunkten, Routen und Tracks mit

dem GPS. Weiterhin gibt es je nach GPS-Gerät noch ein paar zusätzliche Befehle wie Anzeige der

Batteriespannung des GPS, Uhrzeit, Aktuelle Position, löschen von Wegpunkten, Anzeigen des GPS-

Bildschirminhalts usw.

Die heruntergeladenen Wegpunkte und Daten können anschliessend editiert und gespeichert werden und bei

Bedarf wieder an das GPS übertragen werden.

Alles in allem ein prima Programm für alle, die Ihre Wegpunkte nicht mit meist teurer Software des GPS-

Herstellers verwalten wollen oder können oder Wegpunkte in ein anderes Format konvertieren wollen. Es ist

auch das einzige mir bekannte Programm zum Erstellen von "Screenshots" von GPS-Bildschirmen. Wer sich

nicht davor scheut, dass das Programm nur englisch ist (es hat ja nicht viel Text), sollte unbedingt mal einen

Blick darauf werfen.

 

Visual GPS (hier in Version 3.33) von Apollocom ist ein Freeware-Programm zur Auswertung von NMEA0183

Datensätzen, die heute nahezu jedes GPS-Gerät ausgeben kann. Es erlaubt die Anzeige, Auswertung und

Aufzeichnung dieser Datensätze. Die interessanteste Funktion ist sicherlich das Aufzeichnen und Auswerten

von Messungen über einen längeren Zeitraum. Dadurch ist es möglich über die Mittelwertbildung vieler

Positionsbestimmungen eine Position sehr exakt zu bestimmen.

Das Program erlaubt auch die Berücksichtigung der HDOP/VDOP Werte (Güte der Positionsgenauigkeit) bei

AK, 20.05.2023 Seite 118 document.doc

Konfiguration von G7ToWin

Datenaustausch zwischen GPS und G7ToWin

Page 119: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

der Mittelwertbildung. Weiterhin sehr interessant ist die grafische Anzeige der Satelliten und deren

zurückgelegten Bahnen. Dies erlaubt auch die grafische Darstellung einer eventuellen teilweisen Abschattung

der Antenne durch beispielsweise hohe Häuser.

 

Oberfläche von VisualGPS

 

Zur Homepage von VisualGPS

 

GPS V2.4 von Varol Okan

GPS V2.4 ist ein Programm zur Visualisierung der Umlaufbahnen von Satelliten. Besonderes Augenmerk

wurde dabei auf die GPS Satelliten gelegt, das Programm kann aber auch andere Satellitendaten verarbeiten.

Das Programm ist im Rahmen einer Diplomarbeit an der Fachhochschule Dieburg 1996 geschrieben, ist

kostenlos und wird erfreulicherweise noch immer weitergeflegt. Das Programm ist zweisprachig deutsch und

englisch.

 

AK, 20.05.2023 Seite 119 document.doc

Page 120: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Standardansicht des Programms mit vier Fenster mit Weltkarte 3D-Ansicht und "Skyview"

 

Es erlaubt die Berechnung und Anzeige der Satellitenbahnen und -positionen in einer 3D Ansicht von aussen

auf die Erde, auf einer Karte der Erde und die Position der Satelliten am Himmel aus Sicht eines Benutzers

oder in einer Ansicht, wie es GPS-Geräte auf Ihren Satellitenseiten tun. Die 3D-Grafiken sind frei dreh- und

zoombar und werden sehr schön dargestellt, wobei alle anzeigenoptionen konfiguriert werden können.

In den verschiedenen Ansichten können die Bahnen selbst, die "Footprints" also die Position des Satellits über

der Erde und die Abdeckungsflächen der Signale angezeigt werden. Die Ansicht der Erde erlaubt zahlreiche

Texturen, von Landesgrenzendarstellung über Tag/Nacht-Ansicht. Es lassen sich sogar die aktuellen

Wolkenbilder der Wettersatelliten überlagern, die einfach im Internet abgerufen werden können.

 

Programmfenster mit Weltkarte mit überlagerter aktueller Wolkenkarte, den Positionen von Sonne und Mond sowie den Bahnen von 2 GPS-Satelliten.

AK, 20.05.2023 Seite 120 document.doc

Page 121: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

Das Programm berechnet die Positionen, die Azimuthe und Elevationen der Satelliten, die Bahnhöhe usw.

Weiterhin können auch Position von Sonne und Mond dargestellt werden.

Über eine Zeitrafferfunktion lassen sich die Bewegungen der Satelliten sehr anschaulich vor Augen führen. Es

kann auch der aktuelle "GPS-Satellitenhimmel" für jeden Ort der Erde abgefragt werden, wobei die immer

aktuellen Bahndaten auf Knopfdruck aus dem Internet geladen werden können.

 

Programmfenster mit Weltkarte mit überlagerter aktueller Wolkenkarte, den Positionen von Sonne und Mond sowie den Bahnen von 2 GPS-Satelliten.

Das Programm erfordert ein wenig "Einarbeitungszeit" bis man das System der Fenster und den Einfluss der

aktuell ausgewählten Ansicht auf das Menü und umgekehrt verstanden hat, bietet aber dafür eine Fülle frei

auswählbarer Optionen.

Der Download ist mit über 13 MB nicht ganz ohne, aber im Zeitalter der schnellen Internetverbindungen noch

verträglich. Das Programm braucht nicht installiert zu werden sondern kann nach dem Auspacken des ZIP-

Archivs einfach über die GPS.EXE gestartet werden.

 

Hier geht es zur Homepage des Autors (dort klicken auf Satellite Tracking GPS).

 

CetusGPS von Kjeld Jensen

CetusGPS (hier in Version 1.1b11) dient im wesentlichen dazu, die Funktionen, die ein normales GPS-Gerät

hat und haben sollte auf dem Palm zur Verfügung zu stellen. Wer ein vollwertiges GPS-Gerät sein eigen nennt,

hat eigentlich nicht sehr viel von CetusGPS. Mit einer Ausnahme: Es ermöglicht eine Mittelwertbildung beim

Speichern einzelner Positionen. Wer also einen Garmin GPS hat (die keine Mittelwertbildung unterstützen),

und ohne PC oder langwierigem Ausrechnen von Hand eine sehr genaue Positionsbestimmung erreichen will,

kann über einen langen Zeitraum (So lange die Batterien des GPS und Palm mitspielen) die Position mitteln.

Ansonsten ist das Programm vor allem sehr interessant für Besitzer von am Palm aufsteckbaren GPS-Geräten

ohne eigenes Display. Hier bleiben wenig Wünsche offen. Es sind alle üblichen Funktionen wie das Speichern

von Wegpunkten, ein Navigationsbildschirm mit Anzeige von Richtung, Geschwindigkeit Höhe usw. eine

Himmelansicht mit den Satellitenpositionen und der Möglichkeit zur Aufzeichnung von Tracks vorhanden. Die

AK, 20.05.2023 Seite 121 document.doc

Page 122: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Wegpunkte und Tracks können das auf den PC geladen werden und dort mit dem Programm GPS TrackData

verarbeitet werden.

 

links: Navigationsbildschirmmitte: Speichern von Wegpunkten

rechts: Satellitenansicht

 

Aufzeichnen von Tracks

 

Gerätetests

Auf den folgenden Seiten werden Tests einzelner Geräte vorgestellt. Wer ein Gerät zum Test zur Verfügung

stellen möchte oder selbst einen Test geschrieben hat, der soll sich doch einfach melden.

 

 

Garmin Forerunner 301Ein GPS mit Herzfrequenzanzeige. Als eierlegende Wollmilchsau die ultimative

Trainigsunterstützung? Aufzeichnen von Strecke, Geschwindigkeit und Puls beim

Joggen, Radfahren und anderen "Outdoor"-Sportarten? Erstellen und Durchziehen

von komplexen Trainingsprogrammen? Der Garmin Forerunner 301 soll dem

Sportler alle Informationen und Unterstützung geben, die er für ein erfolgreiches

Training und zur Wettkampfvorbereitung benötigt. Was das Gerät neues kann, steht hier...

 

Garmin Forerunner 201

AK, 20.05.2023 Seite 122 document.doc

Garmin Forerunner 301(Quelle: Garmin)

Page 123: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Aufzeichnen von Strecke und Geschwindigkeit beim Joggen und Inline-

Skaten? Laufen gegen einen virtuellen Partner? Der Garmin Forerunner

201 soll dem Sportler als Trainingsassistenten zur Seite stehen. Was das

Gerät kann, steht hier...

 

Akkulader im Test - Conrad AT-3 und Ansmann Digispeed 4Wer seinen GPS immer dabei hat weiss es nur zu gut:

Batterien sind teuer und man braucht im Laufe der Zeit

eine ganze Menge davon. Akkus sind eine Alternative um

zumindest für Tagesausflüge genügend "Saft" dabei zu

haben. Womit man sie zuhause - oder sogar schon unterwegs - wieder laden sollte, steht hier...

 

CarKit für GPSmap60CS mit Mapsource CitySelectWer auf den neuen Garmin GPS Handhelds GPSmap60C und

GPSmap60CS wirklich die Autorouting-Fähigkeiten ausnutzen will

kommt um das CarKit mit CitySelect-karten von ganz Europa nicht

herum. Wie das funktioniert und ob die 60er GPS sogar ein Autonavigationssystem zu ersetzen vermögen, lesen sie hier...

 

 

Garmin GPS und Fahrradhalterungen

AK, 20.05.2023 Seite 123 document.doc

Garmin Forerunner 201(Bild: Garmin)

Akku Ladegeräte von Ansmann und Conrad (Bild: Ansmann; Conrad)

CarKit zum GPSmap60C(S)(Bild: Garmin)

Page 124: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Ein echter GPSler hat seinen GPS immer dabei. Auch

auf dem Fahrrad und da braucht er natürlich eine

entsprechende Halterung. Was es da alles gibt, finden Sie hier...

 

Garmin GPSmap60CSGanz neu (Anfang 2004) gibt es von Garmin zwei neue Handheld-GPS (die CS Version

hat gegenüber der C-Version noch elektronischen Kompass und Barometer) mit

einigen bisher noch nicht dagewesenen Funktionen. Die Geräte unterstützen als erste

Handgeräte Autorouting, haben ein Farbdisplay, sind mit 56 MB Speicher und einem

schnelleren Prozessor auch für detailierte Karten gerüstet und sollen trotzdem auch

noch eine lange Batterielaufzeit haben. Was an all diesen Versprechungen wirklich dran ist, wird im ausführlichen Test zum GPSmap60CS geklärt. Mehr...

 

Garmin GPS72Neben den etrex und den gekos erfreut sich der GPS72 recht großer Beliebtheit unter den

GPS-Begeisterten. Kein Wunder, ist es doch ein recht günstiges Gerät mit großem

Funktionsumfang. Das alles ist Grund genug, ihn einmal etwas genauer unter die Lupe zu nehmen. Mehr...

 

etrex Vista vs. GPSmap 76S

Ralf Schönfeld hat einen sehr ausführlichen Vergleichstest zwischen den beiden Garmin-Geräten etrex Vista

und GPSmap 76S durchgeführt. Wer sich für eines der beiden Geräte interessiert, sollte den Test unbedingt

gelesen haben.

Zum Vergleichstest...

AK, 20.05.2023 Seite 124 document.doc

Garmin etrex in Softcase-Halterung von gps24

GPSmap60CS (Bild: Garmin)

GPS72 (Bild: Garmin)

Page 125: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

etrex Summit vs. GPS 12

Ebenfalls auf den Seiten von Ralf Schönfeld befindet sich ein Vergleichstest zwischen dem eTrex Summit und

Garmin GPS 12. Zum Vergleichstest...

 

geko 201Der Garmin geko 201 bietet alles, was der Einsteiger in die

Welt der GPS-Navigation benötigt. Mit einem grösseren

Funktionsumfang als der kleine gelbe etrex aber merklich

kleineren äusseren Dimensionen und dem akzeptablen Preis ein rundum empfehlenswertes Gerät. Mehr...

 

 

 

 

 

 

Geocaching

Worum geht es?

Geocaching (Cache = geheimes Versteck) ist eine Art Schatzsuchen oder Schnitzeljagd. Es geht darum, nur

mit Kenntnis der geographischen Koordinaten eines Verstecks (und natürlich eines GPS-Gerätes), dieses zu

finden. Es soll auch Leute geben, die die Verstecke nur mit Hilfe der Koordinaten und Landkarten suchen (und

wohl auch finden).

Nun scheint es vielleicht auf den ersten Blick keine allzu schwere Aufgabe zu sein, wenn man die Genauigkeit

bedenkt, die mittlerweile von handelsüblichen GPS-Geräten erreicht wird. Und tatsächlich sind die meisten

Caches überhaupt nicht schwer zu finden, wenn man sie erst einmal hat. Bei der Suche eines Cache kennt man

jedoch beispielsweise das vor einem liegende Gelände nicht. Auch wenn sich schliesslich herausstellt, dass der

Cache direkt an einem Weg lag, kann man sich vorher trotzdem einige hundert Meter quer durchs Unterholz

dorthin gekämpft haben. Meist weiss man auch nicht genau, wie der Cache versteckt ist. Wenn man

AK, 20.05.2023 Seite 125 document.doc

Garmin Geko 201 GPS mit echtem Gecko

Page 126: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

schliesslich in einem Umkreis von 20 Metern vom angegebenen Punkt jeden Stein umdreht und um Bäume

schleicht, wird klar, dass auch Positionsgenauigkeiten von unter 20 Metern nicht bedeuten, dass man an die

entsprechenden Punkte nur hinlaufen muss.

 

Was gibt es denn zu finden?

Die Caches (manchmal auch mit Stash = Stapel) bezeichnet, sind meist irgendwelche Kühl- oder

Frischhalteboxen oder irgend ein anderes wasserdichtes Gebinde. Dort hinein gibt der Verstecker ein

Logbuch, etwas zum Schreiben und nach Belieben kleine Schätze (häufig sind es nur Plastikfiguren, manchmal

auch CDs, Laserpointer, Schlüsselanhänger, Taschenmesser usw.) Manchmal befinden sich auch "Travelbugs"

in den Verstecken, doch dazu später.

 

Einen Cache suchen

Wenn man selbst einen Cache suchen will, schaut man einfach auf www.geocaching.com (englisch) oder der

jüngeren Seite www.navicache.com (englisch), was es denn für Caches in der Zielgegend gibt. Hier als

Beispiel unser Cache bei Basel. Praktisch ist hier die Möglichkeit einen Ort oder Koordinaten anzugeben und

sich dann Caches im Umkreis anzeigen zu lassen. Eigentlich sollte man mittlerweile fast überall einen

Geocache in maximal 50 Kilometern Entfernung finden können, da es über 30000 Caches in fast 150 Ländern

(Oktober 2002) gibt. Hat man sich einen Cache ausgewählt, den man suchen möchte, sollte man sich

zumindest die Koordinaten notieren oder gleich ins GPS-Gerät übertragen. Vielleicht will man noch die Seite

mit den Hinweisen ausdrucken, für alle Fälle. Auch kann es manchmal nützlich sein (vor allem, um

Frustrationen am Anfang zu vermeiden), die letzten Logbuch-Einträge des Caches durchzulesen. Meist finden

sich dort glücklicherweise keine Hinweise, die den Spass am suchen verderben könnten, aber ein Cache, der

schon von den letzten drei Besuchern absolut nicht gefunden werden konnte, ist entweder sehr schwierig oder

nicht mehr da.

Nachdem man vielleicht noch etwas nettes als Schatz eingepackt hat, kann man sich auf den Weg machen und

den Cache suchen. Wer im Umgang mit dem GPS etwas geübt ist, sollte keine Probleme haben. Anfänger

möchten vielleicht zuerst auf einer grossen Wiese üben, und suchen ein Stück Holz, das sie am Tag vorher -

nicht fünf Minuten vorher, das ist zu leicht, da sich die echte GPS-(Un)Genauigkeit nicht so schnell zeigt -

"versteckt" haben. Dabei merkt man dann, wie schwierig es ist, die letzten 20 - 30 Meter zu einem Zielpunkt

nach GPS zu gehen.

Wenn man nun seinen ersten Cache gefunden hat, sollte man sich ins (hoffentlich) beiliegende Logbuch

eintragen. Und man darf etwas vom Schatz herausnehmen und etwas anderes hineinlegen. Man hat also

vielleicht gerade die neueste Musik-CD gegen ein kleines Schweizer Taschenmesser (sehr beliebt und immer

gleich wieder weg) getauscht. Man sollte auch darauf achten, den Cache wieder gut zu verschliessen und

sorgfältig so und genau dort zu verstecken, wie es vom Verstecker vorgesehen ist.

Wieder zuhause angekommen sollte man auf geocaching.com oder navicache.com seinen Besuch wie

eintragen. Jeder Besitzer eines Cache freut sich riesig über diese Einträge und ist auch über Hinweise zum

Zustand des Cache und Verstecks (Wassereinbruch?) dankbar.

 

Selbst einen Schatz verstecken

 

AK, 20.05.2023 Seite 126 document.doc

Page 127: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Nachdem man beim Suchen auf den Geschmack gekommen ist, möchte man vielleicht selbst einen Cache

verstecken. Zu einem Cache gehört, wie oben bereits erwähnt, ein wasserdichter Behälter, ein Logbuch, etwas

zum Schreiben (Bleistifte sind vorteilhaft, weil sie weder einfrieren noch austrocknen noch auslaufen können)

und ein Schatz.

 

Es ist empfehlenswert, dem Cache oder dem Logbuch einen Hinweis

beizulegen, was das ganze soll, damit ein eventueller rein zufälliger

Finder auch weiss, was er vor sich hat. Wie dieser Hinweis aussehen

kann, lässt sich auf den oben genannten Geocache Seiten nachlesen,

oder man kann auch einfach unsere Vorlage für www.geocaching.com

Caches verwenden (pdf-File). Die Box wird nun an einem sicheren Ort

versteckt und die möglichst genauen Koordinaten dieses Ortes notiert.

Hierbei sollte auf guten Satellitenempfang, gute Satelliten-Geometrie

und vor allem die richtigen Einstellungen des GPS (Koordinatensystem WGS84) geachtet werden. Wer einen

GPS mit Möglichkeit der Mittelwertbildung über eine bestimmte Zeit (averaging) besitzt, sollte diese

verwenden. Weiterhin versteht sich von selbst, dass der Cache nicht ungefragt im Vorgarten des Nachbarn

deponiert werden darf. "Sicherer Ort" ist manchmal sehr relativ. Man glaubt kaum, wozu die Natur, Tiere,

spielende Kinder usw. fähig sind. Der Platz für einen Cache sollte also gewissenhaft ausgewählt werden, wenn

man den Cache nicht bald wieder "verlieren" möchte.

 

Wie erfahren die anderen von meinem Cache?

Wenn man nun also seinen Schatz versteckt hat, müssen natürlich andere Leute davon erfahren. Man kann

unter www.geocaching.com (englisch) nun ein Internet-Logbuch für seinen neuen Cache anlegen und die

Koordinaten, ergänzende Texte und vielleicht auch Bilder dazu ablegen. Man kann seinen Cache auch

zusätzlich auf der jüngeren Seite www.navicache.com (englisch) eintragen, damit möglichst viele Leute davon

erfahren. Daraus ergibt sich allerdings die Gefahr der Verwirrung, da ja Logbuch-Einträge auf der einen Seite

nicht auch auf der anderen Seite erscheinen und somit die angezeigten Informationen nicht zwingend aktuell

sind. Wir persönlich halten es für ungünstig, dass es jetzt zwei Geocaching Seiten gibt, aber was solls.

Unter www.geocaching.de gibt es zu beiden Seiten eine etwas ausführlichere Erklärung und Hilfestellung für

alle, die sich auf den englischen Seiten nicht so gut zurecht finden. Von da ab heisst es warten, bis sich die

ersten Besucher melden und ab und an sollte der Cache vom Besitzer besucht werden, um nach dem Rechten

zu sehen. Für die Schweizer Caches und Geocacher exisitert hier eine Info-Seite.

Und wer auf deutsch über und rund um Geocaches diskutieren möchte, der sollte unbedingt hier mal

vorbeischauen.

 

TravelbugsTravelbugs sind "Reisekäfer". Eigentlich handelt es sich dabei nur um

Metallplättchen, die durch eine eindeutige Nummer identifiziert werden

können. Sie sehen aus wie die altbekannten "Hundemarken" beim

Militär und funktionieren auch so ähnlich. Travelbugs gibt es bisher nur

bei www.geocaching.com und können auch nur dort bzw. beim

europäischen Vertriebspartner (englisch) bestellt werden. In der

Schweiz gibt es jetzt hier einen offiziellen Vertrieb des geocaching-

AK, 20.05.2023 Seite 127 document.doc

 Ausgepackter Geocache

 Travelbug

Page 128: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Zubehörs. Wenn man nun einen Travelbug hat, wird dieser auf der geocaching-Seite aktiviert und man kann

ihn entweder so wie er ist verwenden. Oder, was netter ist, man verbindet ihn mit einem Stofftier oder

irgendetwas, gibt ihm einen schönen Namen und vielleicht noch einen Auftrag. Eine Übersicht, was da so alles

unterwegs ist, findet man hier. Dieser Auftrag kann beispielsweise darin bestehen, ein bestimmtes Land zu

erreichen, hier kann jeder seiner Fantasie freien Lauf lassen. Wenn der Travelbug bereit ist für sein Reise,

bringt man ihn einfach zu einem Geocache, gibt auf der Internetseite an, dass der Travelbug jetzt dort ist, und

wartet, dass er gefunden wird. Von nun an kann der Travelbug von Cache zu Cache reisen und Dinge erleben.

Jeder, der den Travelbug findet und weiterbewegt, trägt dies im Internet ein und man kann jederzeit

erkennen, wo sich der Travelbug gerade befindet und welchen Weg er genommen hat. Als Beispiel wieder

einen unserer Travelbugs. Auf jeden Fall ist es wichtig, nicht nur auf der Seite des Cache sondern auch auf der

Seite des Travelbugs einzutragen, was mit dem Travelbug passiert, also wer ihn genommen hat oder in

welchen Cache er gesetzt wurde. Nächeres dazu hier (englisch).

Bei den Travelbugs ergeben sich auch potenziell Probleme mit der zweiten Geocaching Seite. Wenn ein

Travelbug in einem Cache landet, der nur dort gelistet ist, scheint er verloren, da er zwar aus dem einen

Cache entfernt, aber im Neuen nicht wieder eingetragen werden kann. Irgendwann wird ihn aber vermutlich

wieder jemand finden und in einen Cache legen, der zu geocaching.com gehört und dann ist die Welt für den

Travelbug wieder in Ordnung.

 

 

Links zum Thema:

 

www.geocaching.com - Erfinder des Geocachings (englisch)

www.navicache.com - Eine andere Geocaching-Seite (englisch)

www.swissgeocache.ch - Schweizer Geocaching-Seite

www.geocaching.de - Deutsche Einstiegsseite ins Geocaching

www.geocache-forum.de - Diskussionsforum zum Theam Geocaching

 

 

Degree Confluence Project

Was ist das?

"Degree Confluence Points" also Zusammenflusspunkte von Graden meint geografische Punkte an denen sich

ganzzahlige Längen- und Breitengrade schneiden. Dies kann z.B. sein: N 48° 0.000' Breite und

E 10° 0.000' Länge. Auf deutsch sagt man wohl am besten einfach Konfluenzpunkte dazu.

 

Wie kommt man auf sowas?

Im Jahr 1996 hat Alex Jarrett das Projekt gestartet, da ihm die Idee gefiel, Orte zu besuchen, die durch eine

runde Zahl repräsentiert werden. Er wollte wissen, wie es dort aussieht. Die Frage war auch, ob vor ihm schon

andere Leute diese Punkte als besonders empfunden hatten. Zudem hatte er sich von einem Freund dazu

überreden lassen, ein GPS-Gerät zu kaufen und musste damit jetzt irgendetwas unternehmen. So hat er selbst

zahlreiche Konfluenzpunkte besucht und auf seiner Webseite darüber berichtet. Irgendwann begannen dann

AK, 20.05.2023 Seite 128 document.doc

Page 129: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

andere Leute ebenfalls diese Punkte zu besuchen und das ganze wurde immer umfangreicher... Zu finden ist

das Projekt jetzt unter www.confluence.org.

 

Was ist das Ziel?

Das Ziel ist so einfach wie umfangreich: Alle Konfluenzpunkte auf der Erde zu besuchen. Und es gibt viele

davon: Da es für jeden der 181 ganzzahligen Breitengrad (der Äquator bei 0° und 1° bis 90° nördlich sowie 1°

bis 90° südlich) 360 ganzzahlige Längegrade (0°, 180° sowie 1° bis 179° westlich und 1° bis 179° östlich) gibt,

errechnen sich daraus 65160 Punkte. Abziehen müssen wir noch 2x 359 Punkte, da sich an den Polen ja alle

360 Längengrade in einem Punkt befinden und es bleiben 64442 Punkte. Da in Richtung der Pole der Abstand

zwischen den Punkten stark abnimmt, werden dort einige ausgelassen bzw. nur als sekundäre

Konfluenzpunkte angesehen. Während am Äquator der Abstand zwischen zwei Längengraden noch etwa

111 km beträgt und es in unseren mittleren Breiten (45° bis 50°) noch etwa 75 km sind, liegen bei 85 ° die

Längengrade nur noch knapp 10 km auseinander.

Ab 49 ° nördlich bzw. südlich wird jeder dritte Punkt weggelassen. Nämlich dann, wenn der Rest beim Teilen

des Längengrads durch 3 den Wert 2/3 annimmt, also die Rechenoperation Längengrad modulo 3 den Wert 2

ergibt. Dies wird in Richtung der Pole solange durchgeführt, bis der Abstand zwischen den Punkten unter 2/3

des Abstands am Äquator beträgt. Dies ist bei 64° der Fall und hier wird zusätzlich noch jeder Punkt

weggelassen, bei dem die modulo 3 Rechnung 1 ergibt, also der Rest beim Teilen durch 3 den Wert 1/3 ergibt.

Bei 89° werden nur 10 der möglichen 360 Punkte besucht und bei 90° nur einer. Es bleiben also 47650 Punkt

übrig, von denen sich etwa 12000 auf Land befinden.

Das Ziel ist nun, möglichst alle diese Punkte zu Besuchen und zu Fotografieren. Daraus wird langsam aber

sicher eine Weltkarte mit Fotos der Konfluenzpunkte. Hier die Weltkarte und die Karte von Europa.

 

In Deutschland gibt es beispielsweise 32 primäre (Quadrate)

und weitere 15 sekundäre (Dreiecke) Konfluenzpunkte, die

mehr oder weniger zugänglich sind und schon mindestens

einmal besucht wurden. Da Deutschland sich zu einem

großen Teil oberhalb von 49° nördlicher Breite befindet, wird

hier jeder dritte Punkt nur als sekundärer Punkt berücksichtigt.

 

Wie besucht man einen Konfluenzpunkt?

Das Besuchen eines Konfluenzpunktes bedarf im Grunde genommen wenig Vorbereitung. Man könnte einfach

im GPS geradzahlige Koordinaten eingeben und drauf los fahren oder laufen. Praktischer ist es jedoch, wenn

man unter www.confluence.org ein wenig nachsieht, in welchem Gebiet sich ein gewünschter Punkt befindet,

damit man sich nachher nicht unterwartet in einem See oder einem Gletscher wiederfindet. Auf der erwähnten

Seite findet man zu jedem Konfluenzpunkt der Erde eine Karte und ein wenig Angaben über die Lage. So

ausgestattet kann die "Suche" nach dem Punkt losgehen. Wie beim Geocaching klingt das Laufen zu einem im

AK, 20.05.2023 Seite 129 document.doc

 Konfluenzpunkte in Deutschland (Quelle: www.confluence.org)

Page 130: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

GPS eingegebenen Punkt wieder sehr einfach, wer aber schon einmal nach GPS gelaufen bzw. gefahren ist,

weiss wie mühsam es sein kann, einen Punkt querfeldein zu erreichen. Meist wird erst auf dem Rückweg der

bequeme Weg entdeckt, der praktisch genau zum Zielpunkt geführt hätte. Da die GPS-Position je nach

Empfangsqualität mehr oder weniger stark schwanken kann, sieht man Konfluenz-suchende häufig beim

"Confluence Dance", also dem hin- und herlaufen in einem etwa 25 x 25 m grossen Gebiet um den Punkt zu

erwischen, an dem das GPS-Gerät Werte mit möglichst vielen Nullen nach dem Komma anzeigt.

Hat man nun einen Konfluenzpunkt gesucht und gefunden, oder es zumindest versucht, so darf man seine

Bemühungen im Internet veröffentlichen. Zu jedem Konfluenzpunkt gibt es eine Web-Seite mit Beschreibung

und Bildern. Als Beispiel ein von uns besuchter Punkt in der Provence in Frankreich (englisch).

 

Weitere "Spielereien"

GPS-DrawingGPS-Drawing bedeutet Zeichnen mit GPS. Dabei kann

man Strecken zurücklegen, die die Umrisse von

irgendwelchen Objekten, Schriftzügen oder ähnlichem

haben. Man kann auch einfach seine Bewegungen,

Fahrten, Flüge oder ähnliches aufzeichnen und sich an den entstehenden Linien freuen. Der Phantasie sind

keine Grenzen gesetzt.

Da man aber das Gezeichnete nur auf der Track-Aufzeichnung des GPS sieht, und das erst im Nachhinein, ist

die Orientierung schwierig und das ganze muss halbwegs geplant sein, will man nicht nur einen

Liniendurcheinander erzeugen.

Teilweise besonders interessant sind die Tracks überlagert auf Kartenmaterial oder dreidimensional mit

Höheninformationen.

 

GPS-Drawing ist eine schöne Idee, leider jedoch nicht allzu verbreitet aber vielleicht wird es ja noch. Und wer

weiss: So wie es Sandburgenbaumeisterschaften gibt, gibt es vielleicht irgendwann Meisterschaften wer die

schönsten GPS-Drawing Figuren zeichnet.

 

Wer mehr über GPS-Drawing wissen möchte, oder Anregungen für eigene Experimente sucht, der sollte

unbedingt mal hier (englisch) vorbeischauen.

 

 

 

 

 

 

Links zum Thema:

 

www.gpsdrawing.com - Erfinder(?) des GPS-Zeichnens (englisch)

 

 

 

AK, 20.05.2023 Seite 130 document.doc

 Beispiel einer GPS-Zeichnung (Quelle: gps-drawing; Jeremy Wood )

Page 131: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Interessante Seiten zum Thema

http://kanadier.gps-info.de/d-gpsundkanu.htm

GPS-Seiten von Ralf Schönfeld mit sehr vielen Informationen rund um GPS. Besonders ausführlich wird über

Geräte und Software berichtet. Sehr häufig aktualisiert und immer einen Blick wert...

 

http://www.gs-enduro.de/

Schonungslos umfangreiche Informationen zum Thema Navigation. Speziell der Teil über Projektionen und

Karten enthält alles, was man wissen will (vielleicht sogar noch mehr). Unbedingt vorbeischauen und ein

wenig Zeit mitbringen.

 

http://home.wtal.de/noegs/

GPS-Seite von Thomas Hasse mit ausgezeichneter FAQ zu GPS und allen verwandten Themen basierend auf

der maus.technik.gp-Newsgroup. Ausserdem gibt es ein grosses GPS-Lexikon und ein Magazin names GPS-

MAG mit vielen Artikeln zu Themen rund um GPS.

GPS-Zubehör

www.gpskabel.de

Qualitativ hochwertige Kabel zur Verbindung von Palm (und Verwandten) mit Garmin GPS.

 

Gerätehersteller

www.garmin.com

Garmin ist der wohl führende Hersteller von GPS-Geräten für den privaten Gebrauch (englisch).

 

www.magellangps.com

Ein weiterer recht bekannter Hersteller für GPS-Geräte. Magellan bietet auch einen aufsteckbaren GPS-

Empfänger für den Palm an (englisch).

 

www.trimble.com

Ein zumindest hierzulande wenig bekannter Hersteller für GPS-Geräte. Ist eher auf Profi-Geräte zur

Landvermessung spezialisiert (englisch).

 

www.u-blox.com

Schweizer Hersteller von qualitativ hochwertigen GPS-Bausteinen. Eigentlich vor allem für professionelle

Systementwickler gedacht, aber durchaus auch für Bastler interessant.

 

www.leica-geosystems.com

Leica ist ein unter Vermessern ebenfalls sehr bekannter Hersteller, der jedoch keine Geräte für den typischen

Privatgebrauch herstellt.

 

BesucherlinksAK, 20.05.2023 Seite 131 document.doc

Page 132: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

Auf dieser Seite finden Sie noch Links die von Besuchern von kowoma/gps empfohlen wurden.

 

Von anderen Besuchern empfohlene Links

Sie können hier selbst Links eintragen, damit andere Besucher diese Seiten ebenfalls besuchen können. Die

Links sollten natürlich einen Bezug zu GPS haben.

 

--   Neuen Link eintragen --

 

http://home.wtal.de/noegs/ eingetragen von Thomas Morgenbesser   (Link   melden )

Ebenfalls eine tolle GPS-Seite mit einer Menge interessanter FAQ.

 

http://www.waypoint-gps.de eingetragen von Marion Lehmann   (Link   melden )

Kompetenter Versandhandel von GPS Empfängern und Software für Straßennavigation und für Anwendungen

im Outdoorbereich wie Wandern, Segeln, Motorrad- oder Fahrradfahren.

 

http://www.gpswandern.de eingetragen von Helmut Karger   (Link   melden )

Wanderseite mit Tourenbeschreibungen und Downloadmöglichkeit der entsprechenden GPS-Routen im PCX5-

Format.

 

http://www.BIKERTECH.de eingetragen von Gunnar Mill   (Link   melden )

GPS Halterungen aus Kunststoff - Kleinserienfertigung. Offroadtauglich - Für Motorrad + Fahrrad + KFZ .

Zubehör für GPS-Elektrik

 

http://www.GPS-Tracks.com eingetragen von Christian Steiner   (Link   melden )

Über 2600 Alpin- und Bike-Touren im gesamten Alpenraum mit wegkrümmungsgenauen GPS-Daten. Alle

Touren auf Satellitenkarte selektierbar und mit grafischen Overlays für elektronische Karten.

 

http://home.vr-web.de/~benji/ eingetragen von Thomas Peter   (Link   melden )

Weitere ausführliche Informationen zum Thema GPS in seinen Funktionen

 

http://www.planiglobe.com eingetragen von Roland Kantz   (Link   melden )

Geografische Karten erstellen, eigene Lokationen (lat/lon) eingeben, PostScript oder Illustrator Version

downloaden. Lizenzkostenfrei, weltweite Abdeckung

 

http://www.ifb-klotz-s.de/TrackViewer/ eingetragen von Holger Wiegleb   (Link   melden )

Software für Sportler - Auswertung/Visualisierung von GPS-Tracks, synchronisiert mit Herzfrequenzdaten aus

Polar-Pulsuhren bzw. Ciclosport HAC4.

Schnittstelle zu Top50 bzw. MagicMaps

 

http://www.digitalpear.de eingetragen von Cyrill Schumacher   (Link   melden )

Handel für GPS Empfänger und Unterhaltungselektronik

 

AK, 20.05.2023 Seite 132 document.doc

Page 133: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

http://forte.fh-hagenberg.at/Project-Homepages/Blindenhund/index.htm eingetragen von Gast   (Link   melden )

Software-Lösung für sehbehinderte Fußgänger auf Basis von GPS-Navigation

 

http://www.gpstm.com/ eingetragen von Gast   (Link   melden )

GPS-Software (Freeware) in Englisch und Spanisch. Ermöglicht u. a. die Verwaltung von Wegpunkten, Routen

und Tracks von den meisten GarminGPS.

 

http://www.oziexplorer.com/ eingetragen von Hugentobler   (Link   melden )

Movingmap Software für PC/Laptops und PDA's. ähnlich FUGAWI - aber günstiger.

 

http://www.topgps.de eingetragen von Heribert Cebulla   (Link   melden )

Wandern mit GPS /(PDA) und den TOP50/25 Karten der

Landesvermessungsämter.

 

http://www.vollmer-roosen.de/Roosen/index.php?pageid=15 eingetragen von Gast   (Link   melden )

Konverterprogramm, mit dem man Tourenplanungen aus den meisten Standard-PC-Planern als

(Mehrfach-)Routen in fast alle GPS-Handgeräte bekommt. U.a. werden hierbei die Routenpunkte automatisch

"wegweisend" benannt.

 

http://www.road-navigation.de eingetragen von Klaus Meyerhof   (Link   melden )

GPS-Maus, CF-GPS und Bluetooth GPS Hersteller und Vertieb mit Online Internet Shop. GPS Tools und Hilfe.

 

http://www.environmental-studies.de eingetragen von Uli Fielitz   (Link   melden )

Wildlife tracking with GPS, GPS glossary, GPS introduction, Hunde wiederfinden mit GPS und Mobilfunk

(GSM)

 

http://www.EasyGeo.de eingetragen von Frank Sander   (Link   melden )

Erstellen Sie individuelle GPS-Routen für Radtouren und Wanderungen in Verb. mit den für Ihre Zwecke

optimalen Kartenwerken. Das System ist einfach zu bedienen, funktioniert weltweit und die Routen können auf

alle gängigen GPS Empfänger übertragen werden.

 

http://www.gps-solution.de eingetragen von GPS-SOLUTION   (Link   melden )

MOBILE GPS NAVIGATIONS SYSTEME FÜR PDA UND LAPTOP -> GPS EMPFÄNGER, HALTERUNGEN,

NAVIGATIONSSOFTWARE, PDAs, POCKET PCs, Speicherkarten, Downloads UND VIELES MEHR

 

http://www.notebookforum.at eingetragen von Manfred   (Link   melden )

Neues Notebook Forum. Gerne werden auch Fragen zu GPS am Notebook dsikutiert...

 

http://www.ttqv.com eingetragen von Jockel   (Link   melden )

TOURATECH-QV und PATHAWAY, GPS und Navigations Software für PCs, PALMs, PPCs kompatibel mit vielen

gängingen Karten-CDs.

 

http://marnav.de eingetragen von TEC-Promotion   (Link   melden )

eShop der GPS Geräte namenhafter Hersteller vertreibt.

AK, 20.05.2023 Seite 133 document.doc

Page 134: WER SICH FÜR PRAKTISCHE GPS-ANWENDUNGEN ...€¦ · Web viewAus diesem Grund wird sie häufig dazu verwendet, die Ansicht der Erde aus dem Weltraum wiederzugeben. Wie auch bei der

 

http://www.gps.gov.uk/additionalInfo/gpsSpreadsheet.asp eingetragen von Markus Hugentobler   (Link   melden )

Auf diesen Seiten von Ordonance Survey(GB)findet sehr gute ( in englisch)Informationen zur

Koordinatentransformation inkl einem Excelfile mit den nötigen Infos/Formeln und einem VBA-Modul mit den

programmierten transformationsformeln (Helmert)

 

http://www.suunto-store.de eingetragen von Thorsten Lauterbach   (Link   melden )

Sehr guter Onlineshop für SUUNTO Uhren. Viele GPS- und Outdooruhren mit umfangreichen Beschreibungen

und Bildern.

 

http://www.hanshehl.de/multimedia1.htm eingetragen von Dr. Hehl Hans   (Link   melden )

Navigation im Merecedes-Geländewagen G 270CDI mit Comand 2.0 und viele weitere Tipps über Mercedes-

Geländewagen.

 

http://www.sping.com/seaclear/index.htm eingetragen von Jan H. Kuhlmann   (Link   melden )

SeaClear ist ein PC Karten-Plotter und eine Navigations-Software (Freeware !!). An ein GPS angeschlossen,

zeigt er das Schiff auf der Karte und viele weitere Informationen im Navigationsfeld. Als Bitmaps können vom

Papier eingescannte Karten genutzt werde

 

http://www.semsons.com/bluetcarchar3.html eingetragen von Bootsmann   (Link   melden )

Garmin Bluetooth KFZ-Lader

 

http://www.ATLSoft.de eingetragen von Bernd Altmeier   (Link   melden )

Movingmap Software für PDA's. ähnlich FUGAWI/Oziexplorer - aber günstiger.

 

http://www.norwegen-angelforum.de eingetragen von Christian R.   (Link   melden )

Auch beim fischen brauch man Gps, Echolot und Kartenplotter. Deutsches Angelforum über Norwegen

 

http://www.macgps.com eingetragen von Fritz Wettstein   (Link   melden )

Preiswerte Macintosh GPS Software. Viele interessante Links. Englisch

 

http://www.showgps.de eingetragen von H. Schaufert   (Link   melden )

Umfangreiches und schönes GPS-Info-Programm. Automatisches Logging, Skinable, Programmierung von

Empfängern für Navigon und Systemcheck inklusive...

 

http://www.gps-vertrieb.biz eingetragen von Sorg Joachim   (Link   melden )

Langjähriger Onlineshop mit zufriedenen Kunden auch in der Schweiz.GPS Empfängern und Software für

Straßennavigation und für Anwendungen im Outdoorbereich wie Wandern, Segeln, Motorrad- oder

Fahrradfahren.

 

 

Richtigkeit und Inhalt der Benutzerlinks unterliegen der alleinigen Verantwortung desjenigen, der den Link gesetzt hat. Links, die 30 Tage lang nicht angeklickt wurden, werden automatisch gelöscht. Je häufiger ein Link angeklickt wurde, desto weiter oben in der Liste wird er aufgeführt, neu eingetragene Links werden 7 Tage lang als "neu" markiert und zuoberst angezeigt. kowoma behält sich vor, Links jederzeit und ohne vorherige Ankündigung zu entfernen oder anzupassen.

AK, 20.05.2023 Seite 134 document.doc