139
Anmerkungen und Literaturangaben Kapitel 0 1. C. D. Keeling, “Rewards and Penalties of Monitoring the Earth,” Ann. Rev. Energy Environ. 1998, 23, 25–82. Diese fesselnde Autobiographie kann kostenlos heruntergeladen werden unter http://scrippsco2.ucsd.edu/publications/kee- ling_autobiography.pdf. 2. J. C. Orr et al., “Anthropogenic Ocean Acidification over the Twenty-first Century and Its Impact on Calcifying Or- ganisms,” Nature 2005, 437, 681. 3. S. P. Beckett, The Science of Chocolate, 2nd ed. (Cam- bridge: Royal Society of Chemistry, 2008); G. Tannenbaum, “Chocolate: A Marvelous Natural Product of Chemistry,” J. Chem. Ed. 2004, 81, 1131. 4. T. J. Wenzel, “A New Approach to Undergraduate Analyti- cal Chemistry,” Anal. Chem. 1995, 67, 470A. Siehe auch T. J. Wenzel, “The Lecture as a Learning Device,” Anal. Chem. 1999, 71, 817A; T. J. Wenzel, “Cooperative Student Activi- ties as Learning Devices,” Anal. Chem. 2000, 72, 293A; T. J. Wenzel, “Practical Tips for Cooperative Learning,” Anal. Chem. 2000, 72, 359A; T. J. Wenzel, “Undergraduate Re- search as a Capstone Learning Experience,” Anal. Chem. 2000, 72, 547A. 5. W. R. Kreiser and R. A. Martin, Jr., J. Assoc. Off. Anal. Chem. 1978, 61, 1424; W. R. Kreiser and R. A. Martin, Jr., J. Assoc. Off. Anal. Chem. 1980, 63, 591. Heute finden Sie wesentlich aktuellere Literatur über Koffein. 6. Eine gute Quelle für viele bewährte Analyseverfahren ist W. Horwitz, Official Methods of Analysis of AOAC Inter- national, 18th ed. (Gaithersburg, MD: AOAC Interna- tional, 2007). Kann im Internet gefunden werden unter http://my.aoac.org/scriptcontent/index.cfm. 7. W. Fresenius, “The Position of the Analyst as Expert: Yes- terday and Today,” Fresenius J. Anal. Chem. 2000, 368, 548. Kapitel 1 1. J. R. de Laeter and H. S. Peiser, “A Century of Progress in the Sciences Due to Atomic Weight and Isotopic Composi- tion Measurements,” Anal. Bioanal. Chem. 2003, 375, 62. 2. Reagent Chemicals, 10th ed. (Washington, DC: American Chemical Society, 2008). http://pubs.acs.org/reagents/in- dex.html. 3. R. W. Ramette, “In Support of Weight Titrations,” J. Chem. Ed. 2004, 81, 1715. 4. J. L. Sarmiento and N. Gruber, “Sinks for Anthropogenic Carbon,” Physics Today, August 2002, p. 30. 5. U. Shahin, S.-M. Yi, R. D. Paode, and T. M. Holsen, “Long- Term Elemental Dry Deposition Fluxes Measured Around Lake Michigan,” Environ. Sci. Tech. 2000, 34, 1887. Kapitel 2 1. V. Tsionsky, “The Quartz-Crystal Microbalance in an Un- dergraduate Laboratory Experiment,” J. Chem. Ed. 2007, 84, 1334, 1337, 1340. 2. Eine GaPO 4 -Kristall-Mikrowaage besitzt bessere Eigen- schaften als Quarz für variable und Hochtemperaturmes- sungen. (J. W. Elam and M. J. Pellin, “GaPO 4 Sensors for Gravimetric Monitoring during Atomic Layer Deposition at High Temperature,” Anal. Chem. 2005, 77, 3531.) 3. Eine vibrierende Messnadel (Cantilever) ist 10 7 mal sensi- tiver als eine Quarz-Mikrowaage und kann 1 fg messen (fg = femtogram = 10 -15 g). (D. Maraldo, K. Rijal, G. Campbell, and R. Mutharasan, “Method for Label-Free Detection of Femtogram Quantities of Biologics in Flowing Liquid Sam- ples,” Anal. Chem. 2007, 79, 2762.) 4. Die Frequenz bei gegebener Massebeladung ändert sich mit dem Quadrat der Resonanzfrequenz (Sauerbrey-Glei- chung). Mit großer Sorgfalt und exakter Mikromechanik kann man einen 62-MHz-Quarzoszillator herstellen. Kom- merzielle Quarzmikrowaagen schwingen bei 5-10 MHz. Die Massenempfindlichkeit des hier beschriebenen Oszilla- tors ist um einen Faktor von mindestens (62/10) 2 = 38 grö- ßer. (P. Kao, A. Patwardham, D. Allara, and S. Tadigadapa, “Human Serum Albumin Adsorption Study on 62-MHz Miniaturized Quartz Gravimetric Sensors,” Anal. Chem. 2008, 80, 5930.) 5. Hier findet man ein ausgezeichnetes Training zu den Grundlagen der Labortechnik: http://jchemed.chem.wisc. edu/ und bei www.academysavant.com. 6. R. J. Lewis, Sr., Hazardous Chemicals Desk Reference, 5th ed. (New York: Wiley, 2002); P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 2nd ed. (New York: Wiley, 1999); G. Lunn and E. B. Sanso- ne, Destruction of Hazardous Chemicals in the Laboratory (New York: Wiley, 1994); and M. A. Armour, Hazardous Laboratory Chemical Disposal Guide, 2nd ed. (Boca Raton, FL: CRC Press, 1996). 7. Wie Gold aus Elektronikmaterialien wiedergewonnen wird, finden Sie hier: J. W. Hill and T. A. Lear, “Recovery of Gold from Electronic Scrap,” J. Chem. Ed. 1988, 65, 802. Um Hg von Gold zu entfernen, wird das Material mit einer 1:1 D. C. Harris, Lehrbuch der quantitativen Analyse, DOI 10.1007/978-3-642-37788-4, © Springer-Verlag Berlin Heidelberg 2014

Anmerkungen und Literaturangaben - Home - Springer978-3-642-37788...E. J. Billo, Microsoft Excel for Chemists, 2nd ed. (New York: Wiley, 2001); R. de Levie, How to Use Excel® in Analytical

Embed Size (px)

Citation preview

  • Anmerkungen und Literaturangaben

    Kapitel 01. C. D. Keeling, Rewards and Penalties of Monitoring the

    Earth, Ann. Rev. Energy Environ. 1998, 23, 2582. Diese fesselnde Autobiographie kann kostenlos heruntergeladen werden unter http://scrippsco2.ucsd.edu/publications/kee-ling_autobiography.pdf.

    2. J. C. Orr et al., Anthropogenic Ocean Acidification over the Twenty-first Century and Its Impact on Calcifying Or-ganisms, Nature 2005, 437, 681.

    3. S. P. Beckett, The Science of Chocolate, 2nd ed. (Cam-bridge: Royal Society of Chemistry, 2008); G. Tannenbaum, Chocolate: A Marvelous Natural Product of Chemistry, J. Chem. Ed. 2004, 81, 1131.

    4. T. J. Wenzel, A New Approach to Undergraduate Analyti-cal Chemistry, Anal. Chem. 1995, 67, 470A. Siehe auch T. J. Wenzel, The Lecture as a Learning Device, Anal. Chem. 1999, 71, 817A; T. J. Wenzel, Cooperative Student Activi-ties as Learning Devices, Anal. Chem. 2000, 72, 293A; T. J. Wenzel, Practical Tips for Cooperative Learning, Anal. Chem. 2000, 72, 359A; T. J. Wenzel, Undergraduate Re-search as a Capstone Learning Experience, Anal. Chem. 2000, 72, 547A.

    5. W. R. Kreiser and R. A. Martin, Jr., J. Assoc. Off. Anal. Chem. 1978, 61, 1424; W. R. Kreiser and R. A. Martin, Jr., J. Assoc. Off. Anal. Chem. 1980, 63, 591. Heute finden Sie wesentlich aktuellere Literatur ber Koffein.

    6. Eine gute Quelle fr viele bewhrte Analyseverfahren ist W. Horwitz, Official Methods of Analysis of AOAC Inter-national, 18th ed. (Gaithersburg, MD: AOAC Interna-tional, 2007). Kann im Internet gefunden werden unter http://my.aoac.org/scriptcontent/index.cfm.

    7. W. Fresenius, The Position of the Analyst as Expert: Yes-terday and Today, Fresenius J. Anal. Chem. 2000, 368, 548.

    Kapitel 11. J. R. de Laeter and H. S. Peiser, A Century of Progress in

    the Sciences Due to Atomic Weight and Isotopic Composi-tion Measurements, Anal. Bioanal. Chem. 2003, 375, 62.

    2. Reagent Chemicals, 10th ed. (Washington, DC: American Chemical Society, 2008). http://pubs.acs.org/reagents/in-dex.html.

    3. R. W. Ramette, In Support of Weight Titrations, J. Chem. Ed. 2004, 81, 1715.

    4. J. L. Sarmiento and N. Gruber, Sinks for Anthropogenic Carbon, Physics Today, August 2002, p. 30.

    5. U. Shahin, S.-M. Yi, R. D. Paode, and T. M. Holsen, Long-Term Elemental Dry Deposition Fluxes Measured Around Lake Michigan, Environ. Sci. Tech. 2000, 34, 1887.

    Kapitel 21. V. Tsionsky, The Quartz-Crystal Microbalance in an Un-

    dergraduate Laboratory Experiment, J. Chem. Ed. 2007, 84, 1334, 1337, 1340.

    2. Eine GaPO4-Kristall-Mikrowaage besitzt bessere Eigen-schaften als Quarz fr variable und Hochtemperaturmes-sungen. (J. W. Elam and M. J. Pellin, GaPO4 Sensors for Gravimetric Monitoring during Atomic Layer Deposition at High Temperature, Anal. Chem. 2005, 77, 3531.)

    3. Eine vibrierende Messnadel (Cantilever) ist 107 mal sensi-tiver als eine Quarz-Mikrowaage und kann 1 fg messen (fg = femtogram = 10-15 g). (D. Maraldo, K. Rijal, G. Campbell, and R. Mutharasan, Method for Label-Free Detection of Femtogram Quantities of Biologics in Flowing Liquid Sam-ples, Anal. Chem. 2007, 79, 2762.)

    4. Die Frequenz bei gegebener Massebeladung ndert sich mit dem Quadrat der Resonanzfrequenz (Sauerbrey-Glei-chung). Mit groer Sorgfalt und exakter Mikromechanik kann man einen 62-MHz-Quarzoszillator herstellen. Kom-merzielle Quarzmikrowaagen schwingen bei 5-10 MHz. Die Massenempfindlichkeit des hier beschriebenen Oszilla-tors ist um einen Faktor von mindestens (62/10)2 = 38 gr-er. (P. Kao, A. Patwardham, D. Allara, and S. Tadigadapa, Human Serum Albumin Adsorption Study on 62-MHz Miniaturized Quartz Gravimetric Sensors, Anal. Chem. 2008, 80, 5930.)

    5. Hier findet man ein ausgezeichnetes Training zu den Grundlagen der Labortechnik: http://jchemed.chem.wisc.edu/ und bei www.academysavant.com.

    6. R. J. Lewis, Sr., Hazardous Chemicals Desk Reference, 5th ed. (New York: Wiley, 2002); P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 2nd ed. (New York: Wiley, 1999); G. Lunn and E. B. Sanso-ne, Destruction of Hazardous Chemicals in the Laboratory (New York: Wiley, 1994); and M. A. Armour, Hazardous Laboratory Chemical Disposal Guide, 2nd ed. (Boca Raton, FL: CRC Press, 1996).

    7. Wie Gold aus Elektronikmaterialien wiedergewonnen wird, finden Sie hier: J. W. Hill and T. A. Lear, Recovery of Gold from Electronic Scrap, J. Chem. Ed. 1988, 65, 802. Um Hg von Gold zu entfernen, wird das Material mit einer 1:1

    Harris_T3.indd 809 18.12.2013 10:52:14

    D. C. Harris, Lehrbuch der quantitativen Analyse,DOI 10.1007/978-3-642-37788-4, Springer-Verlag Berlin Heidelberg 2014

  • 810 Anmerkungen und Literaturangaben

    Mischung von 0.01 M (NH4)2S2O8 und 0.01 M HNO3 be-handelt; siehe bei T. Nomura and M. Fujisawa, Electrolytic Determination of Mercury(II) in Water with a Piezoelectric Quartz Crystal, Anal. Chim. Acta 1986, 182, 267.

    8. P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice (New York: Oxford University Press, 1998); M. C. Cann and M. E. Connelly, Real-World Cases in Green Chemistry (Washington, DC: American Chemical Society, 2000); M. Lancaster, Green Chemistry: An Introductory Text (Cambridge: Royal Society of Chemistry, 2002); C. Baird and M. Cann, Environmental Chemistry, 3rd ed. (New York: W. H. Freeman and Company, 2005); J. E. Girard, Principles of Environmental Chemistry (Sudbury, MA: Bartlett, 2005); B. Braun, R. Charney, A. Clarens, J. Farrugia, C. Kitchens, C. Lisowski, D. Naistat, and A. ONeil, J. Chem. Ed. 2006, 83, 1126.

    9. J. M. Bonicamp, Weigh This Way, J. Chem. Ed. 2002, 79, 476.

    10. B. B. Johnson and J. D. Wells, Cautions Concerning Elect-ronic Analytical Balances, J. Chem. Ed. 1986, 63, 86.

    11. Eine Demonstration des Auftriebs findet man hier: K. D. Pinkerton, Sink or Swim: The Cartesian Diver, J. Chem. Ed. 2001, 78, 200A (JCE Classroom Activity #33).

    12. R. Batting and A. G. Williamson, Single-Pan Balances, Buoyancy, and Gravity or A Mass of Confusion, J. Chem. Ed. 1984, 61, 51; J. E. Lewis and L. A. Woolf, Air Buoyancy Corrections for Single-Pan Balances, J. Chem. Ed. 1971, 48, 639; F. F. Cantwell, B. Kratochvil, and W. E. Harris, Air Buoyancy Errors and the Optical Scale of a Constant-Load Balance, Anal. Chem. 1978, 50, 1010; G. D. Chapman, Weighing with Electronic Balances, National Research Council of Canada, Report NRCC 38659 (1996).

    13. Die Dichte von Luft (g/L) = (0.003 485 B - 0.001 318 v)/T, wobei B der Luftdruck (Pa) ist, v ist der Dampfdruck des Wassers in der Luft (Pa), und T ist die Lufttemperatur (K).

    14. U. Henriksson and J. C. Eriksson, Thermodynamics of Capillary Rise: Why Is the Meniscus Curved? J. Chem. Ed. 2004, 81, 150.

    15. Die Reinigungslsung wird durch Auflsen von 36 g Am-moniumperoxidisulfat (NH4)2S2O8, in einer lose mit einem Stopfen verschlossenen 2.2-L (one gallon) Flasche mit 98 Gew% Schwefelsure hergestellt. (H. M. Stahr, W. Hyde, and L. Sigler, Oxidizing Acid Baths - without Chromate Hazards, Anal. Chem. 1982, 54, 1456A). Die Zugabe von (NH4)2S2O8 alle paar Wochen erhlt die Oxidationskraft der Lsung. Halten Sie die Flasche wegen der Gasentwick-lung locker mit einem Stopfen verschlossen. (P. S. Surdhar, Laboratory Hazard, Anal. Chem. 1992, 64, 310A). Die kommerzielle Reinigungslsung EOSULF (enthlt EDTA und ein Tensid) ist eine Alternative zum Entfernen von eingebrannten Lipiden oder Proteinen von Glasgerten. (P. L. Manske, T. M. Stimpfel,and E. L. Gershey, A Less Hazardous Chromic Acid Substitute for Cleaning Glass-ware, J. Chem. Ed. 1990, 67, A280.) Eine andere sehr stark oxidierend wirkende Reinigungslsung, genannt Piranha Lsung, ist eine 1:1 (Vol/Vol) Mischung von 30 Gew% H2O2 und 98 Gew% H2SO4.

    16. W. B. Guenther, Supertitrations: High-Precision Methods, J. Chem. Ed. 1988, 65, 1097; D. D. Siemer, S. D. Reeder, and M. A. Wade, Syringe Buret Adaptor, J. Chem. Ed. 1988, 65, 467.

    17. M. M. Singh, C. McGowan, Z. Szafran, and R. M. Pike, A Modified Microburet for Microscale Titration, J. Chem. Ed. 1998, 75, 371; A Comparative Study of Microscale and Standard Burets, J. Chem. Ed. 2000, 77, 625.

    18. D. R. Burfield and G. Hefter, Oven Drying of Volumetric Glassware, J. Chem. Ed. 1987, 64, 1054.

    19. R. H. Obenauf and N. Kocherlakota, Identifying Contami-nation in Trace Metal Laboratories, Spectroscopy Applica-tions Supplement, March 2006, p. 12.

    20. W. Vaccaro, Minimizing Liquid Delivery Risk: Operators as Sources of Error, Am. Lab. News Ed. September 2007, p. 16; A. B. Carle, Minimizing Liquid Delivery Risk: Barome-tric Pressure and Thermal Disequilibrium, Am. Lab. News Ed. January 2008, p. 8.

    21. K. J. Albert, Minimizing Liquid Delivery Risk: Automated Liquid Handlers as Sources of Error, Am. Lab. News Ed. June/July 2007, p. 8.

    22. M. Connors and R. Curtis, Pipetting Error, Am. Lab. News Ed. June 1999, p. 20; ibid. December 1999, p. 12; R. H. Cur-tis and G. Rodrigues, ibid. February 2004, p. 12.

    23. R. Curtis, Minimizing Liquid Delivery Risk: Pipets as Sour-ces of Error, Am. Lab. News Ed. March 2007, p. 8.

    24. B. Kratochvil and N. Motkosky, Precision and Accuracy of Mechanical-Action Micropipets, Anal. Chem. 1987, 59, 1064. Ein kolorimetrisches Kalibrations-Kit ist erhltlich von Artel, Inc., Westbrook, ME, www.artel-usa.com/.

    25. E. J. Billo, Microsoft Excel for Chemists, 2nd ed. (New York: Wiley, 2001); R. de Levie, How to Use Excel in Analytical Chemistry and in General Scientific Data Analysis (Cam-bridge: Cambridge University Press, 2001); E. J. Billo, Ex-cel for Scientists and Engineers: Numerical Methods (New York: Wiley, 2007); R. de Levie, Advanced Excel for Sci-entific Data Analysis, 2nd ed. (Oxford: Oxford University Press, 2008).

    26. D. Bohrer, P. Ccero do Nascimento, P. Martins, and R. Bi-notto, Availability of Aluminum from Glass on an Al Form Ion Exchanger in the Presence of Complexing Agents and Amino Acids, Anal. Chim. Acta 2002, 459, 267.

    Kapitel 31. Einen Katalog ber Standardreferenzmaterialien erhlt man

    bei: [email protected]. Europische Referenzmateri-alien erhlt man bei: http://www.erm-crm.org.

    2. J. R. Taylor, An Introduction to Error Analysis, 2nd ed. (Sau-salito, CA: University Science Books, 1997). Ein besonders lesenswertes Buch.

    3. Gut lesbare Abhandlungen ber Fehlerfortpflanzung, die ber die Ausfhrungen in diesem Buch hinausgehen, finden Sie bei B. Wampfler, M. Rsslein, and H. Felber, The New Measurement Concept Explained by Using an Introducto-ry Example, J. Chem. Ed. 2006, 83, 1382; EURACHEM/CITAG Guide CG 4, Quantifying Uncertainty in Analytical Measurements, 2nd ed., http://www.measurementuncer-

    Harris_T3.indd 810 18.12.2013 10:52:14

  • Anmerkungen und Literaturangaben 811

    tainty.org/mu/QUAM2000-1.pdf; The NIST Reference on Constants, Units, and Uncertainty, http://physics.nist.gov/cuu/.

    4. P. De Bivre, S. Valkiers, and P. D. P. Taylor, The Im-portance of Avogadros Constant for Amount-of-Substance Measurements, Fresenius J. Anal. Chem. 1998, 361, 227.

    Kapitel 41. Sehr gute und verstndliche Quellen zur Statistik sind D. B.

    Hibbert and J. J. Gooding, Data Analysis for Chemistry (Ox-ford: Oxford University Press, 2006); J. C. Miller and J. N. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th ed. (Harlow, UK: Pearson Prentice Hall, 2005); and P. C. Meier and R. E. Znd, Statistical Methods in Analytical Chemistry, 2nd ed. (New York: Wiley, 2000).

    2. L. H. Keith, W. Crummett, J. Deegan, Jr., R. A. Libby, J. K. Taylor, and G. Wentler, Principles of Environmental Ana-lysis, Anal. Chem. 1983, 55, 2210.

    3. Wenn tberechnet aus der Gleichung 4.8 kleiner ist als ttabelliert, knnen wir folgern, dass sich die beiden Mittelwerte bei dem gewhlten Vertrauensniveau statistisch nicht signifi-kant unterscheiden. Dieser Test gibt uns nicht die gleiche Sicherheit, dass zwei Mittelwerte gleich sind. Der quiva-lenztest (TOST) bietet eine Mglichkeit zu zeigen, dass zwei Mittelwerte quivalent sind: S. E. Lewis and J. E. Lewis, The Same or Not the Same: Equivalence as an Issue in EducationalResearch, J. Chem. Ed. 2005, 82, 1408, and G. B. Limentani, M. C. Ringo, F. Ye, M. L. Bergquist, and E. O. McSorley, Beyond the t-Test: Statistical Equivalence Tes-ting, Anal. Chem. 2005, 77, 221A.

    4. NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/prc/section3/prc31.htm. Die Gleichung 4.9a wird auch Welch-Satterthwaite-Nhe-rung genannt.

    5. S. A. Lee, R. K. Ross, and M. C. Pike, An Overview of Me-nopausal OestrogenProgestin Hormone Therapy and Breast Cancer Risk, Br. J. Cancer 2005, 92, 2049.

    6. Fr eine umfassende Beschreibung der Methode der kleins-ten Quadrate zur Anpassung von nichtlinearen Kurven, einschlielich der Analyse der Unsicherheit, siehe J. Tel-linghuisen, Understanding Least Squares through Monte Carlo Calculations, J. Chem. Ed. 2005, 82, 157; P. Ogren, B. Davis, and N. Guy, Curve Fitting, Confidence Intervals and Correlations, and Monte Carlo Visualizations for Mul-tilinear Problems in Chemistry: A General Spreadsheet Ap-proach, J. Chem. Ed. 2001, 78, 827; siehe auch D. C. Harris, Nonlinear Least-Squares Curve Fitting with Microsoft Ex-cel Solver, J. Chem. Ed. 1998, 75, 119; C. Salter and R. de Levie, Nonlinear Fits of Standard Curves: A Simple Route to Uncertainties in Unknowns, J. Chem. Ed. 2002, 79, 268; R. de Levie, Estimating Parameter Precision in Nonlinear Least Squares with Excels Solver, J. Chem. Ed. 1999, 76, 1594; S. E. Feller and C. F. Blaich, Error Estimates for Fitted Parameters, J. Chem. Ed. 2001, 78, 409; R. de Levie, When, Why, and How to Use Weighted Least Squares, J. Chem. Ed. 1986, 63, 10; P. J. Ogren and J. R. Norton, Ap-plying a Simple Linear Least-Squares Algorithm to Data

    with Uncertainties in Both Variables, J. Chem. Ed. 1992, 69, A130.

    7. In diesem Buch tragen wir normalerweise das analytische Signal auf der y-Achse gegen die Konzentration auf der x-Achse auf. Die inverse Kalibrierung (y = Konzentra-tion, x = Signal) liefert ihnen eine genauere Schtzung der Konzentration aus einem gemessenen Signal. Die in-verse Kalibrierung ist besonders dann von Vorteil, wenn das Rauschen des Signals zunimmt.Es gibt Flle, wie zum Beispiel spektralphotometrische Messungen, bei denen die Unsicherheit des Signals (Extinktion) kleiner ist als die Unsicherheit in der Konzentration. In solchen Fllen ist es sinnvoll, das Signal auf der x-Achse und die Konzentration auf der y-Achse aufzutragen. Siehe J. Tellinghuisen, Inver-se vs Classical Calibration for Small Data Sets, Fresenius J. Anal. Chem. 2000, 368, 585; V. Centner, D. L. Massart, and S. de Jong, Inverse Calibration Predicts Better Than Classical Calibration, Fresenius J. Anal. Chem. 1998, 361, 2; D. Grientschnig, Relation Between Prediction Errors of Inverse and Classical Calibration, Fresenius J. Anal.Chem. 2000, 367, 497.

    8. K. Danzer and L. A. Currie, Guidelines for Calibration in Analytical Chemistry, Pure Appl.Chem. 1998, 70, 993.

    9. C. Salter, Error Analysis Using the Variance-Covariance Matrix, J. Chem. Ed. 2000, 77, 1239. Die Gleichung 8 von Salter entspricht Gleichung 4.27, obwohl diese quivalenz nicht offensichtlich ist.

    10. N. J. Lawryk and C. P. Weisel, Concentration of Volatile Organic Compounds in the Passenger Compartments of Automobiles, Environ. Sci. Tech. 1996, 30, 810.

    Kapitel 51. C. Hogue, Ferreting Out Erroneous Data, Chem. Eng. News,

    1 April 2002, p. 49.2. D. B. Hibbert, Quality Assurance for the Analytical Che-

    mistry Laboratory (Oxford: Oxford University Press, 2007); W. Funk, V. Dammann, and G.Donnevert, Quality Assuran-ce in Analytical Chemistry (Hoboken, NJ: Wiley, 2006); B. W. Wenclawiak, M. Koch, and E. Hadjiscostas, eds., Quality Assurance in Analytical Chemistry (Heidelberg: Springer-Verlag, 2004); E.Mullins, Statistics for the Quality Control Chemistry Laboratory (Cambridge: Royal Society of Che-mistry, 2003); P. Quevauviller, Quality Assurance for Water Analysis (Chichester: Wiley, 2002); M. Valcrcel, Principles of Analytical Chemistry (Berlin: Springer-Verlag, 2000).

    3. K. M. Phillips, K. Y. Patterson, A. S. Rasor, J. Exler, D. B. Haytowitz, J. M. Holden, and P. R. Pehrsson, Quality-Control Material in the USDA National Food and Nutrient Analysis Program, Anal. Bioanal. Chem. 2006, 384, 1341.

    4. C. C. Chan, H. Lam, Y. C. Lee, X.-M. Zhang, eds., Analytical Method Validation and Instrument Performance Verification (New York: Wiley, 2004); J. M. Green, A Practical Guide to Analytical Method Validation, Anal. Chem. 1996, 68, 305A; M. Swartz and I. S. Krull, Validation of Bioanalytical MethodsHighlights of FDAs Guidance, LCGC 2003, 21, 136; J. D. Orr,I. S. Krull, and M. E. Swartz, Validation of Impurity Methods, LCGC 2003, 21, 626 and 1146.

    Harris_T3.indd 811 18.12.2013 10:52:14

  • 812 Anmerkungen und Literaturangaben

    5. R. de Levie, Two Linear Correlation Coefficients, J. Chem. Ed. 2003, 80, 1030.

    6. W. Horwitz, L. R. Kamps, and K. W. Boyer, J. Assoc. Off. Anal. Chem. 1980, 63, 1344; W. Horwitz, Evaluation of Analytical Methods Used for Regulation of Foods and Drugs, Anal. Chem. 1982, 54, 67A; P. Hall and B.Selinger, A Statistical Justification Relating Interlaboratory Coeffici-ents of Variation with Concentration Levels, Anal. Chem. 1989, 61, 1465; R. Albert and W. Horwitz, A Heuristic De-rivation of the Horwitz Curve, Anal. Chem. 1997, 69, 789.

    7. J. Vial and A. Jardy, Experimental Comparison of the Dif-ferent Approaches to Estimate LOD and LOQ of an HPLC Method, Anal. Chem. 1999, 71, 2672; G. L. Long and J. D. Winefordner, Limit of Detection, Anal. Chem. 1983, 55, 713A; W. R. Porter, Proper Statistical Evaluation of Calibration Data, Anal. Chem. 1983, 55, 1290A; S. Gei and J. W. Einmax, Comparison of Detection Limits in Environmental Analysis, Fresenius J. Anal. Chem. 2001, 370, 673; M. E. Zorn, R. D. Gibbons, and W. C. Sonzogni, Evaluation of Approximate Methods for Calculating the Limit of Detection and Limit of Quantitation, Environ. Sci. Technol. 1999, 33, 2291; J. D. Burdge, D. L. MacTaggart, and S. O. Farwell, Realistic Detection Limits from Confidence Bands, J. Chem. Ed. 1999, 76, 434.

    8. Das im Text beschriebene Verfahren, das zu Gleichung 5.5 fhrt, wird am hufigsten zur Bestimmung der Nachweis-grenze empfohlen. Wenn Sie keine wiederholten Bestim-mungen des Blindwerts und von Proben mit geringer Ana-lytkonzentration brauchen, aber eine lineare Kalibrations-kurve haben, so wie sie in Abbildung 4.13 erstellt wurde, knnen Sie mit der Methode der kleinsten Quadrate die Nachweisgrenze bei einem bestimmten Vertrauensniveau abschtzen. Die folgende Formel stammt aus der ISO-Norm 11843-2:2000 (International Organization for Standardi-zation, Genf, www.iso.org). Nehmen wir an, Sie messen I Kalibrierungsstandards (einschlielich der Blindprobe) mit J Wiederholungen jeder Probe, dann fhren Sie K Wieder-holungen zur Messung ihres unbekannten Analyten durch. Die Nachweisgrenze ist dann

    ( )

    + +

    2y

    2i

    2ts 1 1 xm K I J J x x

    wobei sy die Standardabweichung von y ist (Gleichung 4.20), m ist die Steigung (Gleichung 4.16), und x ist der Mittelwert von x fr die Standards (einschlielich der Blindwerte). Students t wurde aus der Tabelle 4.2 ausgewhlt fr (I J )-2 Freiheitsgrade. Die Spaltenberschriften in der Tabelle 4.2 sind fr eine zweiseitige Verteilung. Der erforderliche Wert von t in Gleichung A ist fr eine einseitige Verteilung. Die Gleichung ergibt die Konzentration des Analyten und sagt mit einer Wahrscheinlichkeit (1 - ) aus, dass die Konzen-tration des Analyten in der unbekannten Probe grer als der Blindwert ist. Bei 95%iger Wahrscheinlichkeit ist = 0.05. In diesem Fall whlen Sie t aus der Spalte 90% Vertrau-ensniveau. Fr 99%, = 0.01, whlen Sie t aus der Spalte, die mit 98% Vertrauensniveau beschriftet ist.

    Beispiel: Betrachten Sie die Kalibrationsdaten in der Aufgabe 4.33 (im Internet www.springer.com/978-3-642-37787-7), mit m = 869.1 mV/Vol%, sy = 18.05 mV, x = 0.544 Vol% und (xi x)2 = 2.878 Vol%

    Es gibt 7 Kalibrationspunkte (unter Einbeziehung des Blind-werts. Demnach ist I = 7 und die Zahl der Freiheitsgrade 7 2 = 5. Bei jeder Kalibrationskonzentration gibt es einen Messwert, also ist J = 1. Vier Wiederholungsmessungen der unbekannten Probe geben K = 4. Sie wollen die Nachweis-grenze mit einem Vertrauensniveau von 99 % erhalten. Da-her whlen wir in der Tabelle 4.2 fr das Vertrauensniveau fr 98 % den Wert t = 3.365 bei 5 Freiheitsgraden.

    ( )( ) ( )( )( )

    2

    2

    2 3.365 18.05mV 0.544Vol%1 1Nachweis-grenze 861.1mV / Vol%) 4 7 1 1 2.878Vol%

    = + +

    ( )= + + =0.140 0.250 0.143 0.0357 0.092Vol% Je mehr Wiederholungsbestimmungen des Analyten ge-

    macht werden, desto kleiner wird der erste Term unter der Wurzel und die Nachweisgrenze sinkt.

    9. M. Bader, A Systematic Approach to Standard Addition Methods in Instrumental Analysis, J. Chem. Ed. 1980, 57, 703.

    10. W. R. Kelly, B. S. MacDonald, and W. F. Guthrie, Gravime-tric Approach to the Standard Addition Method in Instru-mental Analysis, Anal. Chem. 2008, 80, 6154.

    11. G. R. Bruce and P. S. Gill, Estimates of Precision in a Stan-dard Additions Analysis, J. Chem.Ed. 1999, 76, 805.

    12. R. G. Brereton, Applied Chemometrics for Scientists (Chi-chester: Wiley, 2007); M. Otto, Chemometrics (Wenheim: Wiley-VCH, 2007); D. Montgomery, Design and Analysis of Experiments, 5th ed., (New York: Wiley, 2001); C. F. Wu and M. Hamada, Experiments: Planning,Analysis, and Parameter Design Optimization (New York: Wiley, 2000); M. Anderson and P. Whitcomb, DoE Simplified: Practical Tools for Effective Experimentation (Portland, OR: Productivity, Inc., 2000); G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experi-menters: An Introduction to Design Data Analysis and Model Building (New York: Wiley, 1978); R. S. Strange, Introduc-tion to Experimental Design for Chemists, J. Chem. Ed. 1990, 67, 113; J.M. Gozlvez and J. C. Garca-Daz, Mixture Design Experiments Applied to the Formulation of Colorant Solutions, J. Chem. Ed. 2006, 83, 647.

    13. S. N. Deming and S. L. Morgan, Simplex Optimization of Variables in Analytical Chemistry,Anal. Chem. 1973, 45, 278A; D. J. Leggett, Instrumental Simplex Optimization, J. Chem. Ed.1983, 60, 707; S. Srijaranai, R. Burakham, T. Khammeng, and R. L. Deming, Use of the Simplex Method to Optimize the Mobile Phase for the Micellar Chroma-tographic Separation of Inorganic Anions, Anal. Bioanal. Chem. 2002, 374, 145; D. Betteridge, A. P. Wade, and A. G. Howard, Reflections on the Modified Simplex, Talanta 1985, 32, 709, 723.

    14. P. de B. Harrington, E. Kolbrich, and J. Cline, Experimen-tal Design and Multiplexed Modeling Using Titrimetry and Spreadsheets, J. Chem. Ed. 2002, 79, 863.

    Harris_T3.indd 812 18.12.2013 10:52:14

  • Anmerkungen und Literaturangaben 813

    15. J. A. Day, M. Montes-Bayn, A. P. Vonderheide, and J. A. Caruso, A Study of Method Robustness for Arsenic Specia-tion in Drinking Water Samples by Anion Exchange HPLC-ICP-MS, Anal. Bioanal. Chem. 2002, 373, 664.

    16. X. Zhao and C. D. Metcalf, Characterizing and Compen-sating for Matrix Effects Using Atmospheric Pressure Che-mical Ionization Liquid ChromatographyTandem Mass Spectrometry: Analysis of Neutral Pharmaceuticals in Mu-nicipal Wastewater, Anal. Chem. 2008, 80, 2010.

    Kapitel 61. D. P. Sheer and D. C. Harris, Acidity Control in the North

    Branch Potomac, J. Water Pollution Control Federation 1982, 54, 1441.

    2. R. E. Weston, Jr., Climate Change and Its Effect on Coral Reefs, J. Chem. Ed. 2000, 77, 1574.

    3. P. D. Thacker, Global Warmings Other Effects on the Oce-ans, Environ. Sci. Technol. 2005, 39, 10A.

    4. J. K. Baird, A Generalized Statement of the Law of Mass Action, J.Chem. Ed. 1999, 76, 1146; R. de Levie, Whats in a Name? J. Chem. Ed.2000, 77, 610.

    5. Thermodynamische Daten, siehe N. Jacobson, Use of Tabulated Thermochemical Data for Pure Compounds, J. Chem. Ed. 2001, 78, 814; http://webbook.nist.gov/che-mistry/ and http://www.crct.polymtl.ca/fact/websites.htm; M. W. Chase, Jr., NIST-JANAF Thermochemical Tables, 4th ed; J. Phys. Chem. Ref. Data: Monograph 9 (New York: American Chemical Society and American Physical Society, 1998).

    6. Die Lslichkeit der meisten ionischen Verbindungen nimmt mit der Temperatur zu, obwohl fr ungefhr die Hlfte von ihnen die Standardlsungsenthalpie H0 negativ ist. Dis-kussionen zu diesem scheinbaren Widerspruch finden sich in G. M. Bodner, On the Misuse of Le Chteliers Principle for the Prediction of the Temperature Dependence of the Solubility of Salts, J. Chem.Ed. 1980, 57, 117, and R. S. Treptow, Le Chteliers Principle Applied to the Tempera-ture Dependence of Solubility, J. Chem. Ed. 1984, 61, 499.

    7. A. K. Sawyer, Solubility and Ksp of Calcium Sulfate: A General Chemistry Laboratory Experiment, J. Chem. Ed. 1983, 60, 416.

    8. Ein wirklich gutes Buch ber Lslichkeit und alle Arten von Gleichgewichtsberechnungen ist W. B. Guenther, Unified Equilibrium Calculations (New York: Wiley, 1991).

    9. E. Koubek, Demonstration of the Common Ion Effect, J. Chem. Ed. 1993, 70, 155.

    10. Hier finden Sie eine Vielzahl groartiger chemischer De-monstrationsversuche: B. Z. Shakhashiri, Chemical Demons-trations: A Handbook for Teachers of Chemistry (Madison, WI: University of Wisconsin Press, 19831992), 4 volumes. Siehe auch L.E. Summerlin and J. L. Ealy, Jr., Chemical De-monstrations: A Sourcebook for Teachers, 2nd ed. (Washing-ton, DC: American Chemical Society, 1988).

    11. Ein Versuch zur selektiven Fllung durch Zugabe von Pb2+ zu einer Lsung, die CO32- und I- enthlt, ist beschrieben in T. P. Chirpich, A Simple, Vivid Demonstration of Selective Precipitation, J. Chem. Ed. 1988, 65, 359.

    12. Vorlesungsversuch zu Komplex-Gleichgewichten: A. R. John-son, T.M. McQueen, and K. T. Rodolfa, Species Distribution Diagrams in the Copper-Ammonia System, J. Chem. Ed. 2005, 82, 408.

    13. Eine Computer-Datenbank kritisch ausgewhlter Gleichge-wichtskonstanten findet sich in R. M. Smith, A. E. Martell, and R. J. Motekaitis, NIST Critical Stability Constants of Me-tal Complexes Database 46 (Gaithersburg, MD: National In-stitute of Standards and Technology, 2001). Messungen von Gleichgewichtskonstanten sind beschrieben in A. Martell and R. Motekaitis, Determination and Use of Stability Con-stants (New York: VCH Publishers, 1992); K. A. Conners, Binding Constants:The Measurement of Molecular Complex Stability (New York: Wiley, 1987); and D. J. Leggett, ed., Computational Methods for the Determination of Formation Constants (New York: Plenum Press, 1985).

    14. P. A. Gigure, The Great Fallacy of the H+ Ion, J. Chem. Ed. 1979, 56, 571; P. A. Gigure and S. Turrell, The Nature of Hydrofluoric Acid: A Spectroscopic Study of the Proton-Transfer Complex, H3O+F, J. Am. Chem. Soc. 1980, 102, 5473.

    15. Z. Xie, R. Bau, and C. A. Reed, A Crystalline [H9O4]+ Hy-dronium Salt with a Weakly Coordinating Anion, Inorg. Chem. 1995, 34, 5403.

    16. F. A. Cotton, C. K. Fair, G. E. Lewis, G. N. Mott, K. K. Ross, A. J. Schultz, and J. M. Williams, X-Ray and Neutron Diffraction Studies of [V(H2O)6][H5O2][CF3SO3]4, J. Am. Chem. Soc. 1984, 106, 5319.

    17. J. M. Headrick, E. G. Diken, R. W. Walters, N. I. Hammer, R. A. Christie, J. Cui, E. M. Myshakin, M. A. Duncan, M. A. Johnson, and K. D. Jordan, Spectral Signatures of Hydrated Proton Vibrations in Water Clusters, Science 2005, 308, 1765.

    18. S. Wei, Z. Shi, and A. W. Castleman, Jr., Mixed Cluster Ions as a Structure Probe: Experimental Evidence for Clathrate Structure of (H2O)20H+ and (H2O)21H+, J. Chem. Phys. 1991, 94, 3268.

    19. K. Abu-Dari, K. N. Raymond, and D. P. Freyberg, The Bihy-droxide (H3O2) Anion, J. Am. Chem. Soc. 1979, 101, 3688.

    20. W. B. Jensen, The Symbol for pH, J. Chem. Ed. 2004, 81, 21.

    21. V. Buch, A. Milet, R. Vcha, P. Jungwirth, and J. P. Devlin, Water Surface Is Acidic, Proc. Natl. Acad. Sci. USA 2007, 104, 7342.

    22. D. K. Nordstrom, C. N. Alpers, C. J. Ptacek, and D. W. Blo-wes, Negative pH and Extremely Acidic Mine Waters from Iron Mountain, California, Environ. Sci. Technol. 2000, 34, 254.

    23. Zum CO2-Springbrunnen, siehe S.-J. Kang and E.-H. Ryu, Carbon Dioxide Fountain, J. Chem. Ed. 2007, 84, 1671. Der NH3-Springbrunnen ist beschrieben in N. C. Thomas, S. Faulk, and R. Sullivan, A Hand-Held Ammonia Foun-tain, J. Chem. Ed. 2008, 85, 1063; M. D. Alexander, The Ammonia Smoke Fountain, J. Chem. Ed. 1999, 76, 210; N. C. Thomas, A Chemiluminescent Ammonia Fountain, J. Chem. Ed. 1990, 67, 339; and N. Steadman, Ammonia Fountain Improvements, J. Chem. Ed. 1992, 66, 764.

    Harris_T3.indd 813 18.12.2013 10:52:14

  • 814 Anmerkungen und Literaturangaben

    24. L. M. Schwartz, Ion-pair Complexation in Moderately Strong Aqueous Acids, J. Chem. Ed. 1995, 72, 823. Auch wenn H3O+ nicht in freier Form existiert, in Ionenpaa-ren mit bestimmten Anionen wie CF3CO-2 und CCl3CO-2 scheint es an der Ionenleitfhigkeit teilzunehmen.(R. I. Gelb and J. S. Alper, Anomalous Conductance in Electroly-te Solutions, Anal. Chem. 2000, 72, 1322).

    25. Z. Tian, B. Chan, M. B. Sullivan, L. Radom, and S. R. Kass, Lithium Monoxide Anion: A Ground-State Triplet with the Strongest Base to Date, Proc. Natl. Acad. Sci. USA 2008, 105, 7647.

    26. S. J. Hawkes, All Positive Ions Give Acid Solutions in Wa-ter, J. Chem. Ed. 1996, 73, 516.

    27. M. Kern, The Hydration of Carbon Dioxide, J. Chem. Ed. 1960, 37, 14. Schne Versuche mit CO2, einer sogar mit dem Enzym Carboanhydrase sind beschrieben in J. A. Bell, Every Year Begins a Millennium, J. Chem. Ed. 2000, 77, 1098.

    28. J. A. Tossell, H2CO3 and Its Oligomers: Structures, Stabi-lities, Vibrational and NMR Spectra, and Acidities, Inorg. Chem. 2006, 45, 5961.

    Kapitel 71. H. Ohtaki and T. Radnal, Structure and Dynamics of Hyd-

    rated Ions, Chem. Rev. 1993, 93, 1157.2. A. G. Sharpe, The Solvation of Halide Ions and Its Chemi-

    cal Significance, J. Chem. Ed. 1990, 67, 309.3. E. R. Nightingale, Jr., Phenomenological Theory of Ion

    Solvation. Effective Radii of Hydrated Ions, J. Phys. Chem. 1959, 63, 1381.

    4. K. H. Stern and E. S. Amis, Ionic Size, Chem. Rev. 1959, 59, 1.

    5. D. R. Driscol, Invitation to Enquiry: The Fe3+/CNS- Equili-brium, J. Chem. Ed. 1979, 56, 603.

    6. S. J. Hawkes, Salts are Mostly NOT Ionized, J. Chem. Ed. 1996, 73, 421; S. O. Russo and G. I. H. Hanania, Ion Asso-ciation, Solubilities, and Reduction Potentials in Aqueous Solution, J. Chem. Ed. 1989, 66, 148.

    7. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, 2nd ed. (Boca Raton, FL: CRC Press, 1991); B. S. Krumgalz, R. Pogorelskii, A. Sokolov, and K. S. Pitzer, Volumetric Ion Interaction Parameters for Single-Solute Aqueous Electro-lyte Solutions at Various Temperatures, J. Phys. Chem. Ref. Data 2000, 29, 1123.

    8. J. Kielland, Individual Activity Coefficients of Ions in Aqueous Solutions, J. Am. Chem. Soc. 1937, 59, 1675.

    9. R. E. Weston, Jr., Climate Change and Its Effect on Coral Reefs, J. Chem. Ed. 2000, 77, 1574.

    10. R. A. Feely, C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero, Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans, Science 2004, 305, 362.

    11. Weitere Gleichgewichtsberechnungen findet man in W. B. Guenther, Unified Equilibrium Calculations (New York: Wi-ley, 1991); J. N. Butler, Ionic Equilibrium: Solubility and pH Calculations (New York: Wiley, 1998); and M. Meloun, Computation of Solution Equilibria (New York: Wiley, 1988). Software zur Berechnung von Gleichgewichten findet man

    auf http://www.micromath.com/ und http://www.acadsoft.co.uk/

    12. E. Koort, P. Gans, K. Herodes, V. Pihl, and I. Leito, Acidity Constants in Different Media (I=0 und I=0.1 M KCl) from the Uncertainty Perspective, Anal. Bioanal. Chem. 2006, 385, 1124.

    Kapitel 81. R. Schmid and A. M. Miah, The Strength of the Hydroha-

    lic Acids, J. Chem. Ed. 2001, 78, 116.2. T. F. Young, L. F. Maranville, and H. M. Smith, Raman

    Spectral Investigations of Ionic Equilibria in Solutions of Strong Electrolytes in W. J. Hamer, ed., The Structure of Electrolytic Solutions (New York: Wiley, 1959).

    3. E. S. Shamay, V. Buch, M. Parrinello, and G. L. Richmond, At the Waters Edge: Nitric Acid as a Weak Acid, J. Am. Chem. Soc. 2007, 129, 12910.

    4. Suredissoziationskonstanten sagen uns nicht, welche Pro-tonen in welchem Schritt dissoziieren. Durch Kernreso-nanzspektroskopie kann man fr Pyridoxalphosphat eine Zuordnung dieser Protonen vornehmen. (B. Szpoganicz and A. E. Martell, Thermodynamic and Microscopic Equi-librium Constants of Pyridoxal 5-Phosphate, J. Am. Chem. Soc. 1984, 106, 5513).

    5. Ein alternativer Ansatz findet sich hier: H. L. Pardue, I. N. Odeh, and T. M. Tesfai, Unified Approximations: A New Approach for Monoprotic Weak Acid-Base Equilibria, J. Chem. Ed. 2004, 81, 1367.

    6. R. T. da Rocha, I. G. R. Gutz, and C. L. do Lago, A Low-Cost and High-Performance Conductivity Meter, J. Chem. Ed. 1997, 74, 572; G. Berenato and D. F. Maynard, A Simple Audio Conductivity Device, J. Chem. Ed. 1997, 74, 415; S. K. S. Zawacky, A Cheap, Semiquantitative Hand-Held Conductivity Tester, J. Chem. Ed. 1995, 72, 728; T. R. Rettich, An Inexpensive and Easily Constructed Device for Quantitative Conductivity Experiments, J. Chem. Ed. 1989, 66, 168; and D. A. Katz and C. Willis, Two Safe Student Conductivity Apparatus, J. Chem. Ed. 1994, 71, 330.

    7. L. R. Kuck, R. D. Godec, P. P. Kosenka, and J. W. Birks, High-Precision Conductometric Detector for the Measu-rement of Atmospheric CO2, Anal. Chem. 1998, 70, 4678.

    8. M. C. Bonneau, The Chemistry of Fabric Reactive Dyes, J. Chem. Ed.1995, 72, 724.

    9. H. N. Po and N. M. Senozan, The Henderson-Hasselbalch Equation: Its History and Limitations, J. Chem. Ed. 2001, 78, 1499; R. de Levie, The Henderson-Hasselbalch Equa-tion: Its History and Limitations, J. Chem. Ed. 2003, 80, 146.

    10. F. B. Dutton and G. Gordon in H. N. Alyea and F. B. Dut-ton, eds., Tested Demonstrations in Chemistry, 6th ed. (Ea-ston, PA: Journal of Chemical Education, 1965), p. 147; R. L. Barrett, The Formaldehyde Clock Reaction, J. Chem. Ed. 1955, 32, 78. Siehe auch J. J. Fortman and J. A. Schreier, Some Modified Two-Color Formaldehyde Clock Salutes for Schools with Colors of Gold and Green or Gold and Red, J. Chem. Ed. 1991, 68, 324; M. G. Burnett, The Me-chanism of the Formaldehyde Clock Reaction, J. Chem. Ed.

    Harris_T3.indd 814 18.12.2013 10:52:14

  • Anmerkungen und Literaturangaben 815

    1982, 59, 160; and P. Warneck, The Formaldehyde-Sulfite Clock Reaction Revisited, J.Chem. Ed. 1989, 66, 334.

    11. Weitere Uhr-Reaktionen sind in der Literatur beschrei-ben. Eine Zusammenfassung stammt von A. P. Oliveira and R. B. Faria, The Chlorate-Iodine Clock Reaction, J.Am. Chem. Soc. 2005, 127, 18022.

    12. Die Chemikalie Natriumbisulfit (NaHSO3) ist offenbar nicht der Feststoff in der Reagenzienflasche! Richtig muss es Natriumdisulfit (Na2S2O5) heien. (D. Tudela, Solid NaHSO3 Does Not Exist, J. Chem. Ed. 2000, 77, 830; sie-he auch H. D. B. Jenkins and D. Tudela, New Methods to Estimate Lattice Energies: Application to Bisulfite and Metabisulfite, J. Chem. Ed. 2003, 80, 1482). NaHSO3 wird bei der Reaktion von Na2S2O5 mit H2O gebildet. Meine Reagenzflasche, die ich fr die Formaldehyd-Uhr-Reaktion verwende, ist beschriftet mit Natriumbisulfit, aber es ist keine Formel angegeben. Auf dem Etiket steht quivalent als SO2: mindestens 58.5%. Reines NaHSO3 besitzt ein quivalent von 61.56 Gew% SO2 und reines Na2S2O5 ein quivalent von 67.40 Gew% SO2.

    13. J. B. Early, A. R. Negron, J. Stephens, R. Stauffer, and S. D. Furrow, The Glyoxal Clock Reaction, J. Chem. Ed. 2007, 84, 1965.

    14. E. T. Urbansky and M. R. Schock, Understanding, Deri-ving, and Computing Buffer Capacity, J. Chem. Ed. 2000, 77, 1640.

    Kapitel 91. B. J. Bozlee, M. Janebo, and G. Jahn, A Simplified Model

    to Predict the Effect of Increasing Atmospheric CO2 on Carbonate Chemistry in the Ocean, J. Chem. Ed. 2008, 85, 213.

    2. P. D. Thacker, Global Warmings Other Effects on the Oce-ans, Environ. Sci. Technol. 2005, 39, 10A.

    3. R. E. Weston, Jr., Climate Change and Its Effect on Coral Reefs, J. Chem. Ed. 2000, 77, 1574.

    4. J. C. Orr, V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A.Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E.Maier-Reimer, R. Matear, P. Mon-fray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rod-gers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Sla-ter, I.J.Totterdell, M.-F. Weirig, Y. Yamanaka, and A. Yool, Anthropogenic Ocean Acidification over the Twenty-first Century and Its Impact on Calcifying Organisms, Nature 2005, 437, 681.

    5. M. D. Iglesias-Rodriguez, P. R. Halloran, R. E. M. Rickaby, I. R. Hall, E. Colmenero-Hidalgo, J. R. Gittins, D. R. H. Green, T. Tyrrell, S. J. Gibbs, P.von Dassow, E. Rehm, E. V. Armbrust, and K. P. Boessenkool, Phytoplankton Calcification in a High-CO2 World, Science 2008, 320, 336.

    6. P. G. Daniele, A. De Robertis, C. De Stefano, S. Sammarta-no, and C. Rigano, Na+, K+, and Ca2+ Complexes of Low Molecular Weight Ligands in Aqueous Solution, J. Chem. Soc. Dalton Trans. 1985, 2353.

    7. Ein Experiment zur Oberflchenaziditt eines Feststoffs: L. Tribe and B. C. Barja, Adsorption of Phosphate on Goethi-te, J. Chem. Ed. 2004, 81, 1624.

    8. Ein Experiment zum pH am Ladungsnullpunkt: M Davran-che, S. Lacour, F. Bordas, and J.-C. Bollinger, Determina-tion of the Surface Chemical Properties of Natural Solids, J. Chem. Ed. 2003, 80, 76.

    9. W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd ed. (New York: Wiley, 1996), pp. 343348; F. J. Millero, Ther-modynamics of the Carbon Dioxide System in the Oceans, Geochim. Cosmochim. Acta 1995, 59, 661; Ocean carbon thermodynamics: http://cdiac.esd.ornl.govoceans/glodap/cther.htm

    Kapitel 101. B. Mrnstam, K.-G. Wahlund, and B. Jnsson, Potentio-

    metric Acid-Base Titration of a Colloidal Solution, Anal. Chem. 1997, 69, 5037. Zur Titration von vollstndigen Zell-oberflchen, siehe I. Sokolov, D. S. Smith, G. S. Henderson, Y. A. Gorby, and F. G. Ferris, Cell Surface Electrochemical Heterogeneity of the Fe(III)-Reducing Bacteria Shewanella putrefaciens, Environ. Sci. Technol. 2001, 35, 341.

    2. Eine Methode zur Messung der Gesamtladung eines Pro-tein, das von ausgewhlten Ionen gebunden wird, ist be-schrieben von M. K. Menon and A. L. Zydney, Measure-ment of Protein Charge and Ion Binding Using Capillary Electrophoresis, Anal. Chem. 1998, 70, 1581.

    3. M. J. Ondrechen, J. G. Clifton, and D. Ringe, THEMATICS: A Simple Computational Predictor of Enzyme Function from Structure, Proc. Natl. Acad. Sci. USA 2001, 98, 12473.

    4. A. G. Dickson, http://andrew.ucsd.edu/co2qc/handbook/sop03.pdf.

    5. T. R. Martz, A. G. Dickson, and M. D. DeGrandpre, Tracer Monitored Titrations: Measurement of Total Alkalinity, Anal. Chem. 2006, 78, 1817.

    6. K. R. Williams, Automatic Titrators in the Analytical and Physical Chemistry Laboratories, J. Chem. Ed. 1998, 75, 1133; K. L. Headrick, T.K.Davies, and A. N. Haegele, A Simple Laboratory-Constructed Automatic Titrator, J. Chem. Ed. 2000, 77, 389.

    7. M. Inoue and Q. Fernando, Effect of Dissolved CO2 on Gran Plots, J.Chem. Ed. 2001, 78, 1132; G. Gran, Equiva-lence Volumes in Potentiometric Titrations, Anal. Chim. Acta 1988, 206, 111; F. J. C. Rossotti and H. Rossotti, Potentiometric Titrations Using Gran Plots, J. Chem. Ed. 1965, 42, 375; L.M. Schwartz, Uncertainty of a Titrati-on Equivalence Point, J. Chem. Ed. 1992, 69, 879; L. M. Schwartz, Advances in Acid-Base Gran Plot Methodology, J. Chem. Ed. 1987, 64, 947.

    8. M. Rigobello-Masini and J. C. Masini, Application of Mo-dified Gran Functions and Derivative Methods to Poten-tiometric Acid Titration Studies of the Distribution of In-organic Carbon Species in Cultivation Medium of Marine Microalgae, Anal. Chim. Acta 2001, 448, 239.

    9. G. Papanastasiou and I. Ziogas, Simultaneous Determina-tion of Equivalence Volumes and Acid Dissociation Con-stants from Potentiometric Titration Data, Talanta 1995, 42, 827.

    10. G. Wittke, Reactions of Phenolphthalein at Various pH Values, J. Chem. Ed. 1983, 60, 239.

    Harris_T3.indd 815 18.12.2013 10:52:14

  • 816 Anmerkungen und Literaturangaben

    11. Experimente mit einem Universalindikator (einer Indika-tormischung mit verschiedenen Farbumschlgen) ist be-schrieben in J. T. Riley, Flashy Solutions, J. Chem. Ed. 1977, 54, 29.

    12. T. A. Canada, L. R. Allain, D. B. Beach, and Z. Xue, High-Acidity Determination in Salt-Containing Acids by Optical Sensors, Anal. Chem. 2002, 74, 2535.

    13. D. Frcasiu and A. Ghenciu, Acidity Functions from 13C-NMR, J. Am. Chem. Soc. 1993, 115, 10901.

    14. B. Hammouti, H. Oudda, A. El Maslout, and A. Benayada, A Sensor for the In Situ Determination of Acidity Levels in Concentrated Sulfuric Acid, Fresenius J. Anal. Chem. 1999, 365, 310. Fr die Verwendung von Glaselektroden zur Messung von pH Werten von -4 siehe : D. K. Nordstrom, C. N. Alpers, C. J. Ptacek, and D.W. Blowes, Negative pH and Extremely Acidic Mine Waters from Iron Mountain, California, Environ. Sci. Technol. 2000, 34, 254.

    15. M. Juhasz, S. Hoffmann, E. Stoyanov, K.-C. Kim, and C. A. Reed, The Strongest Isolable Acid, Angew. Chem. Int. Ed. 2004, 43, 5352; A. Avelar, F.S.Tham, and C. A. Reed, Su-peracidity of Boron Acids H2(B12X12) (X= Cl, Br), Angew. Chem. Int. Ed. 2009, 48, 3491.

    16. R. A. Butler and R. G. Bates, Double Potassium Salt of Sulfosalicylic Acid in Acidimetry and pH Control, Anal. Chem. 1976, 48, 1669.

    17. Borax geht beim Stehen bis zum Pentahydrat herunter: R. Naumann, C. Alexander-Weber, and F. G. K. Baucke, Limited Stability of the pH Reference Material Sodium Te-traborate Decahydrate (Borax), Fresenius J.Anal. Chem. 1994, 350, 119.

    18. Anleitungen zur Reinigung und Verwendung von Primr-standards sind in folgenden Bchern zu finden: J. A. Dean, Analytical Chemistry Handbook (New York: McGraw-Hill, 1995), pp. 3-28 to 3-30; J. Bassett, R. C. Denney, G.H. Jeffe-ry, and J. Mendham, Vogels Textbook of Quantitative Inorga-nic Analysis, 4th ed. (Essex: Longman, 1978), pp. 296306; I. M. Kolthoff and V.A. Stenger, Volumetric Analysis, Vol. 2 (New York: Wiley-Interscience, 1947).

    19. A. A. Smith, Consumption of Base by Glassware, J. Chem. Ed. 1986, 63, 85; G. Perera and R. H. Doremus, Dissoluti-on Rates of Commercial Soda-Lime and Pyrex Borosilicate Glasses, J. Am. Ceramic Soc. 1991, 74, 1554.

    20. D. Lee, Plant Linked to Pet Deaths Had History of Pollu-ting, Los Angeles Times, 9 May 2007, p. C1; B. Puschner, R. H. Poppenga, L.J.Lowenstine, M.S.Filigenzi, and P. A. Pesavento, Assessment of Melamine and Cyanuric Acid Toxicity in Cats, J. Vet. Diagn. Invest. 2007, 19, 616.

    21. D. Lee and A. Goldman, Anguished Chinese Flood Hos-pitals, Los Angeles Times, 19 September 2008, p. A3; R. M. Baum, Chem. Eng. News, 13 October 2008, p. 3. Im Dezem-ber 2008 nahm die chinesische Regierung an, dass etwa 294 000 Babies krank wurden.

    22. J. J. Urh, Protein Testing Enters the 21st Century: Innova-tive Protein Analyzer Not Affected by Melamine, Am. Lab., Otober 2008, p. 18.

    23. Der Kjeldahl-Aufschluss erfasst Amin (-NR2) oder Amid (-C[=O]NR2)-Stickstoff (hier kann R entweder H oder

    ein organischer Rest sein). Oxidierter Stickstoff wie Nitro (-NO2) oder Azo (-N=N-)-Gruppen, muss zuerst zu Ami-nen oder Amiden reduziert werden.

    24. W. Maher, F. Krikowa, D. Wruck, H. Louie, T. Nguyen, and W. Y. Huang, Determination of Total Phosphorus and Nit-rogen in Turbid Waters by Oxidation with Alkaline Potassi-um Peroxodisulfate, Anal. Chim. Acta 2002, 463, 283.

    25. Eine Alternative zur Standard-HCl ist die Verwendung von 4 Gew% einer wssrigen Borsure. Dieses Reagenz bindet Ammoniak als Ammoniumborat, das nun mit Standard-Sure titriert werden kann. (F. M. Scales and A P. Harrison, Boric Acid Modification of the Kjeldahl Me-thod for Crop and Soil Analysis, J. Ind. Eng. Chem. 1920, 12, 350.)

    26. http://www.epa.gov/grtlakes/lmmb/methods/tknalr2.pdf http://www.flowinjection.com/methods/tkn.aspx27. J. S. Fritz, Acid-Base Titrations in Nonaqueous Solvents (Bo-

    ston: Allyn and Bacon, 1973); J. Kucharsky and L. Safarik, Titrations in Non-Aqueous Solvents (New York: Elsevier, 1963); W. Huber, Titrations in Nonaqueous Solvents (New York: Academic Press, 1967); I. Gyenes, Titration in Non-Aqueous Media (Princeton, NJ: Van Nostrand, 1967).

    28. S. P. Porras, Capillary Zone Electrophoresis of Some Ext-remely Weak Bases in Acetonitrile, Anal. Chem. 2006, 78, 5061.

    29. R. de Levie, A General Simulator for Acid-Base Titrations, J. Chem. Ed. 1999, 76, 987; R. de Levie, Explicit Expressi-ons of the General Form of the Titration Curve in Terms of Concentration, J. Chem. Ed. 1993, 70, 209; R.deLevie, General Expressions for Acid-Base Titrations of Arbitrary Mixtures, Anal. Chem. 1996, 68, 585; R. de Levie, Principles of Quantitative Chemical Analysis (New York: McGraw-Hill, 1997); J. Burnett and W. A. Burns, Using a Spreadsheet to Fit Experimental pH Titration Data to a Theoretical Ex-pression: Estimation of Analyte Concentration and Ka, J. Chem. Ed. 2006, 83, 1190.

    30. C. Salter and D. L. Langhus, The Chemistry of Swimming Pool Maintenance, J. Chem. Ed. 2007, 84, 1124.

    31. P. Ballinger and F. A. Long, Acid Ionization Constants of Alcohols, J.Am. Chem. Soc. 1960, 82, 795.

    Kapitel 111. R. MacKinnon, Potassium Channels and the Atomic Ba-

    sis of Selective Ion Conduction (Nobel Lecture), Angew. Chem. Int. Ed. 2004, 43, 4265.

    2. W. D. Bedsworth and D. L. Sedlak, Sources and Environ-mental Fate of Strongly Complexed Nickel in Estuariane Waters, Environ. Sci. Technol. 1999, 33, 926; B. Nowack, Environmental Chemistry of Aminopolycarboxylate Che-lating Agents, Environ. Sci. Technol. 2002, 36, 4009.

    3. D. T. Haworth, Some Linguistic Details on Chelation, J. Chem. Ed. 1998, 75, 47.

    4. Ein Versuch fr das Klassenzimmer: D. C. Bowman, A Colorful Look at the Chelate Effect, J. Chem. Ed. 2006, 83, 1158.

    5. Der Chelat-Effekt wird oft mit der gnstigen Entropie-nderung durch die mehrzhnige Bindung erklrt. Neu-

    Harris_T3.indd 816 18.12.2013 10:52:14

  • Anmerkungen und Literaturangaben 817

    ere Arbeiten widerlegen diese Erklrung aber: V. Vallet, U.Wahlgren, and I. Grenthe, Chelate Effect and Ther-modynamics of Metal Complex Formation in Solution: A Quantum Chemical Study, J. Am. Chem. Soc. 2003, 125, 14941.

    6. Z. Hou, K. N. Raymond, B. OSullivan, T. W. Esker, and T. Nishio, Microbial Macrocyclic Dihydroxamate Chelating Agents, Inorg. Chem. 1998, 37, 6630. Die im Meer in Kon-zentrationen von 0.1 bis 10 pM gefundenen Ferrioxamine sind vermutlich durch Mikroorganismen ausgeschieden worden, um die kleinen Eisenkonzentrationen aus dem Meer zu akkumulieren. (E. Mawji, M. Gledhill, J. A. Milton, G. A. Tarran, S.Ussher, A. Thompson, G. A. Wolff, P. J. Worsfold, and E. P. Achterberg, Hydroxamate Sideropho-res: Occurrence and Importance in the Atlantic Ocean, Environ. Sci. Technol. 2008, 42, 8675.)

    7. N. F. Olivieri and G. M. Brittenham, Iron-Chelating Thera-py and the Treatment of Thalassemia, Blood 1997, 89, 739.

    8. E. J. Neufeld, Oral Chelators Deferasirox and Deferiprone for Transfusional Iron Overload in Thalassemia Major: New Data, New Questions, Blood 2006, 107, 3436; K. Farmaki, Reversal of Complications Following Intensive Combined Chelation in Beta Thalassemia Major Patients, Abstract LB4, 49th American Society of Hematology Annual Meeting, Atlanta, GA, December 2007.

    9. R. J. Abergel, E. G. Moore, R. K. Strong, and K. N. Ray-mond, Microbial Evasion of the Immune System: Structu-ral Modifications of Enterobactin Impair Siderocalin Reco-gnition, J. Am. Chem. Soc. 2006, 128, 10998.

    10. J. Knnemeyer, L. Terborg, S. Nowak, L. Telgmann, F. Tok-mak, B.K.Krmer, A. Gnsel, G. A. Wiesmller, J. Waldeck, C. Bremer, and U.Karst, Analysis of the Contrast Agent Magnevist and Its Transmetalation Products in Blood Plas-ma by Capillary Electrophoresis/Electrospray Ionization Time-of-Flight Mass Spectrometry, Anal. Chem. 2009, 81, 3600.

    11. W. J. Blaedel and H. T. Knight, Purification and Properties of Disodium Salt of Ethylenediaminetetraacetic Acid as a Primary Standard, Anal. Chem. 1954, 26, 741.

    12. R. L. Barnett and V. A. Uchtman, Crystal Structures of Ca(CaEDTA)7H2O and NaCaNTA, Inorg. Chem. 1979, 18, 2674.

    13. P. Lindqvist-Reis, C. Apostolidis, J. Rebizant, A. Morgen-stern, R. Klenze, O. Walter, T. Fanghnel, and R. G. Haire, The Structures and Optical Spectra of Hydrated Transplu-tonium Ions in the Solid State and in Solution, Angew. Chem. Int. Ed. 2007, 46, 919; S. Skanthakumar, M. R. An-tonio, R. E. Wilson, and L. Soderholm, The Curium Aqua Ion, Inorg. Chem. 2007, 46, 3485.

    14. S. G. John, C. E. Ruggiero, L. E. Hersman, C.-S. Tung, and M. P. Neu, Siderophore Mediated Plutonium Accumula-tion by Microbacterium flavescens, Environ. Sci. Technol. 2001, 35, 2942.

    15. J. N. Mathur, P. Thakur, C. J. Dodge, A. J. Francis, and G. R. Choppin, Coordination Modes in the Formation of the Ternary Am(III), Cm(III), and Eu(III) Complexes with EDTA and NTA, Inorg. Chem. 2006, 456, 8026.

    16. Eine magebende Literaturstelle zur Theorie des Kurven-verlaufs einer EDTA-Titration: A. Ringbom, Complexation in Analytical Chemistry (New York: Wiley, 1963).

    17. Zu Diskussionen ber Metall-Ligand-Gleichgewichte mit zahlreichen Beispielen, siehe P. Letkeman, Computer-Modeling of Metal Speciation in Human Blood Serum, J. Chem. Ed. 1996, 73, 165; A. Rojas-Hernndez, M. T. Ramrez, I. Gonzlez, and J. G. Ibanez, Predominance-Zone Diagrams in Solution Chemistry, J. Chem. Ed. 1995, 72, 1099; und A. Bianchi and E. Garcia-Espaa, Use of Calculated Species Distribution Diagrams to Analyze Ther-modynamic Selectivity, J. Chem. Ed. 1999, 76, 1727.

    18. W. N. Perara and G. Hefter, Mononuclear Cyano- and Hydroxo-Complexes of Iron(III), Inorg. Chem. 2003, 42, 5917.

    19. S. Tandy, K. Bossart, R. Mueller, J. Ritschel, L. Hauser, R. Schulin, and B. Nowack, Extraction of Heavy Metals from Soils Using Biodegradable Chelating Agents, Environ. Sci. Technol. 2004, 38, 937; B. Kos and D. Letan, Induced Phytoextraction/Soil Washing of Lead Using Biodegrada-ble Chelate and Permeable Barriers, Environ. Sci. Technol. 2003, 37, 624; S. V. Sahi, N.L. Bryant, N. C. Sharma, and S. R. Singh, Characterization of a Lead Hyperaccumulator Shrub, Environ. Sci. Technol. 2002, 36, 4676.

    20. B. Nowack, R. Schulin, and B. H. Robinson, Critical As-sessment of Chelant-Enhanced Metal Phytoextraction, En-viron. Sci. Technol. 2006, 40, 5225.

    21. G. Schwarzenbach and H. Flaschka, Complexometric Titra-tions, H. M. N. H. Irving, trans. (London: Methuen, 1969); H. A. Flaschka, EDTA Titrations (New York: Pergamon Press, 1959); J. A. Dean, Analytical Chemistry Handbook (New York: McGraw-Hill, 1995); A. E. Martell and R. D. Hancock, Metal Complexes in Aqueous Solution (New York: Plenum Press, 1996).

    22. Indirekte Bestimmungen von einwertigen Kationen wer-den beschrieben von I.M. Yurist, M. M. Talmud, and P. M. Zaitsev, Complexometric Determination of Monovalent Metals, J. Anal. Chem. USSR 1987, 42, 911.

    23. D. P. S. Rathore, P. K. Bhargava, M. Kumar, and R. K. Talra, Indicators for the Titrimetric Determination of Ca and To-tal Ca + Mg with EDTA, Anal. Chim. Acta 1993, 281, 173.

    24. H. Bao, Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution, Anal. Chem. 2006, 78, 304.

    25. T. Darjaa, K. Yamada, N. Sato, T. Fujino, and Y. Waseda, Determination of Sulfur in Metal Sulfides by Bromine Water-CCl4 Oxidative Dissolution and Modified EDTA Tit-ration, Fresenius J. Anal. Chem. 1998, 361, 442.

    Kapitel 121. J. Gorman in Science News, 9 September 2000, p. 165.2. R. F. Wright et al., Recovery of Acidified European Surface

    Waters, Environ. Sci. Technol. 2005, 39, 64A.3. Bcher ber Berechnungen chemischer Gleichgewichte: W.

    B. Guenther, Unified Equilibrium Calculations (New York: Wiley, 1991); J. N. Butler, Ionic Equilibrium: Solubility and pH Calculations (New York: Wiley, 1998); and M. Me-

    Harris_T3.indd 817 18.12.2013 10:52:14

  • 818 Anmerkungen und Literaturangaben

    loun, Computation of Solution Equilibria (New York: Wiley, 1988). Software fr Gleichgewichtsberechnungen: http://www.micromath.com/ and http://www.acadsoft.co.uk/

    4. R. G. Bates, Determination of pH, 2nd ed. (New York: Wiley, 1973), p. 86, wichtige Quelle zur Bestimmung von pH-Werten. Die pH-Unsicherheit von Primrstandards kann bei Temperaturen, die von 25 C abweichen, grer als +/- 0.006 sein.

    5. Excel kann verwendet werden, um zwei unbekannte Kon-zentrationen gleichzeitig zu berechnen: R. de Levie, How to Compute Labile Metal-Ligand Equilibria, J. Chem. Ed. 2007, 84, 136.

    6. R. B. Martin, Aluminum: A Neurotoxic Product of Acid Rain, Acc. Chem. Res. 1994, 27, 204.

    7. R. Jugdaohsingh, M. M. Campbell, R. P. H. Thompson, C. R. McCrohan, K. N. White, and J. J. Powell, Mucus Sec-retion by the Freshwater Snail Lymnaea stagnalis Limits Aluminum Concentrations of the Aqueous Environment, Environ. Sci. Technol. 1998, 32, 2591; M. Ravichandran, G. R. Aiken, M. M. Reddy, and J.N. Ryan, Enhanced Dissolu-tion of Cinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from the Florida Everglades, Environ. Sci. Technol. 1998, 32, 3305; S. Sauv, M. McBride, and W. Hendershot, Lead Phosphate Solubility in Water and Soil Suspensions, Environ. Sci. Technol. 1998, 32, 388.

    8. Unser Ansatz hnelt dem von J. L. Guin, J. Garcia-Antn, and V.Prez-Herranz, Spreadsheet Techniques for Evalua-ting the Solubility of Sparingly Soluble Salts of Weak Acids, J. Chem. Ed. 1999, 76, 1157.

    9. A. Kraft, Determination of the pKa of Multiprotic, Weak Acids by Analyzing Potentiometric Acid-Base Titration Data with Difference Plots, J.Chem. Ed. 2003, 80, 554.

    10. G. B. Kauffman, Niels Bjerrum: A Centennial Evaluation, J. Chem. Ed. 1980, 57, 779, 863.

    11. Tabelle 6.1 ergibt pKw = 13.995 fr = 0 bei 25C. Der Aus-druck Kw wird hier in Molalitt m (Mol/kg Lsungsmittel) angegeben:

    2

    13.995H H OH OHw

    H O

    m m K 10A

    + + = =

    Wir wollen Kw von 0.1 M KCl berechnen. Der Faktor fr die Umrechnung von Molalitt in Molaritt in 0.1 M KCl ist 0.994 in der Tabelle 12-1-1A von H. S. Harned and B. B. Owen, Physical Chemistry of Electrolyte Solutions, 3rd ed. (New York: Reinhold, 1958), p. 725. Der Faktor

    2H OA+ H OH

    in 0.10 M KCl ist 0.626, interpoliert aus Tabelle 15-2-1A von Harned and Owen, p. 752. Kw ist das Produkt der Kon-zentrationen [H+][OH]:

    ( ) ( )+ + +

    + = 2H OH H OH OH

    H OH

    A

    2H OAm 0.994 0.994m

    H OH

    ( )13.995 2 13.79711 0 0.994 1 00.626

    = =

    Kapitel 131. Allgemeine Behandlungen der Elektrochemie: A. Hamnett,

    C. H. Hamann, and W.Vielstich, Electrochemistry (New York: Wiley, 1998); Z. Galus, Fundamentals of Electroche-mical Analysis (New York: Ellis Horwood, 1994); C. M. A. Brett and A. M. O. Brett, Electrochemistry (Oxford: Oxford University Press, 1993); and H. B. Oldham and J. C. My-land, Fundamentals of Electrochemical Science (San Diego: Academic Press, 1993).

    2. K. Rajeshwar and J. G. Ibanez, Environmental Electroche-mistry (San Diego: Academic Press, 1997).

    3. N. J. Tao, Measurement and Control of Single Molecule Conductance, J. Mater. Chem. 2005, 15, 3260; N. Tao, Electrochemical Fabrication of Metallic Quantum Wires, J. Chem. Ed. 2005, 82, 720; S. Lindsay, Single-Molecule Electronic Measurements with Metal Electrodes, J. Chem. Ed. 2005, 82, 727; R. A. Wassel and C. B. Gorman, Esta-blishing the Molecular Basis for Molecular Electronics, Angew. Chem. Int. Ed. 2004, 43, 5120.

    4. T. Morita and S. Lindsay, Determination of Single Molecu-le Conductances of Alkanedithiols by Conducting-Atomic Force Microscopy with Large Gold Nanoparticles, J. Am. Chem. Soc. 2007, 129, 7262.

    5. I.-W. P. Chen, M.-D. Fu, W.-H. Tseng, J.-Y. Yu, S.-H. Wu, C.-J. Ku, C.-H. Chen, and S.-M. Peng, Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms, Angew. Chem. Int. Ed. 2006, 45, 5814.

    6. S. Weinberg, The Discovery of Subatomic Particles (Cam-bridge: Cambridge University Press, 2003), pp. 1316. Ein wunderbares Buch eines Nobelpreistrgers.

    7. M. J. Smith, A. M. Fonseca, and M. M. Silva, The Lead-Lead Oxide Secondary Cell as a Teaching Resource, J. Chem. Ed. 2009, 86, 357; M. J. Smith and C. A. Vin-cent, Structure and Content of Some Primary Batteries, J. Chem. Ed. 2001, 78, 519; R. S. Treptow, The Lead-Acid Battery: Its Voltage in Theory and in Practice, J. Chem. Ed. 2002, 79, 334; M. J. Smith and C. A. Vincent, Why Do Some Batteries Last Longer Than Others? J. Chem. Ed. 2002, 79, 851; M. Tamez and J. H. Yu, Aluminum-Air Bat-tery, J. Chem. Ed. 2007, 84, 1936A; H. Goto, H. Yoneyama, F. Togashi, R. Ohta, A. Tsujimoto, E. Kita, K. Ohshima, and D. Rosenberg, Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery, J. Chem. Ed. 2008, 85, 1067.

    8. O. Zerbinati, A Direct Methanol Fuel Cell, J. Chem. Ed. 2002, 79, 829; J. M. Ogden, Hydrogen: The Fuel of the Future? Physics Today, April 2002, p. 69.

    9. P. Krause and J. Manion, A Novel Approach to Teaching Electrochemical Principles, J. Chem. Ed. 1996, 73, 354.

    10. L. P. Silverman and B. B. Bunn, The Worlds Longest Hu-man Salt Bridge, J. Chem. Ed. 1992, 69, 309.

    11. Klassenzimmer-Versuch: J. D. Ciparick, Half Cell Reactions: Do Students Ever See Them? J. Chem. Ed. 1991, 68, 247; P.-O. Eggen, T.Grnneberg, and L. Kvittengen, Small-Scale and Low-Cost Galvanic Cells, J.Chem. Ed. 2006, 83, 1201.

    12. A. W. von Smolinski, C. E. Moore, and B. Jaselskis, The Choice of the Hydrogen Electrode as the Base for the

    Harris_T3.indd 818 18.12.2013 10:52:14

  • Anmerkungen und Literaturangaben 819

    Electromotive Series in Electrochemistry, Past and Present, ACS Symposium Series 390, J. T. Stock and M. V. Orna, eds. (Washington, DC: American Chemical Society, 1989), Chap. 9.

    13. H. Frieser, Enhanced Latimer Potential Diagrams Via Spreadsheets, J.Chem. Ed. 1994, 71, 786.

    14. A. Arvalo and G. Pastor, Verification of the Nernst Equa-tion and Determination of a Standard Electrode Potential, J. Chem. Ed. 1985, 62, 882.

    15. Nheres zu einem Vorlesungsversuch unter Verwendung einer Zelle als chemische Sonde, siehe R. H. Anderson, An Expanded Silver Ion Equilibria Demonstration: Including Use of the Nernst Equation and Calculation of Nine Equili-brium Constants, J. Chem. Ed. 1993, 70, 940.

    16. Struktur der Dehydroascorbinsure: R. C. Kerber, As Sim-ple as Possible, But Not Simpler - The Case of Dehydroas-corbic Acid, J. Chem. Ed. 2008, 85, 1237.

    17. J. E. Walker, ATP Synthesis by Rotary Catalysis (Nobel Lecture), Angew. Chem. Int. Ed. 1998, 37, 2309; P. D. Boyer, Energy, Life, and ATP (Nobel Lecture), Angew. Chem. Int. Ed. 1998, 37, 2297; W. S. Allison, F1-ATPase, Acc. Chem. Res. 1998, 31, 819.

    18. Hier wird ein Gleichgewichtsproblem fr Fortgeschrittene auf der Grundlage des Latimer-Diagramms von Brom be-sprochen: T. Michalowski, Calculation of pH and Potential E for Bromine Aqueous Solution, J. Chem. Ed. 1994, 71, 560.

    19. K. T. Jacob, K. P. Jayadevan, and Y. Waseda, Electroche-mical Determination of the Gibbs Energy of Formation of MgAl2O4, J. Am. Ceram. Soc. 1998, 81, 209.

    20. J. T. Stock, Einar Biilmann (18731946): pH Determinati-on Made Easy, J. Chem. Ed. 1989, 66, 910.

    21. Wegen der auftretenden Diffusionspotentiale an jeder Fls-sigkeitsgrenze (Abschnitt 14.3) wrde die Zelle in dieser Aufgabe kein genaues Ergebnis liefern. Eine Zelle ohne Diffusionspotential wird beschrieben von P. A. Rock, Elec-trochemical Double Cells, J. Chem. Ed. 1975, 52, 787.

    Kapitel 141. S. P. Kounaves, M. H. Hecht, S. J. West, J.-M. Morookian, S.

    M. M. Young, R. Quinn, P. Grunthaner, X. Wen, M. Weilert, C. A. Cable, A. Fisher, K. Gospodinova, J. Kapit, S. Stroble, P.-C. Hsu, B. C. Clark, D. W. Ming, and P.H. Smith, The 2007 Mars Scout Lander MECA Wet Chemistry Labora-tory, J.Geophys. Res. 2009, 113, E00A19.

    2. Hier werden praktische Aspekte der Elektrodenherstellung diskutiert: D. T. Sawyer, A. Sobkowiak, and J. L. Roberts, Jr., Electrochemistry for Chemists, 2nd ed. (New York: Wiley, 1995); G. A. East and M. A. del Valle, Easy-to-Make Ag/AgCl Reference Electrode, J. Chem. Ed. 2000, 77, 97.

    3. Ein Demonstrationsversuch zur Potentiometrie mit einer Silberelektrode (oder ein miniaturisiertes Experiment fr die allgemeine Chemie) wird beschrieben von D. W. Brooks, D. Epp, and H. B. Brooks, Small-Scale Potentiometry and Silver One-Pot Reactions, J.Chem. Ed. 1995, 72, A162.

    4. D. Dobnik, J. Stergulec, and S. Gomiek, Preparation of an Iodide Ion-Selective Electrode by Chemical Treatment of a Silver Wire, Fresenius J. Anal. Chem. 1996, 354, 494.

    5. I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Cha-os (New York: Oxford University Press, 1998); I. R. Epstein, K. Kustin, P. De Kepper, and M. Orbn, Scientific American, March 1983, p. 112; and H. Degn, Oscillating Chemical Reactions in Homogeneous Phase, J. Chem. Ed. 1972, 49, 302.

    6. Mechanismen von oszillierenden Reaktionen werden be-schrieben von O. Benini, R.Cervellati, and P. Fetto, The BZ Reaction: Experimental and Model Studies in the Physical Chemistry Laboratory, J. Chem. Ed. 1996, 73, 865; R. J. Field and F. W. Schneider, Oscillating Chemical Reactions and Nonlinear Dynamics, J. Chem. Ed. 1989, 66, 195; R. M. Noyes, Some Models of Chemical Oscillators, J. Chem. Ed. 1989, 66, 190; P. Ruoff, M.Varga, and E. Krs, How Bro-mate Oscillators Are Controlled, Acc. Chem. Res. 1988, 21, 326; M. M. C. Ferriera, W. C. Ferriera, Jr., A. C. S. Lino, and M. E. G. Porto, Uncovering Oscillations, Complexity, and Chaos in Chemical Kinetics Using Mathematica, J. Chem. Ed. 1999, 76, 861; G. Schmitz, L. Kolar-Ani, S. Ani, and Z.upi, The Illustration of Multistability, J. Chem. Ed. 2000, 77, 1502.

    7. H. E. Prypsztejn, Chemiluminescent Oscillating Demons-trations: The Chemical Buoy, The Lighting Wave, and the Ghostly Cylinder, J. Chem. Ed. 2005, 82, 53; D. Kolb, Overhead Projector Demonstrations, J. Chem. Ed. 1988, 65, 1004; R. J. Field, A Reaction Periodic in Time and Space, J. Chem. Ed. 1972, 49, 308; J. N. Demas and D. Die-mente, An Oscillating Chemical Reaction with a Lumine-scent Indicator, J. Chem. Ed. 1973, 50, 357; J. F. Lefelhocz, The Color Blind Traffic Light, J. Chem. Ed. 1972, 49, 312: P.Aroca, Jr., and R. Aroca, Chemical Oscillations: A Mi-crocomputer-Controlled Experiment, J. Chem. Ed. 1987, 64, 1017: J. Amrehn, P. Resch, and F. W. Schneider, Oscil-lating Chemiluminescence with Luminol in the Continuous Flow Stirred Tank Reactor, J. Phys. Chem. 1988, 92, 3318; D.Avnir, Chemically Induced Pulsations of Interfaces: The Mercury Beating Heart, J. Chem. Ed. 1989, 66, 211; K. Yoshikawa, S. Nakata, M. Yamanaka, and T. Waki, Amuse-ment with a Salt-Water Oscillator, J. Chem. Ed. 1989, 66, 205; L. J. Soltzberg, M. M. Boucher, D. M. Crane, and S. S. Pazar, Far from EquilibriumThe Flashback Oscillator, J. Chem. Ed. 1987, 64, 1043; S. M. Kaushik, Z. Yuan, and R. M. Noyes, A Simple Demonstration of a Gas Evolution Oscillator, J. Chem. Ed. 1986, 63, 76; R. F. Melka, G. Olsen, L.Beavers, and J. A. Draeger, The Kinetics of Oscillating Reactions, J. Chem. Ed. 1992, 69, 596; J. M. Merino, A Simple, Continuous-Flow Stirred-Tank Reactor for the De-monstration and Investigation of Oscillating Reactions, J. Chem. Ed. 1992, 69, 754.

    8. T. Kappes and P. C. Hauser, A Simple Supplementary Offset Device for Data Acquisition Systems, J. Chem. Ed. 1999, 76, 1429.

    9. [Br-] oszilliert auch in diesem Experiment. Nheres zu ei-nem [I-] Oszillator findet man hier: T. S. Briggs und W. C. Rauscher, An Oscillating Iodine Clock, J. Chem. Ed. 1973, 50, 496.

    Harris_T3.indd 819 18.12.2013 10:52:14

  • 820 Anmerkungen und Literaturangaben

    10. E. Bakker, P. Bhlmann, and E. Pretsch, Carrier-Based Ion-Selective Electrodes and Bulk Optodes, Chem. Rev. 1997, 97, 3083; ibid. 1998, 98, 1593.

    11. C. E. Moore, B. Jaselskis, and A. von Smolinski, Develop-ment of the Glass Electrode in Electrochemistry, Past and Present, ACS Symposium Series 390, J. T. Stock and M. V. Orna, eds. (Washington, DC: American Chemical Society, 1989), Chap. 19.

    12. B. Jaselskis, C. E. Moore, and A. von Smolinski, Develop-ment of the pH Meter in Electrochemistry, Past and Present, ACS Symposium Series 390,J. T. Stock and M. V. Orna, eds. (Washington, DC: American Chemical Society, 1989), Chap. 18.

    13. R. P. Buck, S. Rondinini, A. K. Covington, F. G. K. Baucke, C. M. A. Brett, M. F. Camoes, M. J. T. Milton, T. Mussini, R. Naumann, K. W. Pratt, P.Spitzer, and G. S. Wilson, Mea-surement of pH. Definitions, Standards, and Procedures, Pure Appl. Chem. 2002, 74, 2169; B. Lunelli and F. Scagno-lari, pH Basics, J. Chem. Ed. 2009, 86, 246.

    14. L. M. Goss, A Demonstration of Acid Rain and Lake Aci-dification: Wet Deposition of Sulfur Dioxide, J. Chem. Ed. 2003, 80, 39.

    15. J. A. Lynch, V. C. Bowersox, and J. W. Grimm, Acid Rain Reduced in Eastern United States, Environ. Sci. Technol. 2000, 34, 940; R.E.Baumgardner, Jr., T. F. Lavery, C. M. Rogers, and S. S. Isil, Estimates of the Atmospheric Depo-sition of Sulfur and Nitrogen Species: Clean Air Status and Trends Network, 19902000, Environ. Sci. Technol. 2002, 36, 2614; www.epa.gov/acidrain

    16. W. F. Koch, G. Marinenko, and R. C. Paule, An Interlabo-ratory Test of pH Measurements in Rainwater, J. Res. Natl. Bur. Stand. 1986, 91, 23.

    17. Von Diffusionspotentialen freie Elektroden sind so konzi-piert, dass in einer Teflon-Kapillare der Elektrolyt regelm-ig ber eine Spritze erneuert wird.

    18. Die Spektrophotometrie mit Sure-Base-Indikatoren ist ein weiteres Mittel zur Messung des pH bei niedriger Ionen-strke in natrlichen Wssern. (C. R. French, J. J. Carr, E. M. Dougherty, L. A. K. Eidson, J. C. Reynolds, and M. D. DeGrandpre, Spectrophotometric pH Measurements of Freshwater, Anal. Chim. Acta 2002, 453, 13.)

    19. Die Referenzelektrode in der Ross-Kombinationselektrode ist Pt | I2, I-. Es wird behauptet, dass diese Elektrode eine hhere Przision und Richtigkeit als herkmmliche pH-Elektroden besitzt. (R. C. Metcalf, Analyst 1987, 112, 1573).

    20. A. N. Bezbaruah and T. C. Zhang, Fabrication of Anodi-cally Electrodeposited Iridium Oxide Film pH Microelect-rodes for Microenvironmental Studies, Anal. Chem. 2002, 74, 5726. Iridiumoxid-Elektroden kann man kaufen oder selbst herstellen: J.-P. Ndobo-Epoy, E. Lesniewska, and J.-P. Guicquero, Nano-pH Sensor for the Study of Reactive Ma-terials, Anal. Chem. 2007, 79, 7560 oder R.-G. Du, R.-G. Hu, R.-S. Huang, and C.-J. Lin, In Situ Measurement of Cl- Concentrations and pH at the Reinforcing Steel/Concrete Interface by Combination Sensors, Anal. Chem. 2006, 78, 3179.

    21. L. W. Niedrach, Electrodes for Potential Measurements in Aqueous Systems at High Temperatures and Pressures, Angew. Chem. 1987, 26, 161.

    22. Die Geschichte der ionenselektiven Elektroden: M. S. Frant, Where Did Ion Selective Electrodes Come From? J. Chem. Ed. 1997, 74, 159; J. Ruzicka, The Seventies: Golden Age for Ion Selective Electrodes, J. Chem. Ed. 1997, 74, 167; T. S. Light, Industrial Use and Applications of Ion Selective Electrodes, J. Chem. Ed. 1997, 74, 171; and C. C. Young, Evolution of Blood Chemistry Analyzers Based on Ion Selective Electrodes, J. Chem. Ed. 1997, 74, 177; R.P. Buck and E. Lindner, Tracing the History of Selective Ion Sen-sors, Anal. Chem. 2001, 73, 88A.

    23. E. Bakker and E. Pretsch, Modern Potentiometry, Angew. Chem. Int. Ed. 2007, 46, 5660.

    24. E. Bakker and E. Pretsch, The New Wave of Ion-Selective Electrodes, Anal. Chem. 2002, 74, 420A.

    25. Fr Strionen X mit einer anderen Ladung als der des Primrions A werden Sie die falsche empirische Nicolsky-Eisenman-Gleichung in der Literatur zu finden:

    E = Konstante ( )

    +

    A x/PotA A,X XXA

    0.05916 log K z zA Az

    wobei zA die Ladung des Primrions A und zX die Ladung des Strions X ist. Diese Gleichung sollte man nicht benut-zen. (Y. Umezawa, K. Umezawa, and H. Sato, Selectivity Coefficients for Ion-Selective Electrodes: Recommended Methods for Reporting KPot A,X Values, Pure Appl. Chem. 1995, 67, 507.) Korrekte Gleichungen, bei denen sich die Ladungen von Str- und Primrionen unterscheiden, sind kompliziert. Diese knnen Sie hier finden: E. Bakker, R. Me-ruva, E. Pretsch, and M. Meyerhoff, Selectivity of Polymer Membrane-Based Ion-Selective Electrodes: Self-Consistent Model Describing the Potentiometric Response in Mixed Ion Solutions of Different Charge, Anal. Chem. 1994, 66, 3021, and N.Ngele, E. Bakker, and E. Pretsch, General Description of the Simultaneous Response of Potentiome-tric Ionophore-Based Sensors to Ions of Different Charge, Anal. Chem. 1999, 71, 1041.

    26. E. Bakker, E. Pretsch, and P. Bhlmann, Selectivity of Potentiometric Ion Sensors, Anal. Chem. 2000, 72, 1127; E. Bakker, Determination of Unbiased Selectivity Coeffici-ents of Neutral Carrier-Based Cation-Selective Electrodes, Anal. Chem. 1997, 69, 1061.

    27. Y. Umezawa, K. Umezawa, and H. Sato, Selectivity Coeffi-cients for Ion-Selective Electrodes: Recommended Methods for Reporting KPot A,X Values, Pure Appl. Chem. 1995, 67, 507.

    28. K. Ren, Selectivity Problems of Membrane Ion-Selective Electrodes, Fresenius J. Anal. Chem. 1999, 365, 389.

    29. M. H. Hecht, S. P. Kounaves, R. C. Quinn, S. J. West, S. M. M. Young, D.W. Ming, D. C. Catling, B. C. Clark, W. V. Boy-nton, J. Hoffman, L. P. DeFlores, K. Gospodinova, J. Kapit, and P. H. Smith, Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site, Sci-ence 2009, 325, 64.

    30. A. Michalska, Optimizing the Analytical Performance and Construction of Ion-Selective Electrodes with Conducting

    Harris_T3.indd 820 18.12.2013 10:52:14

  • Anmerkungen und Literaturangaben 821

    Polymer-Based Ion-to-Electron Transducers, Anal. Bioa-nal. Chem. 2006, 384, 391; A. Rzewuska, M.Wojciechowski, E. Bulska, E. A. H. Hall, K. Maksymuik, and A. Michalska, Composite Polyacrylate-Poly(3,4-ethylenedioxythiophene) Membranes for Improved All-Solid-State Ion-Selective Sen-sors, Anal. Chem. 2008, 80, 321.

    31. T. A. Bendikov and T. C. Harmon, A Sensitive Nitrate Ion-Selective Electrode from a Pencil Lead, J. Chem. Ed. 2005, 82, 439.

    32. Andere CO2-Elektroden wurden beschrieben: (z.B. J. H. Shin, J. S. Lee, S. H. Choi, D. K. Lee, H. Nam, and G. S. Cha, A Planar pCO2 Sensor with Enhanced Electrochemical Properties, Anal. Chem. 2000, 72, 4468).

    33. Y. S. Choi, L. Lvova, J. H. Shin, S. H. Oh, C. S. Lee, B. H. Kim, G. S. Cha, and H. Nam, Determination of Oceanic Carbon Dioxide Using a Carbonate-Selective Electrode, Anal. Chem. 2002, 74, 2435.

    34. J. D. Czaban, Electrochemical Sensors in Clinical Che-mistry, Anal. Chem. 1985, 57, 345A.

    35. M. Umemoto, W. Tani, K. Kuwa, and Y. Ujihira, Measuring Calcium in Plasma, Anal. Chem. 1994, 66, 352A.

    36. P. Grndler, Chemical Sensors: An Introduction for Scientists and Engineers (New York: Springer, 2007).

    37. Der Widerstand, , gibt an, wie gut eine Substanz beim An-legen eines elektrischen Feldes den Fluss des elektrischen Stroms verzgert: J = E/, wobei J die Stromdichte (Strom, der durch einen Einheitsquerschnitt des Materials, A/m2 fliet) ist und E ist das elektrische Feld (V/m). Die Einhei-ten des Widerstand sind V . m/A oder . m, da = V/A, mit = Ohm. Die Leiter haben Widerstnde in der Nhe von 10-8 . m, Halbleiter haben Widerstnde von 10-4 bis 107 . m und Isolatoren haben Widerstnde von 1012 bis 1020 . m. Der Kehrwert des spezifischen Widerstandes ist die Leitfhigkeit. Der Widerstand hngt nicht von den Di-mensionen des Stoffes ab. Der Widerstand steht mit dem spezifischen Widerstandes durch R = l/A, in Beziehung, wobei l die Lnge und A die Querschnittsflche der leiten-den Substanz sind.

    38. S.-S. Jan, J.-L. Chiang, Y.-C. Chen, J.-C. Chou, and C.-C Cheng, Characteristics of the Hydrogen Ion-Sensitive Field Effect Transistors with Sol-Gel-Derived Lead Titanate Gate, Anal. Chim. Acta 2002, 469, 205.

    39. C. Jimnez, I. Marqus, and J. Bartrol, Continuous-Flow Systems for On-Line Water Monitoring Using Back-Si-de Contact ISFET-Based Sensors, Anal. Chem. 1996, 68, 3801.

    40. J. H. Shin, H. J. Lee, C. Y. Kim, B. K. Oh, K. L. Rho, H. Nam, and G. S. Cha, ISFET-Based Differential pCO2 Sensors Employing a Low-Resistance Gas-Permeable Membrane, Anal. Chem. 1996, 68, 3166.

    41. A. M. Nyamsi Hendji, N. Jaffrezic-Renault, C. Martelet, P. Clechet, A. A. Shulga, V. I. Strikha, L. I. Netchiporuk, A. P. Soldatkin, and W. B. Wlodarski, Sensitive Detection of Pesticides Using Differential ISFET-Based System with Im-mobilized Cholinesterases, Anal. Chim. Acta 1993, 281, 3.

    42. M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake, and I. Willner, Tailored Chemosensors for Chloroaromatic Acids

    Using Molecular Imprinted TiO2 Thin Films on Ion-Sensi-tive Field-Effect Transistor, Anal. Chem. 2001, 73, 720.

    43. A. B. Kharitonov, A. N. Shipway, and I. Willner, An Au Nanoparticle/Bisbipyridinium Cyclophane-Functionalized Ion-Sensitive Field-Effect Transistor for the Sensing of Ad-renaline, Anal. Chem. 1999, 71, 5441.

    44. T. Uno, H. Tabata, and T. Kawai, PeptideNucleic Acid-Modified Ion-Sensitive Field-Effect Transistor-Based Bio-sensor for Direct Detection of DNA Hybridization, Anal. Chem. 2007, 79, 52.

    45. D. C. Jackman, A Recipe for the Preparation of a pH 7.00 Calibration Buffer, J. Chem. Ed. 1993, 70, 853.

    46. Gleichung 46 in E. Bakker, R. Meruva, E. Pretsch, and M. Meyerhoff, Selectivity of Polymer Membrane-Based Ion-Selective Electrodes: Self-Consistent Model Describing the Potentiometric Response in Mixed Ion Solutions of Diffe-rent Charge, Anal. Chem. 1994, 66, 3021.

    Kapitel 151. T. Astrup, S. L. S. Stipp, and T. H. Christensen, Immobili-

    zation of Chromate from Coal Fly Ash Leachate Using an Attenuating Barrier Containing Zero-Valent Iron, Envi-ron. Sci. Technol. 2000, 34, 4163; S. H. Joo, A. J. Feitz, and T.D.Waite, Oxidative Degradation of the Carbothiolate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron, Environ. Sci. Technol. 2004, 38, 2242; R. Miehr, P. G. Trat-nyek, J. Z. Bandstra, M. M. Scherer, M. J. Alowitz, and E.U. Bylaska, Diversity of Contaminant Reduction Reactions by Zerovalent Iron: Role of the Reductant, Environ. Sci. Technol. 2004, 38, 139; V. K. Sharma, C. R. Burnett, D. B. OConnor, and D. Cabelli, Iron(VI) and Iron(V) Oxidation of Thiocyanate, Environ. Sci. Technol. 2002, 36, 4182.

    2. Informationen ber Redoxtitrationen: J. Bassett, R. C. Den-ney, G. H. Jeffery, and J. Mendham, Vogels Textbook of In-organic Analysis, 4th ed. (Essex, UK: Longman, 1978); H. A. Laitinen and W. E. Harris, Chemical Analysis, 2nd ed. (New York: McGraw-Hill, 1975); I. M. Kolthoff, R. Belcher, V. A. Stenger, and G. Matsuyama, Volumetric Analysis, Vol. 3 (New York: Wiley, 1957); A. Berka, J. Vulterin, and J. Zka, Newer Redox Titrants, H. Weisz, trans. (Oxford: Pergamon, 1965).

    3. J. Ermrio, F. Moraes, F. H. Quina, C. A. O. Nascimento, D. N. Silva, and O. Chiavone-Filho, Treatment of Saline Wastewater Contaminate with Hydrocarbons by the Photo-Fenton Process, Environ. Sci. Technol. 2004, 38, 1183; B. Gzmen, M. A. Oturan, N. Oturan, and O. Erbatur, Indi-rect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fentons Reagent, Environ. Sci. Technol. 2003, 37, 3716. (H2O)5Fe

    IV=O2+ ist nicht das Fenton-Zwischenprodukt in saurer und neutraler wssriger Lsung: O. Pestovsky, S. Stoian, E. L. Bominaar, X. Shan, E. Mnck, L. Que, Jr., and A. Bakac, Aqueous FeIV=O2+: Spect-roscopic Identification and Oxo-Group Exchange, Angew. Chem. Int. Ed. 2005, 44, 6871.

    4. R. D. Webster, New Insights into the Oxidative Electroche-mistry of Vitamin E, Acc. Chem. Res. 2007, 40, 251.

    5. D. T. Sawyer, Conceptual Considerations in Molecular Sci-ence, J. Chem. Ed. 2005, 82, 985.

    Harris_T3.indd 821 18.12.2013 10:52:15

  • 822 Anmerkungen und Literaturangaben

    6. Die Gleichungen 15.9 und 15.10 sind als analog zur Hen-derson-Hasselbalch Gleichung von Sure/Base-Puffern auf-zufassen. Vor dem Erreichen des quivalenzpunkts ist die Redoxtitration durch die Anwesenheit von Fe3+ und Fe2+ bei einem Potential nahe E+ = Formalpotential fr Fe3+ | Fe2+ gepuffert, whrend nach dem quivalenzpunkt die Reakti-on bei einem Potential in der Nhe von E+ = Formalpoten-tial fr Ce4+ | Ce3+ als gepuffert betrachtet werden kann. (R. de Levie, Redox Buffer Strength, J. Chem. Ed. 1999, 76, 574.)

    7. D. W. King, A General Approach for Calculating Specia-tion and Poising Capacity of Redox Systems with Multiple Oxidation States: Application to Redox Titrations and the Generation of p-pH Diagrams, J. Chem. Ed. 2002, 79, 1135.

    8. T. J. MacDonald, B. J. Barker, and J. A. Caruso, Computer Evaluation of Titrations by Grans Method, J. Chem. Ed. 1972, 49, 200.

    9. M. da Conceio Silva Barreto, L. de Lucena Medieros, and P. C. de Holanda Furtado, Indirect Potentiometric Titrati-on of Fe(III) with Ce(IV) by Grans Method, J. Chem. Ed. 2001, 78, 91.

    10. R. D. Hancock and B. J. Tarbet, The Other Double Helix: The Fascinating Chemistry of Starch, J. Chem. Ed. 2000, 77, 988.

    11. J. H. Margeson, J. C. Suggs, and M. R. Midgett, Reduction of Nitrate to Nitrite with Cadmium, Anal. Chem. 1980, 52, 1955.

    12. E. T. Urbansky, Total Organic Carbon Analyzers as Tools for Measuring Carbonaceous Matter in Natural Waters, J. Environ. Monit. 2001, 3, 102. Allgemeine Literatur ber Umweltanalytik: M. Radojevic and V. N. Bashkin, Practical Environmental Analysis (Cambridge: Royal Society of Che-mistry, 1999) and D. Perez-Bendito and S. Rubio, Environ-mental Analytical Chemistry (Amsterdam: Elsevier, 1998).

    13. L. J. Stolzberg and V. Brown, Note on Photocatalytic De-struction of Organic Wastes: Methyl Red as a Substrate, J. Chem. Ed. 2005, 82, 526;J. A. Poce-Fatou, M. L. A. Gil, R. Alcntara, C. Botella, and J. Martin, Photochemical Reac-tor for the Study of Kinetics and Adsorption Phenomena, J. Chem. Ed. 2004, 81, 537; J. C. Yu and L. Y. L. Chan, Pho-tocatalytic Degradation of a Gaseous Organic Pollutant, J. Chem. Ed. 1998, 75, 750.

    14. R. Dunn, New Developments in Membrane-Selective Con-ductometric Instruments for Total Organic Carbon Deter-mination in Water, Am. Lab., September 2004, p. 22.

    15. S. Sakthivel and H. Kisch, Daylight Photocatalysis by Car-bon-Modified Titanium Dioxide, Angew. Chem. Int. Ed. 2003, 42, 4908.

    16. S. Horikoshi, N. Serpone, Y. Hisamatsu, and H. Hidaka, Photocatalyzed Degradation of Polymers in Aqueous Se-miconductor Suspensions, Environ. Sci. Technol. 1998, 32, 4010.

    17. BSB- und CSB-Vorschriften sind beschrieben in: Standard Methods for the Examination of Wastewater, 21st ed. (Wa-shington, DC: American Public Health Association, 2005), ein Standardwerk zur Wasseranalytik.

    18. K. Catterall, H. Zhao, N. Pasco, and R. John, Development of a Rapid Ferricyanide-Mediated Assay for Biochemical Oxygen Demand Using a Mixed Microbial Consortium, Anal. Chem. 2003, 75, 2584.

    19. B. Wallace and M. Purcell, The Benefits of Nitrogen and Total Organic Carbon Determination by High-Temperature Combustion, Am. Lab. News Ed., February 2003, p. 58.

    20. W. Gottardi, Redox-Potentiometric/Titrimetric Analysis of Aqueous Iodine Solutions, Fresenius J. Anal. Chem. 1998, 362, 263.

    21. S. C. Petrovic and G. M. Bodner, An Alternative to Halo-genated Solvents for Halogen/Halide Extractions, J. Chem. Ed. 1991, 68, 509.

    22. G. L. Hatch, Effect of Temperature on the Starch-Iodine Spectrophotometric Calibration Line, Anal. Chem. 1982, 54, 2002.

    23. Y. Xie, M. R. McDonald, and D. W. Margerum, Mechanism of the Reaction Between Iodate and Iodide Ions in Acid Solutions, Inorg. Chem. 1999, 38, 3938.

    24. Stelle wasserfreies Na2S2O3 durch 20mintiges Kochen von 21 g Na2S2O3 . 5H2O in 100 mL Methanol am Rckfluss her. Dann filtriere das wasserfreie Salz, wasche es mit 20 mL Methanol, und trockne es bei 70C fr 30 min. (A. A. Woolf, Anhydrous Sodium Thiosulfate as a Primary Io-dometric Standard, Anal. Chem. 1982, 54, 2134.)

    25. J. Hvoslef and B. Pedersen, The Structure of Dehydroas-corbic Acid in Solution, Acta Chem. Scand. 1979, B33, 503; D. T. Sawyer, G. Chiericato, Jr., and T. Tsuchiya, Oxidation of Ascorbic Acid and Dehydroascorbic Acid by Superoxide in Aprotic Media, J. Am. Chem. Soc. 1982, 104, 6273; R. C. Kerber, As Simple As Possible, But Not Simpler - The Case of Dehydroascorbic Acid, J. Chem. Ed. 2008, 85, 1237.

    26. R. J. Cava, Oxide Superconductors, J. Am. Ceram. Soc. 2000, 83, 5.

    27. D. C. Harris, M. E. Hills, and T. A. Hewston, Preparation, Iodometric Analysis, and Classroom Demonstration of Su-perconductivity in YBa2Cu3O8-x, J. Chem. Ed. 1987, 64, 847; D. C. Harris, Oxidation State Chemical Analysis, in T. A. Vanderah, ed., Chemistry of Superconductor Materials (Park Ridge, NJ: Noyes, 1992); B. D. Fahlman, Superconductor Synthesis: An Improvement, J. Chem. Ed. 2001, 78, 1182. Demonstrations-Kits fr Supraleiter sind bei verschiedenen Herstellern verfgbar, so bei Sargent-Welch, 7400 N. Linder Ave., Skokie, IL 60077-1026.

    28. Experimente mit 18O-angereicherten Supraleitern zeigen, dass der bei der Reaktion 1 entstehende Sauerstoff aus dem Feststoff und nicht aus dem Lsungsmittel stammt. (M. W. Shafer, R. A. de Groot, M. M. Plechaty, G. J. Scilla, B. L. Olson, and E. I. Cooper, Evolution and Chemical State of Oxygen Upon Acid Dissolution of YBa2Cu3O6.98, Mater. Res. Bull. 1989, 24, 687; P. Salvador, E. Fernandez-Sanchez, J. A. Garcia Dominguez, J. Amdor, C. Cascales, and I. Rasi-nes, Spontaneous O2 Release from SmBa2Cu3O7 x High Tc Superconductor in Contact with Water, Solid State Com-mun. 1989, 70, 71).

    29. Eine etwas empfindlichere und elegantere iodometrische Methode ist hier beschrieben worden: E. H. Appelman,

    Harris_T3.indd 822 18.12.2013 10:52:15

  • Anmerkungen und Literaturangaben 823

    L. R. Morss, A. M. Kini, U. Geiser, A. Umezawa, G. W. Crabtree, and K. D. Carlson, Oxygen Content of Supercon-ducting Perovskites La2 xSrxCuOy and YBa2Cu3Oy, Inorg. Chem. 1987, 26, 3237. Diese Methode kann durch die Zugabe von Br2 modifiziert werden. Damit ist die Analyse von Supraleitern, die Sauerstoff im Bereich von 6.06.5 und formal Cu+ and Cu2+ enthalten, mglich. Es empfiehlt sich die Verwendung von Elektroden an Stelle von Strke zur Endpunktbestimmung bei iodometrischen Titrationen von Supraleitern. (P. Phinyocheep and I. M. Tang, Determinati-on of the Hole Concentration (Copper Valency) in the High Tc Superconductors, J. Chem. Ed. 1994, 71, A115).

    30. C. L. Copper and E. Koubek, Analysis of an Oxygen Bleach, J. Chem. Ed. 2001, 78, 652.

    31. M. T. Garrett, Jr., and J. F. Stehlik, Classical Analysis, Anal. Chem. 1992, 64, 310A.

    32. K. Peitola, K. Fujinami, M. Karppinen, H. Yamauchi, and L. Niinistr, Stoichiometry and Copper Valence in the Ba1 yCuO2+ System, J. Mater. Chem. 1999, 9, 465.

    33. S. Scaccia and M. Carewska, Determination of Stoichio-metry of Li1+yCoO2 Materials by Flame Atomic Absorpti-on Spectrometry and Automated Potentiometric Titration, Anal. Chim. Acta 2002, 453, 35.

    34. M. Karppinen, A. Fukuoka, J. Wang, S. Takano, M. Wakata, T. Ikemachi, and H. Yamauchi, Valence Studies on Various Superconducting Bismuth and Lead Cuprates and Related Materials, Physica 1993, C208, 130.

    Kapitel 161. T. R. I. Cataldi, C. Campa, and G. E. De Benedetto, Car-

    bohydrate Analysis by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection, Fresenius J. Anal. Chem. 2000, 368, 739.

    2. W. E. Haupin, Electrochemistry of the Hall-Heroult Pro-cess for Aluminum Smelting, J. Chem. Ed. 1983, 60, 279; N. C. Craig, Charles Martin Hall: The Young Man, His Mentor, and His Metal, J. Chem. Ed. 1986, 63, 557.

    3. A. J. Bard and L. R. Faulkner, Electrochemical Methods and Applications, 2nd ed. (New York: Wiley, 2001); J. Wang, Analytical Electrochemistry, 3rd ed. (New York: Wiley-VCH, 2006); J. OM. Bockris, and A. K. N. Reddy, Modern Electrochemistry, 2nd ed. (Dordrecht, Netherlands: Kluwer, 19982001, 3vols.); F. Scholz, ed., Electroanalytical Methods (Berlin: Springer-Verlag, 2002); A. J. Bard and M. Strat-mann, eds., Encyclopedia of Electrochemistry (New York: Wiley-VCH, 2002).

    4. E. C. Gilbert in H. N. Alyea and F. B. Dutton, eds., Tested Demonstrations in Chemistry (Easton, PA: Journal of Che-mical Education, 1965), p. 145.

    5. J. OM. Bockris, Overpotential: A Lacuna in Scientific Knowledge, J.Chem. Ed. 1971, 48, 352.

    6. Z. Qiao, W. Shang, X. Zhang, and C. Wang, Underpoten-tial Deposition of Tin(II) on a Gold Disk Electrode and Determination of Tin in a Tin Plate Sample, Anal. Bioanal. Chem. 2005, 381, 1467.

    7. D. N. Craig, J. I. Hoffman, C. A. Law, and W. J. Hamer, Determination of the Value of the Faraday with a Silver-

    Perchloric Acid Coulometer, J. Res. Natl. Bur. Stand. 1960, 64A, 381; H. Diehl, High-Precision Coulometry and the Value of the Faraday, Anal. Chem. 1979, 51, 318A.

    8. J. Greyson and S. Zeller, Analytical Coulometry in Monier-Williams Sulfite-in-Food Determinations, Am. Lab., July 1987, p. 44; D. T. Pierce, M. S. Applebee, C. Lacher, and J. Bessie, Low Parts Per Billion Determination of Sulfide by Coulometric Argentometry, Environ. Sci. Technol. 1998, 32, 1734.

    9. L. C. Clark, R. Wolf, D. Granger, and A. Taylor, Continuous Recording of Blood Oxygen Tension by Polarography, J. Appl. Physiol. 1953, 6, 189.

    10. F. Schreiber, L. Polerecky, and D. De Beer, Nitric Oxide Microsensor for High Spatial Resolution Measurements in Biofilms and Sediments, Anal. Chem. 2008, 80, 1152; Y. Lee and J. Kim, Simultaneous Electrochemical Detection of Nitric Oxide and Carbon Monoxide Generated from Mouse Kidney Organ Tissues, Anal. Chem. 2008, 80, 7669.

    11. J. Yinon, Detection of Explosives by Electronic Noses, Anal. Chem. 2003, 75, 99A; M. C. C. Oliveros, J. L. P. Pavn, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Fori-na, Electronic Nose Based on Metal Oxide Semiconductor Sensors as a Fast Alternative for the Detection of Adulte-ration of Virgin Olive Oils, Anal. Chim. Acta 2002, 459, 219; C. L. Honeybourne, Organic Vapor Sensors for Food Quality Assessment, J. Chem. Ed. 2000, 77, 338; E. Zubrits-ky, E-Noses Keep an Eye on the Future, Anal. Chem. 2000, 72, 421A.

    12. R. Renneberg and F. Lisdat, eds., Biosensing for the 21st Cen-tury (Heidelberg: Springer, 2008); J. M. Cooper and A. E. G. Cass, eds., Biosensors, 2nd ed. (Oxford: Oxford University Press, 2004); A. Mulchandani and O. A. Sadik, eds., Che-mical and Biological Sensors for Environmental Monitoring Biosensors (Washington, DC: American Chemical Society, 2000); E. Palaek and M. Fojta, Detecting DNA Hybridiza-tion and Damage, Anal. Chem. 2001, 73, 75A.

    13. Beispiele fr Biosensoren: J. H. Thomas, S. K. Kim, P. J. Hesketh, H. B. Halsall, and W. R. Heineman, Bead-Based Electrochemical Immunoassay for Bacteriophage MS2, Anal. Chem. 2004, 76, 2700; Y. Zhang, H.-H. Kim, and A. Heller, Enzyme-Amplified Amperometric Detection of 3000 Copies of DNA in a 10-mL Droplet at 0.5 fM Concent-ration, Anal. Chem. 2003, 75, 3267; A. S. Mittelmann, E. Z. Ron, and J. Rishpon, Amperometric Quantification of To-tal Coliforms and Specific Detection of E. coli, Anal. Chem. 2002, 74, 903; A. Avramescu, S. Andreescu, T. Noguer, C. Bala, D.Andreescu, and J.-L. Marty, Biosensors Designed for Environmental and Food Quality Control, Anal. Bio-anal. Chem. 2002, 374, 25; T. M. ORegan, L.J. ORiordan, M. Pravda, C. K. OSullivan, and G. G. Guilbault, Direct Detection of Myoglobin in Whole Blood Using a Disposa-ble Amperometric Immunosensor, Anal. Chim. Acta 2002, 460, 141.

    14. B. C. Okeke, G. Ma, Q. Cheng, M. E. Losi, and W. T. Frankenberger, Jr., Development of Perchlorate Reductase Based Biosensor for Real Time Analysis of Perchlorate in Water, J. Microbiol. Meth. 2007, 68, 69.

    Harris_T3.indd 823 18.12.2013 10:52:15

  • 824 Anmerkungen und Literaturangaben

    15. E. Lia