23
TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Elektrotechnik und Informationstechnik Fachgebiet Elektronische Schaltungen und Systeme Anwendungen von OPVs Versuch 7 im Informationselektronischen Praktikum Studiengang Elektrotechnik und Informationstechnik 2. Studienschwerpunkt: Mikro-, Nanoelektronik und Elektrotechnologie (BA) Betreuer: Dr.-Ing. Steffen Arlt Raum H3511, Tel. 691165 Praktikumsraum: H3521B

Anwendungen von OPVs - Startseite TU Ilmenau · PDF fileBei der Übertragungskennlinie handelt es sich um eine Funktion des natürlichen Logarithmus, da für die Erzeugung dieser Funktion

Embed Size (px)

Citation preview

TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Elektrotechnik und Informationstechnik Fachgebiet Elektronische Schaltungen und Systeme

Anwendungen von OPVs

Versuch 7 im

Informationselektronischen Praktikum

Studiengang Elektrotechnik und

Informationstechnik

2. Studienschwerpunkt:

Mikro-, Nanoelektronik und Elektrotechnologie

(BA)

Betreuer: Dr.-Ing. Steffen Arlt Raum H3511, Tel. 691165 Praktikumsraum: H3521B

Verwendete Formelzeichen

αn, αp - Widerstandsverhältnisse

v - Verstärkung allgemein

v0 - Gleichspannungsverstärkung

VGL - Gleichtaktverstärkung

VD - Differenzverstärkung

G - Gleichtaktunterdrückung

IS - Sättigungsstrom der Diode

ICS - Kollektorsättigungsstrom des Transistors

UBE - Basis-Emitterspannung des Transistors

Ua - Ausgangsspannung

Ue - Eingangsspannung

Rg - Gyratorwiderstand

Q - Güte

fg - -3dB Grenzfrequenz

fgu - untere -3dB Grenzfrequenz

fgo - obere -3dB Grenzfrequenz

fr - Resonanzfrequenz

B - 3dB Bandbreite

XC, XL - Scheinwiderstände von Kondensator und Spule

ω - Kreisfrequenz ω π= 2 f

Inhaltsverzeichnis

1. Versuchsziel ........................................................................................................ 1

2. Theoretische Grundlagen .................................................................................. 1

2.1 Der Differenzverstärker ............................................................................ 1

2.2 Der Logarithmierer ................................................................................... 3

2.3 Der Präzisionsgleichrichter ...................................................................... 5

2.4 Der Gyrator ............................................................................................... 7

2.5 Der aktive Tiefpass ................................................................................... 8

3. Praktikumsvorbereitungen ............................................................................. 11

3.1 Der Differenzverstärker .......................................................................... 11

3.2 Der Logarithmierer ................................................................................. 12

3.3 Der Präzisionsgleichrichter .................................................................... 13

3.4 Der Gyrator ............................................................................................. 14

3.5 Der aktive Tiefpass ................................................................................. 15

4. Praktikumsaufgaben ........................................................................................ 16

4.1 Der Differenzverstärker .......................................................................... 16

4.2 Der Logarithmierer ................................................................................. 16

4.3 Der Präzisionsgleichrichter .................................................................... 17

4.4 Der Gyrator ............................................................................................. 18

4.5 Der aktive Tiefpass ................................................................................. 19

Anwendungen von OPVs Seite : 1 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

1. Versuchsziel

Im vorliegenden Versuch wird der OPV in einigen praktischen Anwendungen untersucht

werden. Theoretische Grundlagen, praktische Messungen und simulierte Ergebnisse sollen

eine Einheit bilden. Bei den realisierten Schaltungen handelt es sich um Differenzverstärker,

logarithmischen Verstärker, Präzisionsgleichrichter, Gyrator und aktiven Tiefpass.

2. Theoretische Grundlagen

2.1. Der Differenzverstärker

Der Differenzverstärker zählt zu den Grundschaltungen der Operationsverstärkertechnik. Er

zeichnet sich dadurch aus, dass er die Differenz zwischen zwei an den Eingängen anliegenden

Spannungen bildet.

Abb. 1: Schaltungsstruktur eines Differenzverstärkers

Im Gegensatz zu einem normalen Verstärker, der alle an seinem Eingang anliegenden Signale

gleichartig verstärkt, hat der Differenzverstärker gleichzeitig zwei völlig unterschiedliche

Aufgaben zu lösen. Er muss das Nutzsignal mit möglichst hoher Differenzverstärkung ver-

stärken, darf aber die vorwiegend als Gleichtaktsignale auftretenden Störsignale möglichst gar

nicht verstärken. Die in der Ersatzschaltung angenommene Gleichtaktquelle ist dabei nicht in

Anwendungen von OPVs Seite : 2 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

konzentrierter Form als Bauelement vorhanden, sondern wird durch äußere Einflüsse, wie

Temperaturschwankungen, Änderungen der Versorgungsspannung, Einstreuungen auf die

Zuleitungen sowie andere Umwelteinflüsse hervorgerufen. Ein ideal symmetrisch aufgebauter

Differenzverstärker muss bei erzwungener Gleichtaktaussteuerung eine Ausgangsspannung

Ua=0V abgeben. In diesem Fall ist die Gleichtaktverstärkung VGL=0. /1/, /2/

Zur Erklärung der Funktionsweise kann man die Eingänge des Differenzverstärkers einmal

getrennt betrachten. Der Differenzverstärker lässt sich aus zwei Grundschaltungen des OPV

zusammensetzen. Im ersten Fall wird Ue2 0= gesetzt, es entsteht die gewöhnliche invertie-

rende Grundschaltung mit der Verstärkung −αn . Die Ausgangsspannung ergibt sich zu:

U Ua n en= − ⋅α 1 (1)

Im zweiten Fall wird Ue1 0= gesetzt und die Schaltung arbeitet als Elektrometerverstärker

mit vorgeschaltetem Spannungsteiler. Für die Ausgangsspannung gilt in diesem Fall:

( )U Uap

pn ep

=+

+ ⋅α

αα

11 2 (2)

Aus der Kombination dieser beiden Teilschaltungen ergibt sich der in Abb. 1 dargestellte Dif-

ferenzverstärker mit folgender Beziehung für die Ausgangsspannung:

( )U U Ua e e p= − =α α α α2 1 , wenn = n (3)

Sind α αn p≠ , dann bildet die Schaltung nicht exakt die Differenz der Eingangsspannungen

und es gilt die Beziehung (4) :

U U Uan

pp e n e=

++

−11 2 1

αα

α α (4)

Die neben der Differenzverstärkung wichtigste Eigenschaft des OPV, die Gleichtaktverstär-

kung VGL beziehungsweise die daraus abgeleitete Gleichtaktunterdrückung G, lässt sich am

leichtesten durch eine künstliche Gleichtaktaussteuerung ermitteln. Praktisch wird meist die

Gleichtaktunterdrückung angegeben. Eine Gleichtaktaussteuerung erreicht man, indem beide

Anwendungen von OPVs Seite : 3 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

Eingänge der Verstärkerschaltung miteinander verbunden und mit gleicher Eingangsspannung

ausgesteuert werden. Theoretisch müsste jetzt die Ausgangsspannung Ua = 0 für

α α α= =n p nach (3) und U Uap n

pe=

+⋅

α α

α1für α α α≠ ≠n p nach (4) sein. Praktisch sind

diese Werte aufgrund des Gleichtaktaussteuerverhaltens des OPV und der Widerstandstole-

ranzen nicht erreichbar.

Die Gleichtaktunterdrückung, auch CMRR (common mode rejection ratio) genannt, berech-

net sich nach :

( ) ( )( ) ( )G

VV

D

Gl

n p p n

n p p n

= =+ ⋅ + + ⋅

+ ⋅ − + ⋅

12

1 1

1 1

α α α α

α α α α (5)

Für α=αn=αp ergibt sich der theoretische Wert von G=∞.

2.2. Der Logarithmierer

Eine weitere interessante Schaltung der analogen Rechentechnik ist der Logarithmierer. Er

besitzt die Eigenschaft, eine logarithmische Übertragungskennlinie zwischen Ein- und Aus-

gangsspannung zu realisieren ( Abbildung 2 ).

-2 ,5

-2

-1 ,5

-1

-0 ,5

0

0 ,5

1

1 ,5

2

2 ,5

0 1 2 3 4 5 6 7 8 9

Ua

Ue

Abb. 2: typische Übertragungskennlinie eines Logarithmierers

Bei der Übertragungskennlinie handelt es sich um eine Funktion des natürlichen Logarithmus,

da für die Erzeugung dieser Funktion ein mit einer Diode bzw. Transistor rückgekoppelter

OPV verwendet wird. Die Dioden bzw. Transistoren besitzen eine Exponentialfunktion als

Anwendungen von OPVs Seite : 4 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

Kennlinie. Für die in Abb. 3 und 4 dargestellten Prinzipschaltungen gelten demnach die fol-

genden Beziehungen:

Abb. 3: Logarithmierer mit Diode Abb. 4: Logarithmierer mit Transistor

U mUUI R

I I e

a Te

S

A S

UmU

AK

T

= − ⋅ >

=

ln1

0 für U

mit:

e

(6) U U

UI R

I I e

a Te

CS

C CSU UBE T

= − >

=

ln1

0 für U

mit:

e (7)

Abbildung 3 und 4 zeigen zwei mögliche Realisierungen für den Logarithmierer. Da die

Schaltung in Abb. 4 einige Vorteile bietet, stellt sie die für die Praxis günstigere Lösung dar.

Der Wegfall des Korrekturfaktors m aus Schaltung 3 ist der wesentliche Vorteil, da dieser

Faktor unbestimmt ist, und zwischen 1 und 2 liegt. Weiterhin tritt bei der Schaltung mit Tran-

sistor keine Verfälschung der Kennlinie durch den Kollektor-Basis-Sperrstrom auf, da UCB=0

ist. Die Stromverstärkung geht ebenfalls nicht in das Ergebnis ein, da der Basisstrom nach

Masse abfließt. Nachteilig ist jedoch die relativ hohe Schwingneigung, die dadurch verursacht

wird, daß der Transistor die Schleifenverstärkung um seine Spannungsverstärkung erhöht.

Um diese Schwingneigung zu vermindern, ist der Widerstand RE in die Schaltung eingefügt

worden. Eine weitere Verbesserung bringt der Kondensator C mit sich ( Frequenzgangkorrek-

tur ).

Literaturhinweise finden Sie in /3/.

Anwendungen von OPVs Seite : 5 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

2.3. Der Präzisionsgleichrichter

In der elektronischen Messtechnik sind häufig Wechselgrößen zu messen. Da Messgeräte (

vor allem digitale ) aber meist nur Gleichgrößen direkt messen können, muss eine Möglich-

keit gefunden werden, die Wechselgrößen in dazu äquivalente Gleichgrößen umzuwandeln.

Leider besitzen die in Gleichrichtern eingesetzten Dioden immer eine Flussspannung (vom

Strom nahezu unabhängiger Spannungsabfall), die dazu führt, dass der angezeigte Wert um

genau diesen Wert vom wahren Messwert abweicht. Bei Spannungen, die kleiner als die

Flussspannung (≈0,7V für Siliziumdioden) sind, zeigt das anzeigende Messgerät gar nichts

mehr an. Um diesen Fehler zu umgehen, werden aktive Gleichrichter eingesetzt. Eine mögli-

che Realisierung ist der Präzisionsgleichrichter. Es handelt sich dabei um einen, mit OPV

realisierten, Vollweggleichrichter. Seine Ausgangsspannung ergibt sich zu :

UU UU U

U Uae e

e ea e=

≥− ≤

⎧⎨⎩

⎫⎬⎭⇒ =

für für

00

(8)

Der Vorteil gegenüber der Realisierung mit Dioden besteht darin, dass in weiten Grenzen mit

beliebig kleinen Spannungen gearbeitet werden kann. Einen Nachteil besitzt jedoch auch die-

se Schaltung: es wird nicht der Effektivwert ermittelt, sondern der Betrag der Eingangsspan-

nung. Für rein sinusförmige Signale wird dann das anzeigende Messgerät, welches auch noch

die Glättung der pulsierenden Gleichspannung übernehmen muss, auf den Effektivwert ge-

eicht, da diese Signalform in der Praxis am häufigsten auftritt. Es ist zwar auch ein Abgleich

auf andere Signalformen möglich, jedoch ist immer nur eine Form einstellbar. Für jede andere

wird ein falscher Wert angezeigt. Mit sehr hohem Aufwand können jedoch auch echte Effek-

tivwertgleichrichter hergestellt werden, die dann für jede beliebige Signalform den Effektiv-

wert anzeigen. /4/

Die Funktionsweise des Präzisionsgleichrichters zeigen die Abb. 5 und 6.

Der Verstärker OPV1 mit seiner Beschaltung arbeitet als invertierender Einweggleichrichter.

Bei positiven Eingangsspannungen besitzt er eine Spannungsverstärkung v'= −1 (wegen ge-

sperrter Diode D2)., bei negativen Eingangsspannungen wird die Schaltung zu einem invertie-

renden Verstärker mit der „Verstärkung“ v'= 0. Am Punkt U1 ergeben sich Spannungen nach

Gleichung (9) (Darstellung Abb. 6 - 3. von oben).

Anwendungen von OPVs Seite : 6 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

UU U

Ue e

e1

00 0

=− ≥

⎧⎨⎩

fürfür

(9)

( )U U UaOPV e2 12= − +

(10)

Abb. 5: Prinzipschaltung des Präzisionsgleichrichters

Da es sich bei einem Präzisionsgleichrichter aber um eine Vollweggleichrichter handelt, wird

noch eine weitere Schaltung benötigt. Diese Aufgabe übernimmt OPV2 mit seiner Beschal-

tung. Er stellt einen invertierenden Summationsverstärker dar und bildet den Aus-

druck ( )U U UaOPV e2 12= − + . In Verbindung mit Gleichung (9) ergibt für die Ausgangsspan-

nung des Präzisionsgleichrichters die Gleichung (8) und schematisch der Verlauf aus Abb. 6

oben.

Abb. 6: Signale des Präzisionsgleichrichters von Abbildung 5

Anwendungen von OPVs Seite : 7 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

2.4 Der Gyrator

Der Gyrator ist eine Transformationsschaltung, die eine Impedanz in ihre dazu duale umwan-

deln kann. Die Umwandlung einer Kapazität in eine Induktivität wird zum Beispiel in der

Mikroelektronik genutzt. Kapazitäten lassen sich bis zu bestimmten Größen ( einige pF bis

wenige nF ) integrieren. Bei Induktivitäten ist dies sehr viel schwerer. Deshalb können an

dieser Stelle Gyratoren vorteilhaft eingesetzt werden. Die erreichbare Güte der Induktivität

liegt ebenfalls deutlich höher, als bei vergleichbaren integrierten Induktivitäten.

Der hier vorgestellte Gyrator besteht aus einer Kombination von zwei INIC’s ( Negativ Impe-

dance Converter) /5/. Diese haben die Eigenschaft, einen negativen Eingangswiderstand zu

erzeugen. Ein INIC lässt sich prinzipiell nur mit aktiven Bauelementen realisieren und ein

OPV ist dafür sehr gut geeignet.

Abb. 7: Schaltzeichen und Blockschaltbild eines Gyrators

Um den Gyrator als induktiv wirkendes Bauelement nutzen zu können, wird an die Klemmen,

an denen U2 abgegriffen wird, ein Kondensator mit der Kapazität C angeschlossen. Der Ein-

gang wirkt dann wie eine Spule mit der Induktivität:

L R Cg= 2 (11)

Aus Gleichung (11) ist ein weiterer Vorteil erkennbar. Die Kapazität wird um den Faktor Rg2

vergrößert. Damit ergibt sich für Rg=1KΩ und C=0,1μF eine scheinbare Induktivität von

L=100mH am Eingang und für Rg=10KΩ und C=0,1μF ein L=10H.

Anwendungen von OPVs Seite : 8 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

Schaltet man zu dieser Induktivität einen weiteren Kondensator parallel, erhält man einen LC-

Parallelschwingkreis von sehr hoher Güte. Anwendungsbeispiele und Dimensionierungshin-

weise zeigt /5/.

Die Güte dieses Parallelschwingkreises ist ein geeignetes Maß für die Bestimmung der Ab-

weichung des realen vom idealen Gyrators. Sie wird als Gyratorgüte bezeichnet. Die Verluste

können durch zwei Verlustwiderstände ausgedrückt werden, die jeweils parallel zum Ein- und

Ausgang des Gyrators liegen. Die Gyratorgüte lässt sich dann nach (12) bestimmen:

QRR

v

g=

2 (12)

Messtechnisch kann die Güte des Schwingkreises über die Resonanzfrequenz und die Band-

breite des Schwingkreises bestimmt werden. Dazu ist eine Frequenzganguntersuchung der

Schaltungsanordnung notwendig. Mit den nachfolgenden Gleichungen ist die Bestimmung

der Güte und somit der Verlustwiderstände möglich:

Bandbreite : B f fgo gu= − (13)

Güte : QfB

r= (14)

Verlustwiderstand: R Q Rv g= ⋅ 2 (15)

2.5 Der aktive Tiefpass

Der integrierte Operationsverstärker lässt sich sehr vorteilhaft als aktives Element zum Auf-

bau von aktiven RC-Schaltungen verwenden. Das mit passiven RC-Netzwerken zusammen-

geschaltete aktive Element gestattet es, auch ohne die Anwendung von Induktivitäten Über-

tragungsfunktionen mit beliebiger Pol-Nullstellen-Verteilung zu realisieren. Der Verzicht auf

Induktivitäten bringt in erster Linie bei niedrigen Frequenzen Vorteile mit sich.

Der Operationsverstärker wird dabei als spannungsgesteuerte Spannungsquelle oder als NIC

(Negativ Impedance Converter) zur Realisierung von aktiven RC-Filtern verwendet. Der als

gesteuerte Spannungsquelle betriebene Operationsverstärker kann dabei mit einfacher oder

mehrfacher Rückkopplung betrieben werden. /6/

Anwendungen von OPVs Seite : 9 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

Bei der hier behandelten Schaltung handelt es sich aus Gründen der Einfachheit und Über-

schaubarkeit um einen aktiven Tiefpass 1. Ordnung.

Um den invertierenden OPV mit einem definierten Tiefpassverhalten betreiben zu können,

wird der Rückkoppelwiderstand durch einen frequenzabhängigen Widerstand ersetzt. In Glei-

chung (16) ist die Verstärkungsgleichung des invertierenden OPV angegeben.

VRR

r

e= − (16)

(mit Rr-Rückkoppelwiderstand und Re- Widerstand am Eingang)

Um nach höheren Frequenzen einen Verstärkungsabfall zu erreichen, muss entweder Rr klei-

ner oder Re größer werden. Ein variabler Re wäre bei der Anpassung an die Eingangsbeschal-

tung schlecht, deshalb sollte nur Rr geändert werden. Als frequenzabhängige Bauelemente

können Spulen oder Kondensatoren verwendet werden. Das Frequenzverhalten dieser beiden

zeigen Gleichung (17) und (18):

XCC =1ω

(17) X LL = ω (18)

Da ein Widerstand benötigt wird, der mit zunehmender Frequenz seinen Wert verringert,

kommt für diese Anwendung nur der Kondensator in Betracht. Soll die Schaltung als Integra-

tor arbeiten, muss ebenfalls ein Kondensator eingesetzt werden, da er die ihm zugeführte

Energie wesentlich leichter speichern kann als eine Spule.

Ein wesentlicher Vorteil des aktiven gegenüber dem passiven Tiefpass ist die Unabhängigkeit

von Ein- und Ausgangswiderstand der Schaltung von der Frequenz. Für die Integratoranwen-

dung spielt noch ein weiterer Vorteil eine wichtig Rolle - die relative Langzeitkonstanz der

Ausgangsspannung, wenn der Integrator in einer Sample&Hold - Schaltung eingesetzt wird.

Diese findet in der Messtechnik bei Analog-Digital-Wandlern als Eingangsstufe Verwendung.

Sie dient dazu, die Eingangsspannung abzutasten und den Abtastwert eine gewisse Zeit kons-

tant am Ausgang zur Verfügung zu stellen. Der Integrator bildet dabei die Halteschaltung.

Einen wesentlichen Unterschied zwischen Integrator und aktivem Tiefpass gibt es jedoch -

der in Abb. 8 gestrichelt eingezeichnete Widerstand R. Beim aktiven Tiefpass wird er benö-

tigt, um die Verstärkung bei geringen Frequenzen, bei denen der Scheinwiderstand des Kon-

densators

Anwendungen von OPVs Seite : 10 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

Abb. 8: Schaltbild des aktiven Tiefpass bzw. Integrators

gegen unendlich geht, zu begrenzen, beim Integrator darf er jedoch keinesfalls vorhanden

sein.

Die Grenzfrequenz des aktiven Tiefpass ist relativ leicht zu bestimmen. Das Verhältnis RRe

bestimmt dabei die Grundverstärkung bei Frequenzen unterhalb der Grenzfrequenz und die

Grenzfrequenz selbst wird mittels Gleichung (19) bestimmt:

fRCg =1

2π (19)

Anwendungen von OPVs Seite : 11 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

3. Praktikumsvorbereitungen

3.1 Der Differenzverstärker

R1

100K

470K

1M

R2

100K

100K

1M

einstellbare Widerstandswerte Abb. 9: Schaltung des Differenzverstärkers

1. Simulieren Sie die Schaltung in Abb. 9 mit VDD VCC V= − = 15 in PSPICE.

Hinweis: In PSPICE gibt es leider keine Möglichkeit Parametervariationen, wie sie für

die Widerstandspaare R1 und R2 notwendig wären, durchzuführen. Daher müssen Sie

bei den Simulationen jeweils 3 verschiedene Läufe durchführen und dazu im Beschrei-

bungsfile die Werte verändern.

2. Bestimmen Sie für die 3 Widerstandspaarungen jeweils das Gleichspannungsverhalten

für Ue1-variabel, wenn Ue2=0V, =0.1V, =0.5V, =1V und =2V und für Ue2-variabel,

wenn Ue1=0V, =0.1V, =0.5V, =1V und =2V ist. Simulieren Sie die Eingangsspannung

jeweils im Bereich von 0V bis 2V und ermitteln Sie die Differenzverstärkung

3. Berechnen Sie mit Gleichung (5) die theoretische Gleichtaktunterdrückung für die 3

Widerstandspaarungen.

4. Verbinden Sie die Eingänge Ue1 und Ue2 miteinander und simulieren Sie das Gleich-

spannungsverhalten wiederum für die drei Widerstandspaarungen. Ermitteln Sie die

Gleichtaktverstärkung und die Gleichtaktunterdrückung. Verwenden Sie dazu die Diffe-

renzverstärkungen von Teilaufgabe 2. Vergleichen Sie die simulierten Werte mit den

theoretisch berechneten.

Anwendungen von OPVs Seite : 12 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

3.2 Der Logarithmierer

Abb. 10: Schaltbild des Logarithmierers

1. Bestimmen Sie mittels PSPICE die Gleichspannungsübertragungskennlinie bei R1=1KΩ

und R1=10KΩ. Verwenden Sie das Transistormodel Q2N2222.

Kontrollfrage: Wie würde sich die Schaltung bei Austeuerung mit einem Sinussignal verhal-

ten? Wie wird das Ausgangssignal beeinflusst?

Anwendungen von OPVs Seite : 13 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

3.3 Der Präzisionsgleichrichter

Abb. 11: Schaltbild des Präzisionsgleichrichters

1. Simulieren Sie die in Abbildung 11 dargestellte Schaltung mit PSPICE. Die Betriebs-

spannung beträgt ±15V. Verwenden Sie als Eingangsspannung eine Sinusquelle.

2. Führen Sie jeweils bei den Eingangsspannungen Ue=100mV und Ue=1V eine Transien-

tenanalyse für die Frequenzen f=10Hz, 1KHz, 50KHz sowie 1MHz durch.

Hinweis: Für die Transientenanalyse sollten Sie folgende Anweisung verwenden:

.TRAN <print step> <final time> <no-print> <step ceiling>

mit printstep =1

f1000 ⋅, final time =

4f

, no print =2f

und step ceiling =1

100 f⋅.

3. Betrachten Sie das Verhalten der Schaltung an den Punkten U1 und Ua in Bezug auf die

Eingangsspannung.

4. Führen Sie für die 2 Eingangsspannungen Ue=100mV und Ue=1V jeweils eine Wechsel-

spannungsanalyse mit logarithmischer Darstellung der Frequenzachse durch und be-

stimmen Sie die Grenzfrequenzen für jede Eingangsspannung.

Anwendungen von OPVs Seite : 14 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

3.4 Der Gyrator

Abb. 12: Schaltbild des Gyrators

1. Simulieren Sie die Schaltung nach Abb. 12 mit PSPICE. Der Gyrator soll die Induktivi-

tät des mit Ci aufgebauten Parallelschwingkreises darstellen. Um die Simulation durch-

führen zu können, muss der Widerstand Ri eingefügt werden.

2. Führen Sie für die in der folgenden Tabelle angegebenen Bauelementewerte eine Fre-

quenzgangsimulation durch. Mittels der Gleichungen in Abschnitt 2.4 lassen sich die zu

erwartenden Induktivitätswerte berechnen. Führen Sie diese Berechnungen durch, und

simulieren Sie parallel zu der Gyratorschaltung einen idealen Schwingkreis mit den

gleichen Bauelementewerten für Ri, Ci und CL. Der Wert von Ri beträgt bei allen Be-

rechnungen 2,7KΩ

Simulation CL Ci R1-R7

1 47nF 2,2µF 1KΩ

2 47nF 2,2µF 10KΩ

3 1nF 2,2µF 1KΩ

4 1nF 2,2µF 10KΩ

3. Bestimmen Sie aus den Simulationen die Resonanzfrequenz fr, die untere sowie obere

Grenzfrequenz fgu bzw. fgo und die Güte des Schwingkreises.

Anwendungen von OPVs Seite : 15 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

3.5 Der aktive Tiefpass

1. Leiten Sie die Gleichung (19) aus Abschnitt 2.5 her. Gehen Sie dabei vom invertieren-

den OPV aus.

Abb. 13: Schaltbild des aktiven Tiefpass

2. Berechnen Sie für Re=10KΩ die Werte für R und C unter folgenden Bedingungen:

a) fg=1.6KHz, vo=10 und

b) fg=16KHz, vo=1.

3. Simulieren Sie das Frequenzverhalten für die in 2. berechneten Werte, bei Ue=100mV.

Bestimmen Sie die Grenzfrequenz und die Gleichspannungsverstärkung vo. Vergleichen

Sie diese mit den Vorgaben aus 2.

4. Simulieren Sie einen einfachen passiven RC-Tiefpass mit R=10KΩ und den Werten für

C aus 2. und vergleichen Sie das Frequenz- und Phasenverhalten von aktiven und passi-

ven Tiefpass.

Kontrollfrage: Aus welchem Grunde kann die Schaltung in Abb. 13 nicht als Integrator ver-

wendet werden?

Welche Nachteile besitzen Induktivitäten?

Anwendungen von OPVs Seite : 16 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

4. Praktikumsaufgaben

4.1 Der Differenzverstärker

1. Verbinden Sie den Eingang Ue2 mit dem Gleichspannungsausgang U2. An den Eingang

Ue1 schließen Sie den Gleichsspannungsausgang U1 an. Schließen Sie an die beiden

Eingänge und den Ausgang des Differenzverstärkers jeweils ein Digitalvoltmeter an.

Stellen Sie beide Spannungsregler auf Linksanschlag. Durch langsames Rechtsdrehen

können Sie die Eingangsspannung erhöhen. Ermitteln Sie nun für die 3 Widerstandspaa-

re und die Spannungsvorgaben aus Abschnitt 3.1 Aufgabe 2. das Gleichspannungsver-

halten der Schaltung.

2. Entfernen Sie die Verbindung von U2 und Ue2, verbinden Sie Ue1 mit Ue2 und verwen-

den U1 als Eingangsspannung. Nehmen Sie jetzt die Gleichtaktunterdrückung, ebenfalls

für die 3 Widerstandspaarungen, auf.

3. Diskutieren Sie die Unterschiede der Simulationsergebnisse und der gemessenen Kur-

ven.

4.2 Der Logarithmierer

1. Schalten Sie an Eingang und Ausgang je ein Digitalvoltmeter an ( Messbereich von

20V-DC ). Verbinden Sie den Eingang Ue mit dem Gleichspannungsausgang U1. Neh-

men Sie die Ausgangsspannung in Abhängigkeit von der Eingangsspannung auf. Be-

ginnen Sie mit Re=1KΩ und führen Sie die Messung nochmals mit Re=10KΩ durch.

2. Vergleichen Sie die Messergebnisse mit den Simulationsergebnissen.

Anwendungen von OPVs Seite : 17 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

4.3 Der Präzisionsgleichrichter

Verhaltensbeurteilung

1. Beschalten Sie den Präzisionsgleichrichter entsprechend Abb. 14. Anstelle des Digital-

voltmeters am Ausgang Ua verwenden Sie den YB-Eingang des Oszillographen. An den

Ausgang U1 schalten Sie den YA-Eingang des Oszillographen. Für den Frequenzgenera-

tor verwenden Sie einen NF-Generator. Schalten Sie den Oszillographen in die Be-

triebsart „ALT“.

Abb. 14: Beschaltung des Präzisionsgleichrichters

2. Stellen Sie den Zeitmaßstab am Oszillographen auf 2ms/T und die Eingangsempfind-

lichkeit auf jeweils 0,1V/T. Die Taste „CAL“ muss gedrückt sein.

3. Stellen Sie die Ausgangsspannung des NF-Generators bei f=1KHz auf etwa 100mV.

4. Sehen Sie sich im Frequenzbereich von 1Hz bis 1MHz die Signalformen an den beiden

Ausgängen des Präzisionsgleichrichter an, beurteilen Sie diese und vergleichen Sie sie

mit den Ergebnissen der Simulation aus Abschnitt 3.3. Korrigieren Sie jeweils die Zeit-

basiseinstellung am Oszillographen so, dass Sie die Signalform gut erkennen können.

Anwendungen von OPVs Seite : 18 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

Hinweis: Bei niedrigen Frequenzen kann es sinnvoll sein, den Oszillographen in die

Betriebsart „CHOP“ zu schalten. Sie können damit ein wesentlich ruhigeres Bild errei-

chen.

Frequenzganguntersuchung

1. Verwenden Sie am Ausgang Ua anstelle des Oszillographen ein Digitalvoltmeter

(Messbereich 200mV DC). Schalten Sie den Oszillographen in die Betriebsart „YA“.

Stellen Sie am NF-Generator f=1KHz ein und regeln Sie dessen Ausgangsspannung so,

daß das Digitalvoltmeter relativ genau 100mV anzeigt.

2. Beginnen Sie nun bei etwa f=5Hz mit der Aufnahme der Frequenzgangkennlinie. Beo-

bachten Sie auch weiterhin den Oszillographen, um Schlussfolgerungen aus der Signal-

form auf die Ausgangsspannung ziehen zu können.

Hinweis: Die Ausgangsspannung wird von dem Digitalvoltmeter nicht besonders stabil

angezeigt. Nehmen Sie einen günstigen Mittelwert auf.

Kontrollfrage: Wieso wird die Ausgangsspannung vom Digitalvoltmeter bei niedrigen Fre-

quenzen nicht mehr stabil angezeigt?

3. Wiederholen Sie die Schritte 1. und 2. für Ue=1V.

4.4 Der Gyrator

Abb. 15: Schaltbild des Gyrators

1. Schließen Sie an den Eingang Ue den NF-Generator an. Verwenden Sie am Ausgang

das NF-Millivoltmeter. Schalten Sie den Gyratorwiderstand Rg auf 1KΩ.

Anwendungen von OPVs Seite : 19 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

2. Wählen Sie am NF-Millivoltmeter den Messbereich 100mV. Stellen Sie am NF-

Generator etwa 100mV als Ausgangsspannung ein. Suchen Sie jetzt die Resonanzfre-

quenz des „Schwingkreises“, indem Sie die Frequenz durchstimmen und den maxima-

len Ausschlag des Millivoltmeters suchen. Eventuell müssen Sie die Eingangsspannung

etwas korrigieren. Bei der Resonanzfrequenz korrigieren Sie die Eingangsspannung nun

soweit, dass der Millivoltmeter genau 100mV anzeigt.

3. Nehmen Sie nun den Frequenzgang der Ausgangsspannung auf. Bestimmen Sie die un-

tere sowie obere Grenzfrequenz, die Resonanzfrequenz und berechnen Sie die Güte des

Gyrators.

4. Wiederholen Sie die Schritte 2 und 3 für Rg=10KΩ.

5. Vergleichen Sie die Messungen mit den Simulationsergebnissen.

Kontrollfrage: Wieso ergibt sich bei Rg=10KΩ eine schlechtere Güte, als bei Rg=1KΩ ?

Welche Schlussfolgerung der Gütebeurteilung ergibt sich daraus?

4.5 Der aktive Tiefpass

1. Schließen Sie den NF-Generator an den Eingang Ue an. Wählen Sie eine Ausgangs-

spannung von Ua=100mV.

2. Messen Sie den Frequenzgang beider Schalterstellungen des Versuchsaufbaus. Welche

Schalterstellung entspricht dabei welchen aus Abschnitt 3.5 Aufgabe 2 simulierten Wer-

ten. Erklären Sie mögliche Unterschiede.

Anwendungen von OPVs Seite : 20 Betreuer: Dr.-Ing. Steffen Arlt, Tel. 1165

Literaturverzeichnis:

/1/ U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik. Berlin, Heidelberg, New York:

Springer 1989, 9. Auflage, S. 316ff

/2/ Funke, Liebscher: Grundschaltungen der Elektronik, Berlin, VEB Verlag Technik 1970,

9. Auflage, S. 83ff, S. 93

/3/ U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik. Berlin, Heidelberg, New York:

Springer 1989, 9. Auflage, S. 332ff

/4/ U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik. Berlin, Heidelberg, New York:

Springer 1989, 9. Auflage, S. 866ff

/5/ U. Tietze, Ch. Schenk: Halbleiter-Schaltungstechnik. Berlin, Heidelberg, New York:

Springer 1989, 9. Auflage, S. 380ff

/6/ M. Herpy: Analoge integrierte Schaltungen, Budapest, München: Franzis Verlag 1976,

S. 405ff