20
© Fraunhofer Anwendungsbereiche und Perspektiven biobasierter Faserverbundwerkstoffe Johannes Ganster, André Lehmann, Jens Erdmann Fraunhofer Institute for Applied Polymer Research IAP, Potsdam

Anwendungsbereiche und Perspektiven biobasierter

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Anwendungsbereiche und Perspektiven biobasierter Faserverbundwerkstoffe

Johannes Ganster, André Lehmann, Jens Erdmann Fraunhofer Institute for Applied Polymer Research IAP, Potsdam

Page 2: Anwendungsbereiche und Perspektiven biobasierter

Diesen Kasten nicht löschen (ist für die Funktion der Folie wichtig) R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 95 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

AGENDA

Anwendungsbereiche und Perspektiven biobasierter Faserverbundwerkstoffe

© Fraunhofer UMSICHT

1 Fraunhofer IAP

2 WPC and NFC

3 Cellulose Rayon Reinforced Thermoplastics

4 Novel Cellulose Fibers for Reinforcement (Lehmann)

5 Bioplastics (in parenthesis)

6 Bio-based Carbon Fibers (Lehmann, Erdmann)

7 Summary

8 Acknowledgements

Page 3: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

The Fraunhofer-Gesellschaft at a Glance

The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

25,527 staff

More than 70% is derived from contracts with industry and from publicly financed research projects.

Almost 30% is contributed by the German federal and Länder Governments.

72 institutes and research units Fin

an

cial

volu

me

2.3 billion

2017

Co

ntr

act

Rese

arc

h

2.0 billion

Major infrastructure capital expenditure and defense research

Page 4: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Fraunhofer IAP at a Glance

■ 204 employees (Status 12 | 2017)

■ 2017: € 19.3 million institute‘s budget

€ 14.4 million external revenues

■ Research sites: Potsdam-Golm

Hamburg

Schkopau

Schwarzheide

Teltow

Wildau

Page 5: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

WPC and NFC – a market reality Commodities for decking and injection molding

Extrusion – WPC Injection molding – NFC

Always PP as matrix, first attempts at PLA

Page 6: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Pulp fibers vs. Cellulose spun fiber (viscose, rayon, Lyocell)

Pulp sheets

Fibrillated alcaline cellulose

Cellulosisc spun fiber

Page 7: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Spinning line at Fraunhofer IAP

drying

spinning pump

nozzle Coagulation bath

fiber

1. drawing

washing

Finishing

2. drawing

storage tank

Page 8: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Man-made cellulose fiber reinforced thermoplastics – An alternative to glass fiber reinforcement

Faurecia

Müller Wallau

Would be

Stiebel-Eltron

Rayon tire cord yarn: Commercially available man-made cellulose fiber with 20 GPa modulus

Started with PP

Page 9: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Reduced number and length of pulled-out fibers and cylindrical voids

SEM cryo fracture results

weak

Interphase between Rayon and PLA:

medium strong

Going 100 % bio-based with PLA matrix Successful interphase modification

Page 10: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Results with 20 % Rayon in PLA

Improved impact strength, strength and stiffness with rayon

PLA

PLA + 20% Rayon + PP-g-MAH

PLA + 20% rayon

PLA + 20% GF (Piolen G20CA67)

Page 11: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Biopolymers – Promising future circular materials Bio-based and/or biodegradable

Bio-based: from renewable raw materials (starch, sugar, bio ethanol)

Biodegradable: Integration into natural cycles by micro organisms

Degradation

Depolymerisation

Assimilation in mikroorganisms

Mineralisation into water and CO2

Page 12: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Biopolymers – Promising future circular materials Advantages versus conventional plastics

Based on renewable raw materials

Reduced dependence on oil and gas (political)

Preserving fossil resources

Value stream for bio-refineries

Drop-Ins: chemically identical to conventional plastics (bio-PE)

Relevance for climate/environment

Storage of atmospheric CO2 in material

Biodegradability as additional benefit (if so)

Composting possible (if so)

Contribution to fight (marine) littering

Improved barrier in Polylactide (PLA) films by nano clays (IAP)

Page 13: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Better man-made cellulosic fibers for reinforcement – What is possible? Specific properties

Page 14: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Process Polymer Solvent Regeneration Treatment

Lyocell Cellulose NMMOxH2O water

Super 3 Cellulosexanthate NaOHaq H2SO4 + salt decomposition

Bocell* Cellulose 74% P2O5 Acetone Intense washing

DuPont* Cellulosetri-acetate (DS > 2.7)

TFA/CH2Cl2 or formic acid

Methanol (~ -30 °C)

Steam drawing + saponification

Michelin* Celluloseformiate Formic acid/H3PO4

Acetone saponification

Fortisan Celluloseacetate (DS 2.2 – 2.5)

Acetone Hot air Steam drawing + saponification

Bocell: H. Boerstoel, PhD Thesis, University Groningen, 1998 DuPont: EP 0103398 Michelin: WO85/05115 Fortisan: Moncrieff, R.W.; Silk and Rayon Rec.; 27,12,1012 (1953)

Cellulose Man-made fibres – Why so few? Requirements to reach high modulus cellulosic fibers

Shaping conditions can not (not likely to) be industrialized

Page 15: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

IAP results via modified Lyocell route Tuning cellulose super molecular structure by alkalization + kneader technology

Textile-physical properties:

o Strength: 0.9 GPa

o E-Modulus: 47.5 GPa

o Elongation: 7.8 %

Page 16: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Lyocell or other Technologies

Precursor development 40 to 1000 filaments

round or lobulated cross section

Lignin content > 30%

homogeneous lignin distribution

Patent applications

Stabilization and carbonization stages under development

Bio-based carbon fibers: Precursors from Cellulose-Lignin-Blends Lignin to boost carbon yield

Page 17: Anwendungsbereiche und Perspektiven biobasierter

17

Carbon fiber from a tree by Stora Enso

Tree

Wet-

Spinning

to

Precursor

Stabilization Carbonization

Precursor

Carbon

Fiber

Oil Cracking to

Propylene

Ammo-

xidation

to ACN

Wet-

spinning

to

Precursor

Stabilization

Poly-

merization

to PAN

Carbonization

Carbon Fiber is today made from the oil-based raw material polyacrylonitrile (PAN)

Cellulose to viscose, adding lignin

2019-10-31

Page 18: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

Summary

WPC and NFC established market products

Improvements in properties can be achieved with cellulose spun fibers

This is proven with cellulose tyre cord (rayon)

Better cellulose reinforcing fibers via Lyocell-route possible/economically feasible

Bio-based carbon fibers with combined cellulose-lignin precursors under way

Finally : CLEANER TECH with bio-based solutions . Who else than cellulose can provide a bio-based (and degradable) reinforcing fiber?

Page 19: Anwendungsbereiche und Perspektiven biobasierter

© Fraunhofer

FNR (BMEL), PtJ (BMBF), FhG for funding

Stora Enso for joint development

Cordenka GmbH long standing cooperation

Thank you very much for your attention!

Acknowledgements

Fraunhofer IAP is member of

Contact: Prof. Dr. Johannes Ganster Division director »Biopolymers« Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstraße 69 14476 Potsdam-Golm Telephone +49 (0) 331 568-1706 Mobile +49 (0) 173 3874772 email: johannes.ganster @iap.fraunhofer.de

Page 20: Anwendungsbereiche und Perspektiven biobasierter

Page 20 © Fraunhofer

R 23 G 156 B 125

R 242 G 148 B 0

R 31 G 130 B 192

R 226 G 0 B 26

R 95 G 200 B 0

R 254 G 239 B 214

R 225 G 227 B 227

Diesen Kasten nicht löschen (ist für die Funktion der Folie wichtig)

Fraunhofer Cluster of Excellence (CoE): Circular Plastics Economy CCPE®

Bundling of competencies and system services Excellence in depth, relevance in critrical mass International thematic leadership

Purpose of a Fraunhofer Cluster?

To research fundamentals, know-how, structures, and system services for a knowledge-based circular plastics economy

To optimize the value chain plastics by circuclar principles To develop products to circular product systems

What does the Cluster Circular Plastics Economy strive to achieve?

Prof. Dr. Eckhard Weidner

Director of the Cluster

Who represents the Fraunhofer Cluster Circular Plastics Economy?

Prof. Dr. Alexander Böker

Prof. Dr. Uwe Clausen Prof. Dr. Tobias Melz

Prof. Dr. Peter Elsner

Structure und research agenda of the cluster

Circular prototypes Circular prototypes

Photos: shutterstock.com