13
Astronomische Waarneemtechnieken (A t i l Ob i T hi ) (Astronomical Observing Techniques) 3 rd L ctur : 24 S pt mb r 2008 3 rd Lecture: 24 September 2008 B d b l h ” ( ) b P F b Based on Observational Astrophysics” (Springer) by P. Lena, F. Lebrun & F. Mignard, 2 nd edition – Chapter 2 We have a full program today: 1. Structure of the Atmosphere 2 Abs ti f R di ti 2. Absorption of Radiation 3. Atmospheric Emission 4. Scattering of Radiation 5. Refraction and Dispersion 6 Atmospheric Turbulence (part 1) 6. Atmospheric Turbulence (part 1)

Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

Embed Size (px)

Citation preview

Page 1: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

Astronomische Waarneemtechnieken(A t i l Ob i T h i )(Astronomical Observing Techniques)

3rd L ctur : 24 S pt mb r 20083rd Lecture: 24 September 2008

B d “ b l h ” ( ) b P F b Based on “Observational Astrophysics” (Springer) by P. Lena, F. Lebrun & F. Mignard, 2nd edition – Chapter 2

We have a full program today:

1. Structure of the Atmosphere

2 Abs ti f R di ti2. Absorption of Radiation

3. Atmospheric Emissionp

4. Scattering of Radiation

5. Refraction and Dispersion

6 Atmospheric Turbulence (part 1)6. Atmospheric Turbulence (part 1)

Page 2: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

1. Structure of the Atmosphere

Ass mpti n: tm sph is in l l

Vertical ProfileAssumption: atmosphere is in local radiative equilibrium and the composition is approximately p pp yconstant.

Th st t b d s ib d b The structure can be described by three parameters:• altitude z• temperature T(z)• density ρ(z)

The pressure P(z) can be described by:

0>∂∂

z

T

except for y

h s l h i ht H 8k

( ) H

z

ePzP−

= 00<

∂∂

z

T

p finversion layers

where scale height H ~ 8km near ground.

∂z

The higher atmosphereph

ere

Iono

sp

Page 3: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

Constituents of the Atmosphere

• Main constituents: O2 and N2relative constant proportions (78 1% N2 20 9% O2) up to 100 kmrelative constant proportions (78.1% N2, 20.9% O2) up to 100 km

• Water vapour – causes very strong absorption bands

the mixing ratio (or content) [ ]g/kg mper air ofmass

mper OH of mass3

32=r

is a strong function of temperature and altitude.p

Side note: Precipitable Water Vapour (PWV)The amount of PWV above an altitude z is:

h( ) dzNzw =∞

∫ ,where( )

[ ] ( )zrTP

N

dzNzwz OH

253

0

1034m

02

×=

=

∫[ ] ( )zr

TPN OH

00

103.4m 2

×=

Normally PWV is measured and expressed along a column:Normally, PWV is measured and expressed along a column:

N h h l h h f PWV h l 3 k l

[ ] [ ] ( ) dzezrh H

z

zOH

−∞

∫=0

2

3-0 cm gcm ρ

Note that the scale height for PWV is much less ~3 km only observatories on high altitudes

3.0 mm PWV1 0 mm PWVss

ion

1.0 mm PWV0.4 mm PWV0.1 mm PWV

Tran

smis

T

Page 4: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

Constituents of the Atmosphere (2)

Other constituents:• OzoneOzone

• distribution depends on latitude and season• maximum concentration around 16 km height

i l UV b i• mainly UV absorption

• CO2CO2• important component for (mid)IR absorption• mixing independent of altitude (similar to N2, O2)

• Ions• relevant above 60km where reactions with UV photons occur:relevant above 60km where reactions with UV photons occur:

-

-*22

OOO

eOO

++→+

+→++

h

h

• varies with altitude and solar activity• electron showers along magnetic fields cause Aurora

2 eOOO ++→+ +νh

electron showers along magnetic fields cause Aurora• at 100 – 300 km height: ne ~ 105 – 106 cm-3

2. Absorption of RadiationTwo cases of absorption:total absorption atmospheric transmission windowst ta a rpt n atm ph r c tran m n w n wpartial absorption reduced transmission due to telluric absorption

bands

Telluric = related to the Earth; of terrestrial originProblem: distinguish the telluric lines from intrinsic spectral features of r m ngu ur n fr m n r n p r f ur fthe source.

Atomic and molecular transitions that cause absorption features:

• pure rotational molecular transitions: H2O, CO2, O3,

• rotation-vibrational molecular transitions: CO2, NO, CO 2

• electronic molecular transitions: CH4, CO, H2O, O2, O3, OH

• electronic atomic transitions: O N • electronic atomic transitions: O, N, ...

Page 5: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

AttenuationThe attenuation at altitude z0 is given by:

( ) ( )⎤⎡zI 1( ) ( )⎥⎦

⎤⎢⎣

⎡−= ∑

ii z

I

zI0

0

0 ,cos

1exp λτ

θ

for i absorbing species with an optical depth of:

( ) ( ) ( ) ( )dλλ ∫∞

(κ is the absorption coefficient)

( ) ( ) ( ) ( )dzzzrz i

z

ii λκρλτ 00

0

, ∫=

(κ is the absorption coefficient)

Right: Attenuation of electromagnetic radiation as a function of wavelength for three function of wavelength for three values of I(z0)/I0 = 1/2, 1/10, and 1/100.

Atmospheric Bands (simplified)(Total) atmospheric absorption defines the atmospheric bands.

Ground based astronomy is limited to visible near/mid-IR and radio Ground based astronomy is limited to visible, near/mid-IR and radio wavelengths. Space astronomy can also cover γ-rays, X-rays, UV, FIR, sub-mm (Total) atmospheric absorption defines the atmospheric bands.

not quite: sub-mm astronomy is also possible from vey altitudes and ...not quite: sub-mm astronomy is also possible from vey altitudes and airplanes (KAO, SOFIA) and X-ray and γ-ray from balloons (30-40km).

Page 6: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

Side note: Spectral Line Profiles

Spectral lines have a finite width due the intrinsic width of the energy l l l di t t l li b d ilevels, leading to natural line broadening.

A line for which the shape is dominated by pressure broadening l ne for wh ch the shape s dom nated by pressure broaden ng(collisions) has a Lorentz profile or damping profile, and can be described by: Δ Lν

( )( )

22

02,

⎟⎞

⎜⎛ Δ+

=Lννν

πννφ

where v0 is the central frequency, and ΔvL is the width.

( )0 2⎟⎠

⎜⎝

+−νν

Other broadening mechanisms are Doppler broadening (thermal), turbulent broadening and instrumental profiles (unresolved lines), which

b b t d ib d b G i filcan be best described by a Gaussian profile.

HITRANTh HITRAN'2004 D t b s nt ins 1 734 469 sp t l The HITRAN 2004 Database contains 1,734,469 spectral lines for 37 different molecules, e.g.,

n//

du/h

itra

vard

.ed

ww

.har

v//c

fa-w

wht

tp:/

Page 7: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

HITRAN: Transmission

100%

Atmospheric Transmission [%]

80%

90%

50%

60%

70%

30%

40%

50%

10%

20%

0%

4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80

3. Atmospheric EmissionAtmospheric emission = fluorescence & thermal

A. Fluorescent EmissionFluorenscence = recombination of electrons with ions (recombination probability is low, often takes several hours night time)

Produces both continuum + line emission = airglow

Occurs mainly at ~ 100 km height

M i s s f issi : O I N I O OH ( NIR) HMain sources of emission are: O I, Na I, O2, OH ( NIR), H

The emission intensity is measured in Rayleigh:

[ ]1-2-

111-1-2-6 sr cmW

1058.1sr scmphotons10Rayleigh 1

−⋅==

m y m y g

[ ]nmpy g

λ

Page 8: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

“The Sky is the Limit ...”

Central question: When does the optical/NIR sky become brighter than the stars?than the stars?

Important: sky brightness per Important: sky brightness per arcsecond.

Remember: even an unresolved point source has a finite angular diameter when viewed through a diameter when viewed through a telescope.

Thermal Emission of the Atmosphere

Up to 60 km is the atmosphere in local thermodynamic equilibrium (LTE) thermally populating excitation levels(LTE), thermally populating excitation levels.

Calculating the specific energy received requires a full radiativef l l i ( lid )transfer calculation (see next slide).

For τ << 1 one can use the approximationFor τ << 1 one can use the approximation

τ 1)()( TBzI =

where B(T) is the Planck function at the mean temperature T of the

θτ λλλ cos

)()( TBzI =

where B(T) is the Planck function at the mean temperature T of the atmosphere.

Thi i l f hThis is most relevant for the:• thermal-infrared window: 2 – 30μm• millimeter window: 500nm – 2 mmmillimeter window: 500nm 2 mm

Page 9: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

HITRAN + radiation transfer: Emission

Atmospheric Emission [W/cm2/um/sr]

1.0E-05

1.0E-06

1.0E-07

4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80

Mean Thermal Emission

In the zenith direction and T = 250 K (mean temperature) one calculates:calculates:

Note that objects can be much fainter than the sky brightness Note that objects can be much fainter than the sky brightness subtraction techniques, e.g. “sky chopping”

Page 10: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

sion

Emiss

mal E

herm

thermal emission

d Th

thermal emission

t an

d

fluorescent emission from OH

cent

OH suppressor

ores

cFl

uorr

or

ary

mir

g” econ

dapp

ing

scop

e s

Chop

e te

les

Sky

Cwi

th t

he“S

done

wz.

Usu

ally

t

~1 H

zU at

Page 11: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

4. Scattering of RadiationAtmospheric scattering = air molecules & aerosols

M l l tt i i th i ibl d NIR i R l i h tt i

Molecular Scattering

( )223 18)(

πλ n −

Molecular scattering in the visible and NIR is Rayleigh scatteringgiven by: ( )

423)(

λλσ

NR =

h N i th b f l l it l d i th where N is the number of molecules per unit volume and n is the refractive index of air (n-1 ~ 8·10-5 P/T).

Remember, Rayleigh scattering is not isotropic:

( ) ωθσπ

dII Rscattered2

0 cos116

3+=

π16

Aerosol Scattering

Aerosols (like sea salts, hydrocarbons, volcanic dust) are much bigger than air molecules Rayleigh scattering does not apply than air molecules Rayleigh scattering does not apply.

Instead scattering is described by Mie’s theory (from classical l d i )electrodynamics):

( )absorptionscattering2 QQaM += πσ

If h Q Q 1 d hIf a >> λ then Qs = Qa = 1 and hence:• the scattered power is equal to the absorbed power

• the effective cross section is twice the geometrical size

If a > λ then Qs ∝ 1/λ (for dielectric spheres) and hence:th s tt d int nsit s ith 1/λ• the scattered intensity goes with 1/λ

Page 12: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

Day and Night-time Observations

From the sky brightness point of view some observations will be view some observations will be possible during day time, depending on what the limiting

icomponent is.

However other considerations However, other considerations (heat load from the Sun, turbulence, etc.) may apply.

5. Refraction and DispersionThe refractive index of air strongly depends on the wavelength:

( )[ ] 4255129498( )[ ]22

6

141

4.2551

146

1.29498328.64101

λλ

λ−

+−

+=×−n

(valid for dry air, 1 atm pressure, T ~ 290K and λ0 in [μm]).

00 λλ

1. Refraction: the apparent location of a star ppis significantly altered (up to half a degree near the horizon) telescope pointing modelmodel.

( )( )1tan −= λα nR

2. Dispersion: The elongation of points in broadband filters due to n(λ) [“rainbow”]broadband filters due to n(λ) [ rainbow ]

Page 13: Astronomische Waarneemtechnieken (A t i l Ob i T h i ...home.strw.leidenuniv.nl/~brandl/OBSTECH2008/Handouts_24sep.pdf · Astronomische Waarneemtechnieken (A t i l Ob i T h i )(Astronomical

Atmospheric DispersionNo problem for small, seeing limited telescopes Big problem for large diffraction limited telescopesBig problem for large diffraction limited telescopes

Atmospheric Dispersion CorrectorA h f li h Atmosphere refracts light, so ...1. use a refractive element (e.g., prism) to counterbalance refraction2 use a second prism (different material with different dispersion) 2. use a second prism (different material with different dispersion)

to maintain the optical axis3. use a second (identical) double prism assembly to cover all zenith

langles.