9
Neurociencia de Sistemas Clase 1. Introducción Clase 2. Registros extracelulares y Spike sorting. Clase 3. Procesado de información visual. Clase 4. Percepción y memoria. Clase 5. Decodificación – Teoría de la información. Clase 6. Electroencefalografía – Análisis de tiempo-frecuencia y Wavelets. Clase 7. Potenciales evocados – Análisis de ensayo único. Clase 8. Dinámica no-lineal – Sincronización. Systems Neuroscience CENTRE FOR Facebook: neuroscienceleicester Twitter: CSNLeics https://www.df.uba.ar/es/academica/programa-de-profesores-visitantes Slides Basic linear analysis x t !Distribution !Mean !Variance !Stationarity ω Power !Fourier Transform Chaos and non-linear analysis !It may give more information !Is not just limited to chaotic systems !It is cool! !More complex !Interpretations are more dicult !Very easy to make pitfalls!!! Phase space representation θ θ t θ v V = 0 θ = 0

analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Neurociencia de Sistemas

•  Clase 1. Introducción

•  Clase 2. Registros extracelulares y Spike sorting.

•  Clase 3. Procesado de información visual.

•  Clase 4. Percepción y memoria.

•  Clase 5. Decodificación – Teoría de la información.

•  Clase 6. Electroencefalografía – Análisis de tiempo-frecuencia y Wavelets.

•  Clase 7. Potenciales evocados – Análisis de ensayo único.

•  Clase 8. Dinámica no-lineal – Sincronización.

Systems'Neuroscience'CENTRE&FOR&

Facebook: neuroscienceleicesterTwitter: CSNLeics

https://www.df.uba.ar/es/academica/programa-de-profesores-visitantes

Slides

Basic linear analysis

x

t

!Distribution!Mean!Variance!Stationarity

ω

Power

!Fourier Transform

Chaos and non-linear analysis

!It may give more information!Is not just limited to chaotic systems!It is cool!

!More complex!Interpretations are more difficult!Very easy to make pitfalls!!!

Phase space representation

θ

θ

t

θ

v V = 0θ = 0

Page 2: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

x

y Fixed point

Limit cycle

Attractors

Strange attractor

x

y

Attractors

Toy models

!Rossler

! Lorenz

!Henon

Time delay embeddingy

xx

t

xi+12

xi

Time delay τ

τ = 12

τ = 1

τ = 30

Embedding dimension m

! Increase until unfold the attractor

Page 3: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Embedding parametersτ: time delaym: embedding dimension

! Rather than τ or m alone, what matters is mτ

Nonlinear measures ! Phase space

*****

**

**

**

Nonlinear measures ! Phase space! Neighbors

Correlation dimensionN larger small

ln C

(r)

ln (r)

D2

*

Nonlinear measures ! Phase space! Neighbors

Lyapunov exponent

*

*

*

L1

L2

Chaotic attractors

! Fractal dimension! self-similarity

! At least 1 positive lyapunov exponent

! sensitivity to initial conditions

Sensitivity to initial conditions

Page 4: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Amplitude distributions

Amplitude Amplitude

Are they different?

Data points Data points

Frequency Frequency

Power spectraPhase space reconstruction

Are they different?

Data points Data points

Amplitude distribution

Amplitudes AmplitudesFrequency Frequency

Power spectraPhase space reconstruction

D2 seizure < D2 backgroundλ seizure < λ background

Seizure EEGA personal approach to non-linear

analysis…

! Visual inspection! Stationarity! Basic linear analysis (Power spectrum)! Finding of a good embedding (m,τ)! Setting of parameters (e.g. nr. Nearest

neighbors)! Use of the Non-linear method

! Does it give more information?! Carefull with the interpretation

Synchronization Why synchronization?

In the EEG:

• Communication between distant brain areas.• Functional connectivity.• Quantify different brain states.• Basic mechanism of epilepsy.

At single cell level:

• Bottom up processes (in vision).• Alternative coding (instead of firing rates).

Page 5: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Linear measures of synchronization

• Cross-correlation

• Coherence

Lorenz driven by a Rossler

Coupling

Lorenz driven by a Rossler Non-linear interdependencies

EquationsSynchronization of the coupled

Roessler – Lorenz systems

Page 6: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Which one is more synchronized?H

0.64

1.20

0.39

γH

0.59

0.71

0.48

γW

0.71

0.80

0.48

cX

Y

0.70

0.79

0.42

ΓXY

0.88

0.86

0.40

MI

?

?

?

Phys Rev E, 65: 041903 (2002)

Time-shifted surrogates

Event-synchronizationPhys Rev E, 66: 041904 (2002)

Key idea: given 2 signals, look for quasi-synchronous events.

High Synchro

LowSynchro

mx = 7

my = 7

1. Detect events (e.g. local maxima)

X

Y

2. Draw boxes of length 2τ around each event in X

3. Define: Cτ(Y|X) : # Xi appears before Yj

Cτ(X|Y) : # Yj appears before Xi

4. Define:

Synchronization Time asymmetry

Outline of the method:

Page 7: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Automatic (and local) window τ

txi

tyj

XY

txi+1- t

xitx

i – tx

i-1

tyj – ty

j-1

tyj+1- t

yj

time

τij = min{txi+1- t

xi ; t

xi – tx

i-1 ; tyj+1- t

yj ; t

yj – ty

j-1} / 2

Time resolved asymmetry:

q(n)

Time

XY

Time resolved synchronization:

Δn

Application to rat EEGsQτ=2

0.57

0.80

0.48

Qsτ=2

0.24

0.29

0.13

Time resolved synchronization

Delay asymmetry EEG of an epileptic patient

Page 8: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Synchronization

Time resolved synchronizationDelays

Page 9: analysis - sitio.df.uba.arty j X Y t x i+1 - t i x – tx i-1 t y j – t j-1 ty j+1 - t y j time τ ij = min{t x i+1 - t x i ; t x i – t i-1 ; t y j+1 - t y j ; t y j – t y j-1}

Clase 8. Dinámica no-lineal – Sincronización

Nonlinear multivariate analysis of neurophysiological signals.Pereda E, Quian Quiroga R and Bhattacharya JProgress in Neurobiology 77: 1-37; 2005.

Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Quian Quiroga R, Kraskov A, Kreuz T and Grassberger PPhys. Rev. E, 65: 041903; 2002.

Event synchronization: a simple a fast method to measure synchronicity and time delay patterns.Quian Quiroga R, Kreuz T and Grassberger P.Phys. Rev. E, 66: 041904, 2002.

Learning driver-response relationships from synchronization patterns. Quian Quiroga R, Arnhold J and Grassberger P.Phys Rev. E, 61: 5142-5148; 2000. (un ladrillo…)

Nonlinear Time series analysis. Kantz and Schreiber (biblia sobre métodos de caos para análisis de datos)