28
Introduction Derivation of a hydrodynamic model Results Bakterienwachstum: Hydrodynamische Modelle Johannes Greber WWU Münster November 14, 2008

Bakterienwachstum: Hydrodynamische Modelle

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Bakterienwachstum: Hydrodynamische Modelle

Johannes Greber

WWU Münster

November 14, 2008

Page 2: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Outline

1 Introduction

2 Derivation of a hydrodynamic model

3 Results

Page 3: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Introduction

Page 4: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Experimental background

Experiments on the growth of bacterial colonies are very easyIn a petri dish with a thin layer of agar bacteria are injected ina small inoculum.Closer look to the colony via light microscopic methods.

Page 5: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Experimental results

The concentrations of nutrients are 0.1, 0.5, 1.0, 2.0 and3.0gl−1 from left to rightStructures become denser for higher concentration ofnutrients. For low concentration, dense patterns are onserved.

0Y. Kozlovsky et al (1999)

Page 6: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Envelopes

Sharp envelopes down to microscopic scales are observed.In "dry" regions bacteria produce extracellular liquid for beingabel to swim.

0Y. Kozlovsky et al (1999)0E. Ben-Jacob et al. (1994)

Page 7: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Dynamics and Vortices

Vortices in motion of the bacteria in water.

Page 8: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Derivation of a hydrodynamic model

Page 9: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Basics

The hydrodynamics of bacterial colonies can be discribed by fourcoupled partial differential equations for the densities of:

nutrients (S)water (W )bacteria(N)

and the dynamics of the velocity field (v)

Page 10: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Dynamics of nutrients

Dynamics of nutrients can be discribed by a reaction-diffusionequation:

∂S∂t

= RS(S ,N,W ) + DS∇2S

RS(S ,N,W ): consumption of nutrients by the bacteria.

Page 11: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Dynamics of the bacteria

Continuity equation for dynamics of bacteria:

∂N∂t

+∇ · (Nv) = RN −∇jN

With jN = −DN∇N one obtains

∂N∂t

+∇ · (Nv) = RN +∇(DN(S ,N,W )∇N).

RN represents growth of the bacterial colonie.

Page 12: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

The bacterial liquid

The behavior of the bacterial liquid and the interaction betweenbacteria is still relativly unknown. Assumptions are:

The bacteria constitute a compressible Newtonian liquid.Bacteria are living species. They show an individuell activityrepresented by noise.

Page 13: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Dynamics of water

Continuity equation for density of water:

∂W∂t

+∇ · (Wv) = RW +∇(DW (S ,N,W )∇N)−∇jW

jN = −jW can be assumed.

∂W∂t

+∇·(Wv) = RW +∇(DW (S ,N,W )∇N)−∇(DN(S ,N,W )∇N)

Page 14: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Conservation of momentum

The conservation equation of linear momentum of the mixture isthe Navier-Stokes equation:

ρ∂v∂t

+ ρ(v · ∇v) = ∇T + F

ρ = N + W

T : stress tensorF : external forces

Page 15: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

The stress tensor

T can be written as:

∇T = −∇p + µ∇2v + λ∇(∇v)

p = pW + pN : pressure of the complex fluidµ : dynamic viscosityλ : second viscosity takes into acount that the bacterial fluid iscompressible.

Page 16: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Pressure terms

Water is assumed to be incompressible, so that pW is a function ofthe velocity field vW of water so that

∇vW = 0

The pressure of the bacterial phase can be separated in aincompressible and a compressible part proportional to N2

pN = pN0 + pN

c = pN0 + γ(S ,W )N2

γ > 0 rises a force which drives bacteria away from overcrowdedareas.

Page 17: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

External forces

The external forces can be written as:

F = Fs + Fg + Fe

Fs : interaction between the fluid and the agar (Fs = −αv)Fg : describes changes due to bacterial activity.Fe : external forces on the whole system, such as gravity.

Page 18: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

The four differential equations

The four basic equations can be written as:

∂S∂t

= RS(S ,N,W ) + DS∇2S (1)

∂N∂t

+∇ · (Nv) = RN +∇(DN(S ,N,W )∇N) (2)

∂W∂t

+∇ · (Wv) = RW +∇(DW (S ,N,W )∇N)

−∇(DN(S ,N,W )∇N) (3)

∂v∂t

+ (v · ∇v) =1

N + W(∇T + Fs + Fg ) (4)

0J. Lega, T. Passot (2006)

Page 19: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Reduction on two dimensions

The fluid motion takes place in a layer of thickness smallthickness h.The problem can be reduced to a two dimensional one withv(x,y,z) = f(z)u(x,y) and integrating over h

Page 20: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

The two dimensional problem

The four equations from above transform to:

∂S∂t

= RS(S ,N,W ) + DS∇2hS (5)

∂N∂t

+∇h · (Nv) = RN +∇h(DN(S ,N,W )∇hN) (6)

∂W∂t

+∇h · (Wv) = RW +∇h(DW (S ,N,W )∇hN)

−∇h(DN(S ,N,W )∇hN) (7)

∂v∂t

+ ζ(v · ∇hv) =1

N + W{−∇hp + µ∇2

hv + λ∇h(∇h · v)

−ηv + F s + F g )} (8)

0J. Lega, T. Passot (2006)

Page 21: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Last unknown quanties

In these equations the following quantities mean:

v(x ,y) = 〈f 〉u(x ,y)

ζ =〈f 2〉〈f 〉2

,

F = 〈F 〉 means:

〈F 〉 =1h

∫ 0

−hF (z)dz

For an arbitrary function F(z)The two dimensional approximation is accurate if ζ ' 1.

0J. Lega, T. Passot (2006)

Page 22: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Reaction terms

Taking into acount nutrient consumption by and growth of bacteriathe first reaction terms become:

RS(S ,N,W ) = −RN(S ,N,W ) = NS

In this model loss of water, e. g. by evaporation at the surface, isneglected:

RW (S ,N,W ) = 0

Page 23: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Results

Page 24: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Simulations

0J. Lega, T. Passot (2006)

Page 25: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

A closer look at the envelope

0J. Lega, T. Passot (2006)

Page 26: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Abilities and Linitations of the model

AbilitiesNumerical simulations of the model show the branching ingrowth of the colony.Vortices as seen in the experiment shown above are obtained.

LimitationsThe interaction between bacteria is still almost unknownPerhaps the ansatz of a Newtonian fluid for the bacterial phaseis not the best.Quantitative description of the branching process is still anopen question.

Page 27: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Thank you for your attention!

Page 28: Bakterienwachstum: Hydrodynamische Modelle

IntroductionDerivation of a hydrodynamic model

Results

Lyrics

E. Ben-Jacob et al. : Letters to Nature (1994)Genericmodeling of cooperative growth patterns in bacterial colonies.J. Lega, T. Passot : Journal of Nonlinearity (2006)Hydrodynamics of bacterial colonies.J. Lega, T. Passot : Physical Review Letters (2003)Hydrodynamics of bacterial colonies: A model.Y. Kozlovsky et al. : Physical Review Letters (1999)Lubricating bacteria model for branching growth of bacterialcolonies