21
Erhaltung von Energie, Impuls und Drehimpuls

Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Embed Size (px)

Citation preview

Page 1: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Erhaltung von Energie, Impuls und Drehimpuls

Page 2: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Inhalt

Erhaltungssätze:• Impulserhaltung• Drehimpulserhaltung• Energieerhaltung

– Reversible Vorgänge – Irreversible Vorgänge

Page 3: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Impulserhaltung

• Die Summe aller Impulse in einem abgeschlossenen System bleibt konstant

Drehimpulserhaltung• Die Summe aller Drehimpulse in einem

abgeschlossenen System bleibt konstant

Energieerhaltung

• Die Summe der Energie in einem abgeschlossenen System bleibt konstant

Page 4: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Beispiel für Energie- und Impulserhaltung: Elastischer Stoß gleicher Massen

1p

2p

1p

Page 5: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

x

y

1p

2p

1p

Die Vektorsumme der Impulse bleibt konstant

1 m2kg/s Impulserhaltung211 ppp

1 J Energie-Erhaltung211 WWW

Page 6: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Rot: Drehimpuls des Rads, Blau Drehimpuls der Bühne

Beispiel für die Drehimpulserhaltung: Rad auf dem Drehschemel

Page 7: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Rot: Drehimpuls des Rads, Blau Drehimpuls der Bühne

Page 8: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Rot: Drehimpuls des Rads, Blau Drehimpuls der Bühne

Page 9: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Rot: Drehimpuls des Rads, Blau Drehimpuls der Bühne

Page 10: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Rot: Drehimpuls des Rads, Blau Drehimpuls der Bühne

Page 11: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Unterlage, Drehteller, Rad und Personen bilden das abgeschlossene System, Drehimpuls Null.

Beim Andrehen des Rads erscheint am Rad der Drehimpuls (rot), der durch den Drehimpuls auf den Rest des Systems (blau) kompensiert wird. Das Trägheitsmoment des restlichen Systems um die horizontale Achse ist so groß, dass die Winkelgeschwindigkeit minimal bleibt

Ein Experimentator hat die Bühne verlassen, was für das weitere ohne Belang ist.

Die Achse der rotierenden Scheibe wird vom Experimentator auf dem Drehteller von der horizontalen in die vertikale Lage gebracht. Der kompensierende Drehimpuls folgt.

Die Achse der Scheibe steht senkrecht, der kompensierende Drehimpuls ebenso: Das Trägheitsmoment von Experimentator und Drehteller ist vergleichbar mit dem des Rads, der Drehimpuls ist als Rotation des Drehtellers mit dem Experimentator zu erkennen, Drehsinn umgekehrt zu dem des Rads. Die Winkelgeschwindigkeiten von Rad und Experimentator samt Drehteller verhalten sich wie die Kehrwerte der Trägheitsmomente dieser Komponenten

Erläuterung zum Versuch „Drehimpulserhaltung im abgeschlossenen System“

Page 12: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Drehimpuls Einheit

1 m2 kg/sDrehimpuls der Masse m im Abstand r von der Drehachse bei Winkelgeschwindigkeit ω

Impuls Einheit

1 mkg/s Impuls der Masse m bei Geschwindigkeit v

Energie Einheit

1 JKinetische Energie bei Masse m, Geschwindigkeit v

1 J Potentielle Energie der Masse m in Höhe h bei „Feldstärke“ g

1 J Erzeugung und Zerfall von Masse

Energie und Impuls, Drehimpuls einzelner Massen

2

2

1 vmWkin

hgmWpot

2 rmL

2cmW

vmp

Alle Erhaltungsgrößen sind additiv: Fügt man zwei Systeme zusammen, dann addieren sich die entsprechenden Größen

Page 13: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Energie Einheit

1 J Energie in Form von Wärme*

1 J

Innere Energie: Summe der kinetischen Energie der Teilchen, bei Molekülen auch der Energie der inneren Schwingungen und Rotationen und der Energie zum Lösen oder Aufbau elektrostatischer Bindungen

Energie vieler Teilchen, die sich ohne Vorzugsrichtung bewegen („Wärme“)

QW

UW

*Energie in Form von Wärme kann nur zum Teil in andere Formen der Energie gewandelt werden

Page 14: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Energie in elastischer Verformung und Wärme

Fest – elastische Verformung Flüssigkeit „fließt“, mit oder –vereinfachend – ohne Reibung

Gas

Rot: Kraftvektor- Nur ein Festkörper kann „elastisch“ verformt werden , d. h. man kann die Arbeit zur Verformung nahezu vollständig wieder abrufen, z. B. in einer gespannnten Feder

Als „Wärme“ ist die kinetische Energie auf alle Teilchen und auf alle Richtungen verteilt – Letzteres verhindert die vollständige Rückgewinnung z. B. als Hub-Energie, die nur Bewegung nach oben betrifft

Energie Zufuhr

ist „reversibel“

Energie Zufuhr ist

„irreversibel“

100 nm

5 nm

Page 15: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Impuls Einheit

1 mkg/sImpuls des Photons mit Wellenlänge λ bei Geschwindigkeit c

Energie Einheit

1 JEnergie eines Photons mit Frequenz ν bzw. Wellenlänge λ

Energie- und Impuls von Photonen

/chhW

/hp

Page 16: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Energie Einheit

1 JEnergie der Ladung q zwischen zwei Punkten mit Spannung U

Energie elektrisch geladener Teilchen

UqW

Zum Aufbau elektrischer und magnetischer Felder muss Ladung in elektrischen Feldern verschoben werden, deshalb kann die Energie zum Feld-Aufbau auch in Schritten von dW = U · dq angeben werden

Page 17: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Zusammenfassung der Erhaltungssätze

• Wirken auf ein abgeschlossenes System von N Massenpunkten keine äußeren Kräfte, dann gilt:

Einheit

1 JDie Summe aller Energie ist konstant*

1 mkg/sDie Summe der Impulse ist konstant

1 m2 kg/s

Die Summe der Drehimpulse ist konstant

constpp S

N

ii

1

constLL S

N

ii

1

constWW s

N

ii

1

*Unterschiedliche Formen der Energie können ineinander verwandelt werden

Page 18: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Konstanten

me = 9,1·10-31 1 kg Masse des ruhenden Elektrons

e = 1,6 10-19 1 C Elementarladung

c = 3,0 ·108 1 m/sAusbreitungsgeschwindigkeit el

mag. Wellen

h = 6,6 10-34 1 Js Plancksches Wirkungsquantum

Page 19: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Unterschiede in der Art des Energieaustauschs: reversible und irreversible Vorgänge

• In reversiblen Vorgängen werden nur vollständig ineinander umwandelbare Energien ausgetauscht– z. B. elastischer Stoß– Anregung von Schwingungen

• Bei irreversiblen Vorgänge wird ein Teil der Energie in Wärme verwandelt – z. B. inelastischer Stoß– Bewegung mit Reibung

Vorgänge ohne oder nur wenig Austausch mit Energie in Form von Wärme sind in der Technik besonders wertvoll, weil sie beliebig oft wiederholbar sind:

Irreversible Vorgänge können nur wiederholt werden, solange noch genügend nicht in Wärme umgewandelte Energie zur Verfügung steht

Page 20: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

ZusammenfassungBei allen Vorgängen innerhalb eines

„geschlossenen Systems“ gibt es additive Größen, deren Summe zeitlich konstant bleibt:

• Die Impulse (Impulserhaltung)• Die Drehimpulse (Drehimpulserhaltung)• Die Energie (Energieerhaltung)

– Nach Art der bei den Vorgängen ausgetauschten Formen der Energie unterscheidet man:

• Reversible Vorgänge, z. B. elastischer Stoß: Es werden nur vollständig ineinander umwandelbare Energien ausgetauscht

• Irreversible Vorgänge, z. B. inelastischer Stoß: Ein Teil der Energie wird in Wärme verwandelt

• Weitere Erhaltungssätze gibt es für Teilchenzahlen

Page 21: Erhaltung von Energie, Impuls und Drehimpuls. Inhalt Erhaltungssätze: Impulserhaltung Drehimpulserhaltung Energieerhaltung –Reversible Vorgänge –Irreversible

Finis