82
MECHANIK 1 Univ.Prof. Dr. Christian Bucher Sommersemester 2009 Letzte Korrektur: 24. Februar 2009 Vorbemerkung Dieses Manuskript fasst die wesentlichen Inhalte der Vorlesung Mechanik 1 kompakt zusam- men. Es ist kein Ersatz für die Vorlesung und gibt deren Inhalt nicht vollständig wieder. Alle Rechte an diesem Manuskript liegen beim Verfasser. Nachdruck und Wiedergabe, auch aus- zugsweise, bedarf der schriftlichen Genehmigung durch den Verfasser. Hinweis Dieses Manuskript ist aktuell in Bearbeitung und kann zahlreiche Tippfehler enthalten. Es emp- fielt sich der Besuch der Vorlesung - in der Regel sind die dort angeschriebenen Gleichungen weitgehend korrekt. Literatur Aus der zahlreich vorhandenen Literatur werden folgende Bücher zur ergänzenden Lektüre empfohlen: 1. F. Ziegler, Technische Mechanik der festen und flüssigen Körper, 3. Aufl., Springer, Wien- New York, 1998. 2. D. Gross, W. Hauger, J. Schröder, W. A. Wall, Technische Mechanik 1 - Statik, 9. Aufl., Sprin- ger, Berlin-Heidelberg, 2006. 3. D. Gross, W. Hauger, W. Schnell, P. Wriggers, Technische Mechanik 4 - Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden, Springer, Berlin-Heidelberg, 1993. 1

Mechanik 1

Embed Size (px)

Citation preview

Page 1: Mechanik 1

MECHANIK 1

Univ.Prof. Dr. Christian Bucher

Sommersemester 2009Letzte Korrektur: 24. Februar 2009

Vorbemerkung

Dieses Manuskript fasst die wesentlichen Inhalte der Vorlesung Mechanik 1 kompakt zusam-men. Es ist kein Ersatz für die Vorlesung und gibt deren Inhalt nicht vollständig wieder. AlleRechte an diesem Manuskript liegen beim Verfasser. Nachdruck und Wiedergabe, auch aus-zugsweise, bedarf der schriftlichen Genehmigung durch den Verfasser.

Hinweis

Dieses Manuskript ist aktuell in Bearbeitung und kann zahlreiche Tippfehler enthalten. Es emp-fielt sich der Besuch der Vorlesung - in der Regel sind die dort angeschriebenen Gleichungenweitgehend korrekt.

Literatur

Aus der zahlreich vorhandenen Literatur werden folgende Bücher zur ergänzenden Lektüreempfohlen:

1. F. Ziegler, Technische Mechanik der festen und flüssigen Körper, 3. Aufl., Springer, Wien-New York, 1998.

2. D. Gross, W. Hauger, J. Schröder, W. A. Wall, Technische Mechanik 1 - Statik, 9. Aufl., Sprin-ger, Berlin-Heidelberg, 2006.

3. D. Gross, W. Hauger, W. Schnell, P. Wriggers, Technische Mechanik 4 - Hydromechanik,Elemente der Höheren Mechanik, Numerische Methoden, Springer, Berlin-Heidelberg,1993.

1

Page 2: Mechanik 1

SS 09 Mechanik 1

Inhaltsverzeichnis

1 Vorbemerkungen 3

1.1 Beschreibung physikalischer Größen . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Idealisierungen der Technischen Mechanik . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Elementare Vektoroperationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Kraftsysteme 6

2.1 Zentrales Kraftsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Moment einer Kraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Resultierende allgemeiner Kraftsysteme . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Gleichgewicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Spannungen 13

3.1 Definitionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Spannungsbegriff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Verzerrungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Elastizitätsgesetz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Statik einfacher Tragwerke 20

4.1 Tragwerksidealisierungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Belastungsarten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Schnittprinzip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Statische Bestimmtheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Lagerreaktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5.1 Einzelstäbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5.2 Zusammengesetzte Tragwerke . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Schnittgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6.1 Zusammenhang zwischen Belastung und Schnittgrößen an geraden Balken 29

4.6.2 Schnittgrößenverlauf am geraden Balken . . . . . . . . . . . . . . . . . . . . . 32

4.7 Spezielle Tragwerkstypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7.1 Fachwerke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

©2007-2009 Christian Bucher 24. Februar 2009 2

Page 3: Mechanik 1

SS 09 Mechanik 1

4.7.2 Dreigelenksysteme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 Räumliche Schnittgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8.1 Lager und Gelenke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8.2 Schnittgrößen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Kinematik des Punktes und des starren Körpers 50

5.1 Kinematik des Massenpunktes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Kinematik des starren Körpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Allgemeines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Momentanpol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Kinematische Ketten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Bestimmung von Lagerreaktionen und Schnittgrößen . . . . . . . . . . . . . . . . . 56

6 Formänderungen 62

6.1 Flächenmomente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Dehnungs- und Spannungsverteilung bei reiner Balkenbiegung . . . . . . . . . . . 65

6.3 Biegelinie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Formänderungsenergie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Hydrostatik 74

7.1 Spannungszustand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Auftrieb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Flüssigkeitsdruck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.1 Ebene Flächen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.2 Gekrümmte Flächen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

©2007-2009 Christian Bucher 24. Februar 2009 3

Page 4: Mechanik 1

SS 09 Mechanik 1

©2007-2009 Christian Bucher 24. Februar 2009 4

Page 5: Mechanik 1

SS 09 Mechanik 1

1 Vorbemerkungen

1.1 Beschreibung physikalischer Größen

Grundgrößen und Maßeinheiten

Größe EinheitLänge [m]Zeit [s]Masse [kg ]

Alle anderen physikalischen Größen der Mechanik können daraus abgeleitet werden:

Größe EinheitGeschwindigkeit [m/s]Beschleunigung [m/s2]Kraft [kg m/s2] = [N ] (Newton)Druck [kg /ms2] = [N /m2] (Pascal)

Physikalische Größen können skalar (z.B. Energie) oder vektoriell (z.B. Geschwindigkeit) sein.Vektoren können nur unter Angabe eines Koordinatensystems festgelegt werden.

Koordinatensysteme

Abbildung 1.1: Kartesische Koordinaten in der Ebene

Kartesische Koordinaten in der Ebene Ein Punkt P in der Ebene ist festgelegt durch zweiMaßzahlen, die kartesischen Koordinaten xp und yp . Diese Maßzahlen beschreiben die Ab-stände des Punktes P vom Koordinatenursprung in zwei orthogonalen Richtungen x und y .

Der Ortsvektor~rp des Punktes P ist dann festgelegt durch

~rp = xp~ex + yp~ey

Darin sind~ex und~ey Einheitsvektoren in Richtung der Koordinatenachsen.

In Komponentenschreibweise:

©2007-2009 Christian Bucher 24. Februar 2009 5

Page 6: Mechanik 1

SS 09 Mechanik 1

~rp =[

xp

yp

]

Abbildung 1.2: Kartesische Koordinaten im Raum

Kartesische Koordinaten im Raum Ein Punkt P im Raum ist festgelegt durch drei Maßzahlen,die kartesischen Koordinaten xp , yp und zp . Diese Maßzahlen beschreiben die Abstände desPunktes P vom Koordinatenursprung in drei orthogonalen Richtungen x, y und z.

Es gilt:

~rp = xp~ex + yp~ey + zp~ez

bzw. in Komponentenschreibweise

~rp = xp

yp

zp

Dabei bilden die drei Koordinatenachsen ein Rechtssystem.

Abbildung 1.3: Polare Koordinaten in der Ebene

©2007-2009 Christian Bucher 24. Februar 2009 6

Page 7: Mechanik 1

SS 09 Mechanik 1

Polare Koordinaten in der Ebene Ein Punkt P in der Ebene ist hier ebenfalls festgelegt durchzwei Maßzahlen, die polaren Koordinaten rp und ϕp . Diese Maßzahlen beschreiben den Ab-stand des Punktes P vom Koordinatenursprung und den Winkel, den der Abstandsvektor mitder x-Achse einschliesst.

Die Richtung der Einheitsvektoren~er und~eϕ hängt vom betrachteten Punkt P ab. Es gilt:

~rp = rp~er

Die Umrechnung von kartesischen in polare Koordinaten und umgekehrt erfolgt nach:

xp = rp cos ϕp ; yp = rp sin ϕp

rp =√

x2p + y2

p ; ϕp = arctanyp

xp

1.2 Idealisierungen der Technischen Mechanik

• Starrer Körper: Körper verformt sich unter Einwirkungen von Kräften nicht.

• Elastischer Körper: Verformungen des Körpers sind proportional zur Größe einwirkenderKräfte

• Massenpunkt: Die gesamte Masse eines Körpers wird in einem Punkt konzentriert gedacht.

1.3 Elementare Vektoroperationen

hier dargestellt im R3.

• Vektoren

~a = ax

ay

az

;~b = bx

by

bz

;

•Euklidische Norm (Länge) eines Vektors

||~a|| =√

a2x +a2

y +a2z = a

©2007-2009 Christian Bucher 24. Februar 2009 7

Page 8: Mechanik 1

SS 09 Mechanik 1

• Transponierter Vektor~aT = [

ax ay az]

• Skalarprodukt (inneres Produkt)

<~a,~b >=~aT~b = axbx +ay by +azbz ; ~aT~a = ||~a||2

• Vektorprodukt (äußeres Produkt)

~a×~b = ay bz −azby

−axbz +azbx

axby −ay bx

• Dyadisches Produkt (Matrixprodukt)

~a ·~bT = axbx axby axbz

ay bx ay by ay bz

azbx azby azbz

2 Kraftsysteme

2.1 Zentrales Kraftsystem

Wirken an einem Punkt eines Körpers mehrere Kräfte~F1,~F1, . . .~Fn , so ist die Wirkung äquivalentder Wirkung der Resultierenden~R. Dabei gilt:

~R =~F1 +~F2 + . . .+~Fn =n∑

k=1

~Fk (2.1)

Abbildung 2.1: Zentrales Kraftsystem

©2007-2009 Christian Bucher 24. Februar 2009 8

Page 9: Mechanik 1

SS 09 Mechanik 1

Abbildung 2.2: Graphische Addition von Kräften in der Ebene

In der Ebene lässt sich die Bildung der Resultierenden~R durch Zeichnen des Kraftecks anschau-lich zeigen.

Da Gl.2.1 die Addition von Vektoren beschreibt, ist das Ergebnis des Kraftecks unabhängig vonder Reihenfolge der Addition.

Beispiel: Addition von Kräften in der Ebene Gegeben seien drei Kräfte~F1,~F2 und~F3 mit F1 = 5 kN, F2 =4 kN, F3 = 3 kN lt. Skizze.

Die Resultierende~R soll rechnerisch nach Größe R und Richtung α bestimmt werden.

In Komponentenschreibweise sind die einzelnen Kräfte:

~F1 =[

F1

0

]; ~F2 =

[F2 cos60◦

F2 sin60◦]

; ~F3 =[−F3 cos45◦

−F3 sin45◦]

Komponentenweise Addition ergibt die Resultierende in kartesischen Koordinaten

~R =[

F1 +F2 cos60◦−F3 cos45◦

0+F2 sin60◦−F3 sin45◦]=

[4.8791.343

]kN

©2007-2009 Christian Bucher 24. Februar 2009 9

Page 10: Mechanik 1

SS 09 Mechanik 1

Daraus folgt in Polarkoordinaten

R =√

R2x +R2

y = 5.060kN; α= arctanRy

Rx= 15.25◦

Zerlegung einer Kraft Der Additionsprozess kann auch umgekehrt werden, eine Kraft kann inKomponenten mit unterschiedlichen Richtungen zerlegt werden. Eine Kraft~R soll in zwei Kräfte~F1 und~F2 mit vorgegebenen Richtungen 1, 2 zerlegt werden. Dabei muss natürlich gelten:

~R =~F1 +~F2

Es ist ein Krafteck zu konstruieren, das die Bedingungen erfüllt: Eine eindeutige Zerlegung ist inder Ebene nur bei zwei Kräften unterschiedlicher Richtung mäglich, im Raum bei drei Kräften.

Abbildung 2.3: Zerlegung einer Kraft in der Ebene

Beispiel: Zerlegung einer Kraft in der Ebene Gegeben ist die Kraft

~R =[

73

]kN

Sie soll in zwei Kräfte~F1 und~F2 mit Richtungen lt. Skizze zerlegt werden.

©2007-2009 Christian Bucher 24. Februar 2009 10

Page 11: Mechanik 1

SS 09 Mechanik 1

Die Resultierende~R soll rechnerisch nach Größe R und Richtung α bestimmt werden.

In Komponentenschreibweise sind die einzelnen Kräfte:

~F1 =[

F1 cos45◦

F1 sin45◦]

; ~F2 =[

F2 cos30◦

−F2 sin30◦]

Komponentenweise Addition ergibt die Resultierende in kartesischen Koordinaten

I: Rx = F1,x +F2,x = F1 cos45◦+F2 cos30◦ = 7

II: Ry = F1,y +F2,y = F1 sin45◦−F2 sin30◦ = 3

Subtraktion I-II ergibt:

F2(cos30◦+ sin30◦) = 7−3 = 4

→ F2 = 4

cos30◦+ sin30◦ = 2.928 kN

und Rückeinsetzen in I

F1 = 1

cos45◦ (7−F2 cos30◦) = 6.312 kN

2.2 Moment einer Kraft

Abbildung 2.4: Moment einer Kraft im Raum

Definition: Die Größe~Mp = (~rq −~rp )×~F =~rpq ×~F (2.2)

heißt Moment der Kraft~F bezogen auf den Punkt P .

Der Momentenvektor ~Mp steht normal auf den Abstandsvektor~rpq und den Kraftvektor~F.

Beispiel: Moment einer Einzelkraft Eine einzelne Kraft~F greift im Punkt Q an. Wie groß ist ihr Moment~M0 bezogen auf den Ursprung? Gegeben seien dabei:

~F =2

34

; ~rq = 0

1−2

©2007-2009 Christian Bucher 24. Februar 2009 11

Page 12: Mechanik 1

SS 09 Mechanik 1

Hier ist~rp =~0 und somit

~M0 =~rq ×~F = 0

1−2

×2

34

= 1 ·4+2 ·3−0 ·4−2 ·20 ·3−1 ·2

=10−4−2

Sonderfall ~rpq und~F liegen in der x−y-Ebene. Der Momentenvektor ~Mp besitzt dann nur dieKomponente Mp,z .

Abbildung 2.5: Moment einer Kraft in der Ebene

Es gilt dannMp,z = Fy xpq −Fx ypq ; |Mp,z | = ||~F|| · spq

Dabei ist spq der Normalabstand des Bezugspunktes P von der Wirkungslinie von~F.

Beweis Es gilt lt. Abb. 2.5:

`pq = xpq sinα− ypq cosα; spq = |`pq |Ebenso gilt

Fx = F cosα; Fy = F sinα

und somit

|Mp,z | = |Fy xpq −Fx ypq | = |F sinαxpq −F cosαypq | = ||~F|| · |`pq | = ||~F|| · spq

2.3 Resultierende allgemeiner Kraftsysteme

• An einem starren Körper angreifende Kräfte können entlang ihrer Wirkungslinie (“Kraftrich-tung”) beliebig verschoben werden, ohne dass sich die Wirkung auf den Körper ändert. (Diesgilt i.a. nicht für deformierbare Körper!)

©2007-2009 Christian Bucher 24. Februar 2009 12

Page 13: Mechanik 1

SS 09 Mechanik 1

• Für Kräfte, deren Resultierende Null ist, verbleibt i.a. ein von Null verschiedenes resultieren-des Moment.

Abbildung 2.6: Kräftepaar im Raum

Beispiel: Kräftepaar

~R =~F+ (−~F) =~0

~Mr s =~rsp ×~F+~rsq × (−~F) = (~rsp −~rsq )×~F =~rpq ×~F

Das resultierende Moment eines Kräftepaars ist unabhängig vom Bezugspunkt S und wird da-her als freies Moment bezeichet.

• Die resultierende Wirkung eines allgemeinen (nicht zentralen) Kraftsystems von n Krften~Fk

auf einen starren Körper wird beschrieben durch die resultierende Kraft~R und das resultierendeMoment ~Mp bezogen auf einen beliebigen Punkt P :

~R =n∑

k=1

~Fk ; ~Mp =n∑

k=1

~rpk ×~Fk (2.3)

Zwei Kraftsysteme heißen äquivalent, wenn~R und ~Mp übereinstimmen.

2.4 Gleichgewicht

Ein Kraftsystem befindet sich im Gleichgewicht, wenn sowohl die Resultierende~R als auch dasresultierende Moment ~Mp bezogen auf einen beliebigen Punkt P verschwindet. Im Raum sinddies 6 Bedingungsgleichungen:

©2007-2009 Christian Bucher 24. Februar 2009 13

Page 14: Mechanik 1

SS 09 Mechanik 1

n∑k=1

Fkx = 0;n∑

k=1Fk y = 0;

n∑k=1

Fkz = 0

n∑k=1

Mpkx = 0;n∑

k=1Mpk y = 0;

n∑k=1

Mpkz = 0

(2.4)

Für ein Kraftsystem in der x − y-Ebene verbleiben davon noch 3 Bedingungen:

n∑k=1

Fkx = 0;n∑

k=1Fk y = 0;

n∑k=1

Mpkz = 0 (2.5)

Eine Grundaufgabe der Statik ist es, zu einem bestehenden Kraftsystem solche Kräfte hinzuzu-fügen, dass Gleichgewicht eintritt.

Wenn ein Kraftsystem sich im Gleichgewicht befindet, verschwindet das resultierende Momentum jeden beliebigen Punkt Q:

~Mq =∑nk=1~rqk ×~Fk =∑n

k=1(~rpk +~rpq )×~Fk =∑nk=1~rpk ×~Fk +~rpq ×∑n

k=1~Fk

=~o+~rpq ×~o =~o q.e.d .

Beispiel: Quadratischer Block Eine quadratische Scheibe (L × L) mit dem Gewicht ~G soll durch zweiKräfte~F1 und~F2 gehalten werden (siehe Skizze). Wie groß müssen diese Kräfte sein?

Dies ist ein ebenes Problem, es müssen daher 3 Gleichgewichtsbedingungen formuliert werden.

I:∑

Fk,x = 0 X

II:∑

Fk,y = F1 +F2 −G = 0

III:∑

Mak,z = F1 ·0+F2 ·L−G · L2 = 0

aus III folgt F2 = G2 und damit aus II: F1 =G−F2 = G

2 . Die resultierende Momentenwirkung muss bezogenauf jeden beliebigen Punkt Null werden. Dies kann als Kontrolle eingesetzt werden:∑

Mbk,z =−F1 ·L+F2 ·0+G · L2 =−G · L

2 +G · L2 = 0 X •

©2007-2009 Christian Bucher 24. Februar 2009 14

Page 15: Mechanik 1

SS 09 Mechanik 1

3 Spannungen

3.1 Definitionen

Werkstoffe sind mikroskopisch gesehen unregelmäßig aufgebaut. Bei Betrachtung aus größererDistanz wirken sie hingegen gleichmäßig (homogen). Wir nehmen an, dass die Werkstoffeigen-

Abbildung 3.1: Homogenisierung eines realen Körpers

schaften über ein repräsentatives Volumen gemittelt werden können und sprechen dann voneinem Kontinuum. Sind diese Eigenschaften im gesamten betrachteten Gebiet (Körper) kon-stant, so ist der Werkstoff homogen.

Viele wichtige Werkstoffeigenschaften betreffen das Verformungsverhalten unter Beanspru-chungen. Ist das Verhalten richtungsunabhängig, so wird der Werkstoff diesbezüglich als iso-trop bezeichnet, im gegenteiligen Fall als anisotrop.

Bei der Beschreibung der Verformung eines Körpers verfolgen wir die Bewegung einzelnerPunkt P .

Abbildung 3.2: Bewegung eines Punktes in einem Körper

Wir beschreiben die ”neuen” Koordinaten x∗, y∗, z∗ des Punktes P∗ als Funktionen der ”alten”Koordinaten x, y, z des Punktes P (Lagrange’sche1 Betrachungsweise)

x∗ = x∗(x, y, z)

y∗ = y∗(x, y, z)

z∗ = z∗(x, y, z)

(3.1)

1Joseph-Louis Lagrange, *1736 Torino, +1813 Paris.

©2007-2009 Christian Bucher 24. Februar 2009 15

Page 16: Mechanik 1

SS 09 Mechanik 1

Bem.: Für die Untersuchung von Flüssigkeiten wird meist die dazu inverse Euler’sche2 Betrach-tungsweise verwendet.

3.2 Spannungsbegriff

Wir betrachten einen im Gleichgewicht befindlichen Körper Ein gedanklicher Schnitt durch

Abbildung 3.3: Schnitt durch einen Körper

den Körper setzt innere Kraftgrößen (die sogenannten Schnittgrößen) frei. Wir wollen nun wis-sen, wie die Beanspruchungen aus den Schnittgrößen innerhalb der Schnittfläche A verteiltsind. Auf ein Flächenelement ∆A entfällt ein Schnittkraftanteil ∆~F. Der Spannungsvektor auf

Abbildung 3.4: Spannungsvektor in einem Schnitt

diesem Flächenelement entsteht durch den Grenzübergang

~t = lim∆A→0

∆~F

∆A= d~F

dA(3.2)

Dieser Vektor kann in eine Komponente ~σ normal zur Schnittebene (Normalspannung) undeine Komponente ~τ in der Schnittebene (Schubspannung) zerlegt werden.

2Leonhard Euler, *1707 Basel, +1783 St Petersburg.

©2007-2009 Christian Bucher 24. Februar 2009 16

Page 17: Mechanik 1

SS 09 Mechanik 1

σ=~t ·~n~σ =σ~n~τ =~t−~σ

Dabei ist ~n der Normalenein-

heitsvektor. Wird die Schnittebene gedreht, so ändert sich i.a. der Spannungsvektor~t und damitsowohl Normal- als auch Schubspannungen.

Der Spannungszustand in einem Punkt eines Körpers ist eindeutig festgelegt durch die Angabeder Spannungsvektoren in drei zueinander orthogonalen Schnittebenen. Dazu betrachten wireinen Quader mit differentiell kleinen Abmessungen dx dy dz. Auf allen Quaderflächen wirkt

Abbildung 3.5: Spannungen an einem differentiellen Quader

ein Spannungsvektor, den wir in Normal- und Schubspannungen zerlegen. Die Schubspannun-gen werden weiter in Komponenten nach den Koordinatenrichtungen zerlegt. (Bezeichnung: 1.Index - Flächennormale, 2. Index - Spannungsrichtung).

Im Quadervolumen wirkt eine Volumenkraft~f (Fernwirkung, z. B. Gravitation) mit den Kompo-nenten fx , fy , fz .

Die Gleichgewichtsbedingung∑

Fy = 0 ergibt:

(−σy y +σy y +dσy y )dxdz + (−τz y +τz y +dτz y )dxdy + (−τx y +τx y +dτx y )dydz + fy dxdydz = 0

Mit den Differentialen

dσy y =∂σy y

∂ydy ; dτz y =

∂τz y

∂zdz; dτx y =

∂τx y

∂xdx

folgt daraus∂σy y

∂ydx dy dz + ∂τz y

∂zdx dy dz + ∂τx y

∂xdx dy dz + fy dx dy dz = 0

©2007-2009 Christian Bucher 24. Februar 2009 17

Page 18: Mechanik 1

SS 09 Mechanik 1

Analog folgt aus den Beziehungen∑

Fx = 0 und∑

Fz = 0:

∂σxx

∂x+ ∂τy x

∂y+ ∂τzx

∂z+ fx = 0

∂τx y

∂x+ ∂σy y

∂y+ ∂τz y

∂z+ fy = 0

∂τxz

∂x+ ∂τy z

∂y+ ∂σzz

∂z+ fz = 0

(3.3)

Die Momentenbedingung∑

Mx = 0 ergibt:

(τy z +τy z +dτy z)dy

2dxdz − (τz y +τz y +dτz y )

dz

2dxdy = 0

→ τy z −τz y = 0

Aus den anderen Momentengleichungen folgt:

τx y = τy x ; τxz = τzx ; τy z = τz y (3.4)

Der Spannungsvektor~t auf einer Fläche, deren Orientierung durch den Normaleneinheitsvek-tor~n gegeben ist, wird berechnet aus:

~t = tx

ty

tz

= σxx τx y τxz

τx y σy y τy z

τxz τy z σzz

· nx

ny

nz

= [S] ·~n (3.5)

Die symmetrische 3×3-Matrix [S] heißt Spannungstensor. Die Einheit der Spannung ist ein Pas-cal3, 1 Pa = 1 N /m2.

Ein spezieller Spannungszustand ist der ebene Spannungszustand mit τxz = τy z = σzz = 0. Indiesem Fall reduziert sich der Spannungstensor auf

[S] =[σxx τx y

τx y σy y

]

3.3 Verzerrungen

Unter einer Belastung erfährt jeder Punkt im Kontinuum eine Lageänderung. Zueinander be-nachbarte Punkte P und Q bewegen sich in veränderte Positionen P∗ und Q∗. Dabei ändert

©2007-2009 Christian Bucher 24. Februar 2009 18

Page 19: Mechanik 1

SS 09 Mechanik 1

Abbildung 3.6: Bewegung benachbarter Körperpunkte

sich i.a. auch der Abstand der beiden Punkte zueinander. Der Verschiebungsvektor des PunktesP ist~u. Die Relativverschiebung der Punkte zueinander ist durch den Vektor d~u gegeben. DieKomponenten dieses Vektors werden aus den Verschiebungen berechnet (Taylor-Reihe, linea-risiert)

du = ∂u

∂xdx + ∂u

∂ydy + ∂u

∂zdz

dv = ∂v

∂xdx + ∂v

∂ydy + ∂v

∂zdz

dw = ∂w

∂xdx + ∂w

∂ydy + ∂w

∂zdz

(3.6)

Dies ist eine Matrix-Vektor-Multiplikation

d~u =

∂u∂x

∂u∂y

∂u∂z

∂v∂x

∂v∂y

∂v∂z

∂w∂x

∂w∂y

∂w∂z

d~r = [A]d~r (3.7)

Die Matrix [A] heißt Deformationsgradient. Ihr symmetrischer Anteil [V] wird als Verzerrungs-tensor bezeichnet.

[V] = 1

2

([A]+ [A]T )=

εxx

12γx y

12γxz

12γx y εy y

12γy z

12γxz

12γy z εzz

(3.8)

Die Größen εi i heißen Dehnungen, die Größen γi k heißen Gleitungen. Diese Größen könnengeometrisch als Längen- bzw. Winkeländerungen interpretiert werden. Für kleine Verformun-gen gilt offensichtlich, dass die gesamte Änderung des rechten Winkels bei P∗ gegeben ist durchβ+α, und dies wiederum durch ∂u

∂y + ∂v∂x = γx y . Die Längenänderung in Richtung der x-Achse ist

gegeben durch ∂u∂x = εxx , und die Längenänderung in Richtung der y-Achse ist ∂v

∂y = εy y . AnalogeAussagen gelten für die verbleibenden Terme des Verzerrungstensors.

Der antimetrische Anteil des Deformationsgradienten

[R] = 1

2

([A]− [A]T )

3Blaise Pascal, *1623 Clermont, +1662 Paris

©2007-2009 Christian Bucher 24. Februar 2009 19

Page 20: Mechanik 1

SS 09 Mechanik 1

Abbildung 3.7: Dehnungen und Gleitungen in einem Körper

beschreibt eine verzerrungsfreie Starrkörperdrehung des Körpers. Für die Beanspruchungendes Werkstoffs ist diese Art der Bewegung unerheblich.

Ein spezieller Verzerrungszustand ohne Gleitungen ist ein Zustand reiner Volumenänderungohne Gestaltsänderung beschrieben durch einen Verzerrungstensor (Kugeltensor)

[V] = ε0 0 0

0 ε0 00 0 ε0

(3.9)

Derartige Verzerrungen treten beispielsweise durch Temperaturänderungen ein:

ε0 =αT∆T (3.10)

Darin ist αT der Wärmeausdehnungskoeffizient und ∆T die Temperaturänderung.

Ein weiterer spezieller Verzerrungszustand ist der ebene Verzerrungszustand. In diesem Fall sindalle Dehnungen und Gleitungen bezüglich einer Achse (z. B. z-Achse) Null. Es verbleibt dannder Verzerrungstensor

[V] =[

εxx12γx y

12γx y εy y

](3.11)

Im allgemeinen können ein ebener Spannungszustand und ein ebener Verzerrungszustandnicht gleichzeitig eintreten.

3.4 Elastizitätsgesetz

In einem linear-elastischen Werkstoff sind die Spannungen und Verzerrungen linear miteinan-der verknüpft. Dabei ist zu beachten, dass Dehnungen in eine Richtung oft mit negativen Deh-nungen in Richtungen quer dazu verbunden sind (Querkontraktion). Für einen homogenen,

©2007-2009 Christian Bucher 24. Februar 2009 20

Page 21: Mechanik 1

SS 09 Mechanik 1

Abbildung 3.8: Längs- und Querdehnungen in einem Zugstab

isotropen Werkstoff lautet das Elastizitätsgesetz (auch Hooke’sches4 Gesetz genannt).

εxx = 1

E

[σxx −ν(σy y +σzz)

]+αT∆T ;

εy y = 1

E

[σy y −ν(σxx +σzz)

]+αT∆T ;

εzz = 1

E

[σzz −ν(σxx +σy y )

]+αT∆T ;

γx y = 1

Gτx y ; γxz = 1

Gτxz ; γy z = 1

Gτy z

(3.12)

In dieser Gleichung ist E der Elastizitätsmodul, ν die Querkontraktionszahl (Poisson’sche5 Zahl)und G der Schubmodul. Dieser kann aus E und ν berechnet werden:

G = E

2(1+ν)(3.13)

Für den speziellen Fall eines ebenen Spannungszustandes mit σzz = τxz = τy z = 0 und ohneTemperatureinfluss reduzieren sich diese Beziehungen auf

εxx = 1

E(σxx −νσy y );

εy y = 1

E(σy y −νσxx);

εzz =−νE

(σxx +σy y );

γx y = 1

Gτx y

(3.14)

Es entsteht also für ν 6= 0 kein ebener Verzerrungszustand.

Beispiel: Ebener Verzerrungszustand Gegeben sei ein elastischer Werkstoff mit dem E-Modul E =210 GPa und der Querkontraktionszahl ν = 0.3. Es sei ein ebener Verzerrungszustand mit konstantenDehnungen εxx = 0.001,εy y = 0.002,γx y = 0 vorgegeben. Bestimmen Sie den Spannungszustand.Lösung: Aus der 3. Gl.(3.12) folgt

σzz = ν(σxx +σy y )

4Robert Hooke, *1635 Freshwater, +1703 London5Siméon Denis Poisson, *1781 Pithiviers, +1840 Sceaux

©2007-2009 Christian Bucher 24. Februar 2009 21

Page 22: Mechanik 1

SS 09 Mechanik 1

und damit durch Umstellen aus den ersten beiden Gl.(3.12):

εxx = 1−ν2

Eσxx − ν(1+ν)

Eσy y

εy y = 1−ν2

Eσy y − ν(1+ν)

Eσxx

Schließlich ergibt sich daraus

σxx = E

(1+ν)(1−2ν)

[(1−ν)εxx +νεy y

]σy y = E

(1+ν)(1−2ν)

[(1−ν)εy y +νεzz

]mit den Zahlenwerten σxx = 525 MPa, σy y = 685.5 MPa und σzz = 363.5 MPa. •

4 Statik einfacher Tragwerke

4.1 Tragwerksidealisierungen

Ausgehend von der Vorstellung des starren Körpers werden weitere Vereinfachungen vorge-nommen. Wenn an einem Bauteil (Tragwerksteil) eine Längenabmessung deutlich dominiert

Abbildung 4.1: Stabförmige Tragwerksteile

(L >> B , H), so kann dieser Teil als Stab idealisiert werden. In der Systemskizze wird ein Stabdurch seine Längsachse (das ist i.a. die Verbindungslinie der Querschnittsmittelpunkte) darge-stellt.

Stäbe, die quer zu ihrer Achse belastet werden, heißen Balken. Gekrümmte Balken werden alsBogen bezeichnet. Stellen, an denen ein Tragwerk unterstützt wird und Kräfte an die Umgebungüberträgt, heißen Lager (bzw. Auflager).

In einer Systemskizze wird der oben dargestellte Stab symbolisiert durch: Lager werden einge-teilt nach der Art und der Anzahl der aufgenommenen Kräfte und Momente.

©2007-2009 Christian Bucher 24. Februar 2009 22

Page 23: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.2: Systemskizze eines Stabes

Abbildung 4.3: Horizontal bewegliches Lager

Bewegliches Lager (Gleitlager): überträgt nur eine vertikale Kraft.

Festes Lager: überträgt horizontale und vertikale Kraft.

Abbildung 4.4: Festes Lager

Einspannung: überträgt horizontale und vertikale Kraft sowie Moment.

Stellen, an denen Stäbe gegeneinander drehbar verbunden sind, heißen Gelenke. Nicht drehba-re Verbindungen heißen biegesteif. Diese Verbindungen werden oft gesondert gekennzeichnet,um sie von Gelenken zu unterscheiden. Lager können auch durch Einzelstäbe realisiert werden.

Die in den Lagern übertragenen Kräfte und Momente heißen Lagerreaktionen oder Stützkräfte.

4.2 Belastungsarten

Entsprechend den Tragwerksidealisierungen können auch Belastungsgrößen (Einwirkungen)idealisiert werden. Grundsätzlich existieren Volumenlasten und Flächenlasten.

Ein Beispiel für Volumenlasten ist das Eigengewicht: Jedes Masseteilchen im Volumen trägtzum Eigengewicht bei. Ein Beispiel für Flächenlasten ist Wasserdruck: Jedes Flächenteilchen

©2007-2009 Christian Bucher 24. Februar 2009 23

Page 24: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.5: Einspannung

Abbildung 4.6: Stabverbindungen

der Oberfläche ist belastet.

Durch Idealisierung entsteht daraus eine Linienlast oder eine Punktlast (Einzellast).

Beispiel: Linienlast und Einzellast Eigengewicht eines Balkens (eigentlich Volumenlast)

Radlast eines LKW (eigentlich Flächenlast)

©2007-2009 Christian Bucher 24. Februar 2009 24

Page 25: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.7: Stützstäbe

4.3 Schnittprinzip

Denkt man sich aus einem Tragwerk Teile herausgeschnitten, so kann Gleichgewicht dieser Tei-le dadurch erreicht werden, dass an der Schnittstelle Kräfte und Momente angesetzt werden.

Abbildung 4.8: Schnittprinzip

Die Schnittkraft in Richtung der Stabachse heißt Normalkraft (bzw. Längskraft) N , die Schnitt-kraft quer zur Stabachse heißt Querkraft Q und das Schnittmoment heißt Biegemoment M . Diean gegenüberliegenden Schnittufern wirkenden Schnittgrößen M , Q und N sind im Gleichge-wicht.

Die Schnittgrößen sind ein Maß für die Beanspruchung des Werkstoffs.

©2007-2009 Christian Bucher 24. Februar 2009 25

Page 26: Mechanik 1

SS 09 Mechanik 1

4.4 Statische Bestimmtheit

Ein Tragwerk heißt statisch bestimmt gelagert, wenn die Lagerreaktionen eindeutig aus denGleichgewichtsbedingungen bestimmbar sind. Für einen einfachen Balken bedeutet dies, dassdie Anzahl r der Lagerreaktionen gleich der Anzahl der Gleichgewichtsbedingungen sein muss,d.h. r = 3. Allgemein heißt ein Tragwerk m-fach statisch unbestimmt, wenn die Anzahl der un-bekannten Lagerreaktionen um m größer ist als die Anzahl der Gleichgewichtsbedingungen.Bei mehrteiligen (zusammengesetzten) Systemen bestehend aus n Teilkörpern (Teilstäben) istdie notwendige Bedingung für statische Bestimmtheit:

r + v −3n = 0 (4.1)

Darin ist r die Anzahl der Lagerreaktionen und v die Anzahl der Bindungskräfte zwischen denTeilen. Die Bedingung 4.1 ist nicht hinreichend, d.h. es gibt Systeme, die die Bedingung 4.1 zwarerfüllen, aber nicht statisch bestimmt sind.

Beispiel: Dreigelenkbogen

Hier ist n = 2, r = 4, v = 2 und somit m = r + v −3n = 4+2−3 ·2 = 0 X •Beispiel: Ausnahmefall

Hier ist n = 1, r = 3, v = 0 und somit m = r + v −3n = 3+0−3 ·1 = 0. Dennoch ist das Tragwerkssystem

nicht statisch bestimmt (es ist horizontal beweglich). •Beispiel: Gelenkträger

Hier ist n = 2, r = 5, v = 2 und somit m = r + v −3n = 5+2−3 · 2 = 1. Das Tragwerkssystem ist einfach

statisch unbestimmt. •

4.5 Lagerreaktionen

4.5.1 Einzelstäbe

Mögliche Stützkräfte: AH , AV , BV (r = 3). Die verfügbaren Gleichgewichtsbedingungen können

©2007-2009 Christian Bucher 24. Februar 2009 26

Page 27: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.9: Lagerreaktionen des Einzelstabs

beispielsweise folgendermaßen formuliert werden:

∑Fx = 0 : AH +

3∑k=1

Fkx = 0

∑Fy = 0 : AV +BV +

3∑k=1

Fk y = 0

∑Ma = 0 : AV 0+BV xb +

3∑k=1

(Fk y xk −Fkx yk ) = 0

Dies sind drei lineare Gleichungen für die unbekannten Lagerreaktionen AH , AV , BV .

Beispiel: Abgewinkelter Einzelstab Gegeben sind F = 2 kN und p = 0.5 kN/m sowie die Systemgeometrielt. Skizze. Gesucht sind die Lagerreaktionen in den Punkten a und b.

©2007-2009 Christian Bucher 24. Februar 2009 27

Page 28: Mechanik 1

SS 09 Mechanik 1

∑Fx = 0 = AH +F

p2

2→ AH =−

p2

2F =−1.414kN

∑Ma = 0 = BV ·9.0−p ·6.0 ·6.0−F ·3.0 ·

p2 → BV = 1

9.0

(p ·6.0 ·6.0−F ·3.0 ·

p2)= 2.943kN

∑Mb = 0 =−AV ·9.0+AH ·3.0+F ·3.0·p2+p·6.0·3.0 → AV = 1

9.0

(AH ·3.0+F ·3.0 ·p2+p ·6.0 ·3.0

)= 1.471kN

Kontrolle: ∑Fy = AV +BV −F

p2

2−p ·6.0 = 1.471+2.943−2

p2

2−3.0 =−2.1 ·10−4 X

4.5.2 Zusammengesetzte Tragwerke

Hier sind zunächst die Einzelteile freizuschneiden und die Verbindungskräfte (Gelenkskräf-te) mit als Unbekannte anzusetzen. Für jedes Teilsystem und für das Gesamtsystem sind dieGleichgewichtsbedingungen zu erfüllen.

Beispiel: Dreigelenk Gegeben sind F = 10 kN und p = 2 kN/m sowie die Systemgeometrie lt. Skizze.Gesucht sind die Lagerreaktionen in den Punkten a und b.

©2007-2009 Christian Bucher 24. Februar 2009 28

Page 29: Mechanik 1

SS 09 Mechanik 1

Gesamtsystem:

Teilsysteme:

Zunächst werden die Lagerreaktionen BV und BH durch Auswahl geeigneter Gleichgewichtsbedingun-

©2007-2009 Christian Bucher 24. Februar 2009 29

Page 30: Mechanik 1

SS 09 Mechanik 1

gen berechnet. Am Gesamtsystem:∑Ma = 0 = Bv ·9.0+BH ·6.0−F ·3.0 ·p2−p ·3.0 ·7.5

Am Teilsystem II: ∑M I I

g = 0 = BV ·3.0+BH ·3.0−p ·3.0 ·1.5

Dies sind zwei lineare Gleichungen für BH und BV :

9BV +6BH = 87.4254

3BV +3BH = 9.0000| · (−2)3BV = 69.4264

BV = 23.1421 kN

BH = 3.0000−BV =−20.1421 kN

Im nächsten Schritt werden in analoger Weise die Stützkräfte AV und AH bestimmt. Am Gesamtsystem:∑Mb = 0 = AH ·6.0− AV ·9.0+F ·4.5 ·p2+p ·3.0 ·1.5

Am Teilsystem I: ∑M I

g = 0 = AH ·3.0− AV ·6.0+F ·1.5 ·p2

Dies ist wiederum ein lineares Gleichungssystem:

6AH −9AV =−72.6396

3AH −6AV =−21.2132| · (−2)3AV =−30.2132

AV = 10.0711 kN

BH = 2AV − 21.2132

3=−27.2132 kN

Als Kontrolle werden schließlich die Kräfte am Gesamtsystem überprüft:

∑Fx = AH +F

p2

2−BH =−27.2132+10

p2

2+20.1421 =−3.2 ·10−5 X

∑Fy = AV −F

p2

2−p ·3.0+BV =−10.0711−10

p2

2−6.0+23.1421 =−6.8 ·10−5 X

•Beispiel: Komplexes System Gegeben ist ein komplex aufgebautes System lt. Skizze. Gesucht ist eineZerlegung in Teilsysteme und die Entwicklung eines geeigneten Berechnungsablaufs.

©2007-2009 Christian Bucher 24. Februar 2009 30

Page 31: Mechanik 1

SS 09 Mechanik 1

Das System besitzt insgesamt 15 unbekannte Lagerreaktionen und Verbindungskräfte. Es besteht aus5 Teilsystemen. Wegen m = r + v − 3n = 15+ 3 · 5 = 0 ist das System statisch bestimmt. Eine sinnvolleVorgehensweise der Berechnung ergibt sich aus folgenden Fragestellungen:

• Gibt es Teilsysteme, deren Lagerreaktionen und Verbindungskräfte einzeln berechenbar sind?→ Teilsystem I

• Gibt es Teilsysteme, deren Lagerreaktionen und Verbindungskräfte paarweise berechenbar sind?→ Teilsysteme IV und V

• danach → Teilsysteme II und III

Es zeigt sich, dass der Berechnungsablauf genau umgekehrt verläuft wie der Aufbau der Konstruktion. •

4.6 Schnittgrößen

4.6.1 Zusammenhang zwischen Belastung und Schnittgrößen an geraden Balken

Wir betrachten ein infinitesimales Element der Länge dx, das aus dem Balken an einer beliebi-gen Stelle x herausgeschnitten wird.

~p(x) =[

px(x)pz(x)

]

Kennfaser: Ein Moment M wird als positiv bezeichnet, wenn die Seite, an der sich die Kenn-faser befindet, gezogen wird.

Taylorreihe:

N (x +dx) = N (x)+ dN

dxd x + 1

2

d2N

dx2dx2 + . . .

Linearisiert:

dN = dN

dxdx; dQ = dQ

dxdx; dM = dM

dxdx

Gleichgewicht am infinitesimalen Element:∑Fx = 0 : −N +N +dN +px(x)dx = 0

©2007-2009 Christian Bucher 24. Februar 2009 31

Page 32: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.10: Schnittgrößen am Stab

d N

d x=−px(x) (4.2)∑

Fz = 0 : −Q +Q +dQ +pz(x)dx = 0

dQ

dx=−pz(x) (4.3)

∑My = 0(rechts): −M +M +dM −Qdx −pz(x)dx

dx

2= 0

linearisiert: dM −Qdx = 0

dM

dx=Q(x) (4.4)

Aus (4.3) und (4.4) folgtd2M

dx2=−pz(x) (4.5)

Beispiel: Träger unter Gleichlast Wir betrachten einen Träger mit der Länge L unter einer gleichförmi-gen Linienlast p. Gesucht sind die Schnittgrößenfunktionen N (x), Q(x) und M(x).

©2007-2009 Christian Bucher 24. Februar 2009 32

Page 33: Mechanik 1

SS 09 Mechanik 1

Aus Gl. 4.2 folgtN ′ = 0 → N =C1

Mit der Randbedingung N (L) = 0 folgt C1 = 0 und daher N (x) ≡ 0. Aus Gl. 4.3 ergibt sich

Q ′ =−p →Q =−px +C2

Eine geeignete Randbedingung für Q ist nicht unmittelbar verfügbar. Aus Gl. 4.4 folgt weiter:

M ′ =Q =−px +C2 → M =−px2

2+C2x +C3

Für M sind zwei Randbedingungen verfügbar, und zwar

M(0) = 0 =−p02

2+C2 ·0+C3 →C3 = 0

M(L) = 0 =−pL2

2+C2L →C2 = pL

2

Damit sind die Schnittgrößenfunktionen (vgl. Skizze)

Q(x) =−px + pL

2

M(x) =−px2

2+ pL

2x = pL

2x(L−x)

•Beispiel: Kragbalken unter Gleichlast Wir betrachten einen links eingespannten mit der Länge L untereiner gleichförmigen Linienlast p. Gesucht sind die Schnittgrößenfunktionen Q(x) und M(x).

Aus Gl. 4.3 ergibt sich wiederQ ′ =−p →Q =−px +C2

Eine Randbedingung für Q istQ(L) = 0 =−pL+C2 →C2 = pL

©2007-2009 Christian Bucher 24. Februar 2009 33

Page 34: Mechanik 1

SS 09 Mechanik 1

Aus Gl. 4.4 folgt weiter:

M ′ =Q =−px +pL → M =−px2

2+pLx +C3

Die Randbedingungen für M ist

M(L) = 0 =−pL2

2+pL2 →C2 =−pL2

2

Damit sind die Schnittgrößenfunktionen (vgl. Skizze)

Q(x) =−px +pL = p(L−x)

M(x) =−px2

2+pLx − pL2

2=−p(L−x)2

4.6.2 Schnittgrößenverlauf am geraden Balken

Aus den Gleichungen (4.2) - (4.5) folgt:

a) in unbelasteten Bereichen eines Balkens sind N und Q konstant.

b) in unbelasteten Bereichen eines Balkens hat M einen linearen Verlauf

c) an der Stelle von Einzellasten besitzen die Verläufe von N und Q einen Sprung.

d) an der Stelle von Einzellasten besitzt der Verlauf von M einen Knick.

e) In Bereichen von Gleichlasten sind die Verläufe von N und Q linear, der Verlauf von M isteine quadratische Parabel.

Mit diesem Wissen kann häufig die Berechnung von M , Q, und N auf wenige Punkte reduziertwerden.

Beispiel: Zusammenhang pz −Q−M Gegeben ist für einen Träger auf zwei Stützen der Verlauf der Quer-kraft Q. Daraus sollen die Querbelastung und der Momentenverlauf qualitativ rekonstruiert werden.

©2007-2009 Christian Bucher 24. Februar 2009 34

Page 35: Mechanik 1

SS 09 Mechanik 1

•Beispiel: Träger mit Einzellast und Gleichlast Gegeben ist ein Träger auf zwei Stützen lt. Skizze mit derBelastung F = 20 kN und p = 4 kN/m. Gesucht sind die Auflagerreaktionen in den Punkten a und b sowiedie Schnittgrößenverläufe N , Q und M .

a) Lagerreaktionen

∑Ma = 0 = BV ·12.0−p ·6.0 ·9.0−F · sin60◦ ·3.0 → BV = 1

12

(4 ·6 ·9+20 ·3

p3

2

)= 22.33 kN

∑Mb = 0 =−AV ·12.0+F · sin60◦ ·9.0+p ·6.0 ·3.0 → AV = 1

12

(20 ·9

p3

2+4 ·6 ·3

)= 18.99 kN

∑H = 0 = F ·cos60◦−BH → BH = 20

1

2= 10.00 kN

Kontrolle:

∑V = AV +BV −F sin60◦−p ·6.0 = 18.99+22.33−20

p3

2−4 ·6 = 0.5 ·10−4 X

©2007-2009 Christian Bucher 24. Februar 2009 35

Page 36: Mechanik 1

SS 09 Mechanik 1

b) Schnittgrößen Im Folgenden werden die Schnittgrößen in ausgewählten Punkten durch Schnit-te berechnet. Die Verläufe werden unter Ausnutzung der allgemeinen Zusammenhänge zwischen derBelastung und den Schnittgrößen konstruiert.

Punkt a (unmittelbar rechts davon)

AV −Qa = 0

→Qa = AV = 18.99 kN

Na = 0

Ma = 0

Punkt c (unmittelbar links davon)

AV −Q`c = 0

→Q`c = AV = 18.99 kN

N`c = 0

−AV ·3.0+M`c = 0

→ M`c = AV ·3.0 = 56.97 kNm

Punkt c (unmittelbar rechts davon)

AV −F · sin60◦−Qrc = 0

→Qrc = AV −F · sin60◦ = 1.67 kN

F cos60◦+N rc = 0

→ N rc =−F cos60◦ =−10 kN

−AV ·3.0+M rc = 0

→ M rc = AV ·3.0 = 56.97 kNm

Punkt d

AV −F · sin60◦−Qd = 0

→Qd = AV −F · sin60◦ = 1.67 kN

F cos60◦+Nd = 0

→ Nd =−F cos60◦ =−10 kN

−AV ·6.0+F · sin60◦ ·3.0+Md = 0

→ Md = AV ·6.0−F · sin60◦ ·3.0 = 61.98 kNm©2007-2009 Christian Bucher 24. Februar 2009 36

Page 37: Mechanik 1

SS 09 Mechanik 1

Punkt b (unmittelbar links davon)

Qb +BV = 0

→Qb =−BV =−22.33 kN

−Nb −BH = 0

→ Nb =−BH =−10 kN

Mb = 0

c) Skizzen

xm = 22.33

22.33−1.67·6.0 = 5.58 m; Mmax = BV · xm −p · x2

m

2= 22.33 ·5.58−4 · 5.582

2= 62.33 kNm

4.7 Spezielle Tragwerkstypen

4.7.1 Fachwerke

Als Fachwerke werden Systeme bezeichnet, die nur aus miteinander gelenkig verbundenen ge-raden Stäben bestehen. Alle Lasten und Lagerreaktionen werden an den Verbindungsstellen(Knoten) eingeleitet. Unter diesen Voraussetzungen entstehen in den Stäben lediglich Normal-kräfte (Zug oder Druck) und keine Querkräfte bzw. Biegemomente (vgl. Gl.(4.5) und das Beispieldanach).

Schneidet man aus einem Fachwerk einen Knoten frei, so bilden die Schnittkräfte ein zentra-les Kraftsystem. Es stehen somit an jedem Knoten zwei Gleichgewichtsbedingungen zur Verfü-

©2007-2009 Christian Bucher 24. Februar 2009 37

Page 38: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.11: Fachwerk

gung. Damit ist ein Fachwerk mit k Knoten statisch bestimmt wenn zumindest gilt:

s + r −2k = 0 (4.6)

r ist darin die Anzahl der Lagerreaktionen, und s ist die Anzahl der Stäbe.

Beispiel: Fachwerk Wir betrachten das in Abb. 4.11 gezeigte Fachwerk.

r = 3, s = 17,k = 10

m = 17+3−2 ·10 = 0 X

•Beispiel: Unbestimmtes Fachwerk Wir betrachten das in der Skizze gezeigte Fachwerk.

r = 3, s = 8,k = 5

m = 8+3−2 ·5 = 1

•Die rechnerische Ermittlung der Stabkräfte erfolgt durch Rundschnitt (Freischneiden einesKnotens) oder Ritterschnitt (Schnitt durch 3 Stäbe, deren Verlängerungen sich nicht in einemPunkt schneiden).

Beispiel: Rundschnitt Wir betrachten das in Abb. 4.12 gezeig-te Fachwerk. Die Belastung F und die Länge L sind gegeben.

©2007-2009 Christian Bucher 24. Februar 2009 38

Page 39: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.12: Einfaches Fachwerk

AV = BV = 3F

2AH = 0

Knoten a

∑H = 0 =U1

→U1 = 0∑V = 0 = AV +V1

→V1 =−AV =−3F

2

Knoten d

∑V = 0 =−F −V1 −D1

p2

2

→ D1 =p

2(−F −V1) =p

2F

2∑H = 0 = D1

p2

2+O1

→O1 =−D1

p2

2=−F

2

Knoten e

©2007-2009 Christian Bucher 24. Februar 2009 39

Page 40: Mechanik 1

SS 09 Mechanik 1

∑V = 0 =−F −V2

→V1 =−F∑H = 0 =O2 −O1

→O2 =O1 =−F

2

•Beispiel: Ritterschnitt Wir betrachten wieder das in Abb. 4.12 gezeigte Fachwerk.

∑Md =U1 ·0

→U1 = 0∑Mc = 0 = F ·L− AV ·L−O1 ·L

→O1 = F − AV =−F

2∑V = 0 = AV −F −D1

p2

2

→ D1 =p

2(AV −F ) =p

2

2

4.7.2 Dreigelenksysteme

Systeme bestehend aus zwei miteinander gelenkig verbundenen Körpern auf zwei festen La-gern heißen Dreigelenksysteme. Dabei werden die Lager als Gelenke gezählt. Die drei Gelenkedürfen nicht auf einer Geraden liegen (Beweglichkeit). Die Bestimmung der Lagerreaktionen er-

Abbildung 4.13: Dreigelenksysteme

folgt bei Dreigelenksystemen durch Aufstellen und Lösen von Gleichgewichtsbedingungen am

©2007-2009 Christian Bucher 24. Februar 2009 40

Page 41: Mechanik 1

SS 09 Mechanik 1

Gesamtsystem und an Teilsystemen (vgl. Abschnitt 4.5.2). Für die Verläufe der SchnittgrößenM , Q und N sind Besonderheiten an den Rahmenecken zu beachten.

Beispiel: Rahmenecke mit beliebigem Winkel α

Abbildung 4.14: Rahmenecke

Die Gleichgewichtsbedingungen eines infinitesimal kleinen Rahmenstücks um den Knoten ksind: ∑

Mk = 0 : Mr −Ml = 0 → Mr = Ml∑Fx ′ = 0 : −Nl +Nr cosα−Qr sinα= 0 → Nl = Nr cosα−Qr sinα∑Fz ′ = 0 : −Ql +Qr cosα+Nr sinα= 0 → Ql = Nr sinα+Qr cosα

Dies lässt sich in Matrix-Vektor-Form anschreiben[Nl

Ql

]=

[cosα −sinαsinα cosα

]·[

Nr

Qr

]= [

T][

Nr

Qr

];

[T]

. . .Drehmatrix (4.7)

Diese Gleichungen gelten in dieser Form nur, wenn auf den Knoten k keine konzentriertenLasten (Einzellasten) wirken.

©2007-2009 Christian Bucher 24. Februar 2009 41

Page 42: Mechanik 1

SS 09 Mechanik 1

Beispiel: Dreigelenkrahmen Wir untersuchen die Lagerreaktionen und Schnittgrößenverteilungen fürdas in Abb. 4.15 dargestellte System. Die Belastungsgrößen sind F = 20 kN, p = 1 kN/m.

Abbildung 4.15: Dreigelenkrahmen

a) Lagerreaktionen ∑Mb = 0 =AH ·4.0− AV ·8.0+p ·8.0 ·0+F ·4.0

I : AH −2AV =−F =−20∑M (`)

g = 0 =AH ·8.0− AV ·4.0+p ·8.0 ·4.0

II : 2AH − AV =−p ·8.0 =−8

I−2 · II : −3AH =−20+16 = 4 → AH = 4

3= 1.33kN

II : AV = 2AH +8 = 10.67kN

b) SchnittgrößenPunkt a

Ma = 0

Qa =−AH =−1.33kN

Na =−AV =−10.67kN

Punkt c(`)

©2007-2009 Christian Bucher 24. Februar 2009 42

Page 43: Mechanik 1

SS 09 Mechanik 1

M (`)c =−AH ·8.0−p ·8.0 ·4.0 =−42.64kNm

Q(`)c =−AH p ·8.0 =−9.33kN

N (`)c =−AV =−10.67kN

Punkt c(r )

M (r )c = M (`)

c =−42.64kNm

Q(r )c =−N (`)

c = 10.67kN

N (r )c =Q(`)

c =−9.33kN

©2007-2009 Christian Bucher 24. Februar 2009 43

Page 44: Mechanik 1

SS 09 Mechanik 1

Punkt d(`)

Md = AV ·8.0− AH ·8.0−p ·8.0 ·4.0−F ·4.0

=−37.28kNm

Q(`)d = AV −F =−9.33kN

N (`)d =−AH +p ·8.0 =−9.33kN

Punkt d(r )

Q(r )d =−N (`)

d = 9.33kN

N (r )d =Q(`)

d =−9.33kN

©2007-2009 Christian Bucher 24. Februar 2009 44

Page 45: Mechanik 1

SS 09 Mechanik 1

c) Skizzen

©2007-2009 Christian Bucher 24. Februar 2009 45

Page 46: Mechanik 1

SS 09 Mechanik 1

Beispiel: Parabelbogen unter Gleichlast Ein Dreigelenkbogen (siehe Abb. 4.16) in der Form einer qua-dratischen Parabel

z(x) = H

(1− x2

L2

)unter einer vertikalen Gleichlast p wird untersucht.

Abbildung 4.16: Parabelbogen

a) Lagerreaktionen

∑Mb = 0 = p ·2L ·L− AV ·2L

AV = pL

∑M (`)

g = 0 = p ·L · L

2+ AH ·H − AV ·L

AH = 1

H

(AV ·L−p · L2

2

)= pL2

2H

Aus Symmetriegründen gilt BV = AV und BH = AH .

©2007-2009 Christian Bucher 24. Februar 2009 46

Page 47: Mechanik 1

SS 09 Mechanik 1

b) Schnittgrößen

∑Ms = 0 = M + AH · z − AV · (L+x)+p · (L+x)

L+x

2

M =−AH (H −Hx2

L2 + AV (L+x)− p

2(L2 +2Lx +x2) =

=−pL2

2+ pL2

2HH

x2

L2 +pL2 +pLx−

− pL2

2−pLx − px2

2= 0

Zur Bererchnung von Normalkraft und Querkraft ist es vorteilhaft, zunächst Hilfsgrößen Hs und Vs zudefinieren, die in die Richtung der Koordinatenachsen zeigen, und dann das Koordinatensystem umden Winkel α zu drehen.

∑V = 0 = AV −Vs −p(L+x)

Vs = AV −p(L+x) = pL−pL−px =−px

∑H = 0 = AH +Hs

Hs =−AH =−pL2

2H

Der Neigungswinkelα an der Stelle s ist bestimmt durch tanα=− dzdx = 2H x

L2 . Die gesuchten SchnittgrößenN und Q sind durch Anwendung einer Drehung leicht bestimmbar (vgl. Gl. 4.7):[

Hs

Vs

]=

[cosα −sinαsinα cosα

][NQ

]→

[NQ

]=

[cosα sinα−sinα cosα

][Hs

Vs

]und somit

N =−pL2

2Hcosα−px sinα

Q = pL2

2Hsinα−px cosα

Aus den bekannten Beziehungen für trigonometrische Funktionen erhalten wir

cos2α= 1

1+ tan2α= 1

1+ 4H 2x2

L4

©2007-2009 Christian Bucher 24. Februar 2009 47

Page 48: Mechanik 1

SS 09 Mechanik 1

und

sin2α= tan2α

1+ tan2α= 4H 2x2

L4(1+ 4H 2x2

L4

) =(

2H x

L2

)2

cos2α

Damit ergeben sich N und Q als

N =−(

pl 2

2H+ 2px2H

L2

)1√

1+ 4H 2x2

L4

; Q = 0 (4.8)

Der Parabelbogen unter Gleichlast hat somit weder Querkräfte noch Biegemomente, lediglich Normal-

kräfte (Druck). •

4.8 Räumliche Schnittgrößen

4.8.1 Lager und Gelenke

Räumliche EinspannungEs werden 3 Momente und 3 Kräfte aufgenom-men

Räumliches GleitlagerEs wird eine Kraft aufgenommen

ScharniergelenkEs werden 2 Momente und 3 Kräfte übertra-gen.KugelgelenkEs werden 3 Kräfte übertragen.

Statische Bestimmtheit: Bei zusammengesetzten Systemen bestehend aus n Teilkörpern gibtes 6 ·n unabhängige Gleichgewichtsbedingungen. Die notwendige Bedingung für statische Be-stimmtheit ist daher:

m = r + v −6 ·n = 0 (4.9)

©2007-2009 Christian Bucher 24. Februar 2009 48

Page 49: Mechanik 1

SS 09 Mechanik 1

Beispiel: Räumlicher Gelenkträger

r = 6+1 = 7

v = 6

n = 2

m = 7+5−6 ·2 = 0

•Beispiel: Räumlicher Träger auf zwei Stützen

r = 3+1 = 4

v = 0

n = 1

m = 4+0−6 ·1 =−1

Das System ist beweglich! Resultate ebener Statikkönnen nicht immer unmittelbar ins Räumlicheübertragen werden.

4.8.2 Schnittgrößen

Räumliche Schnittgrößen werden sinnvollerweise auf ein lokales Koordinatensystem in denbetrachteten Stäben bezogen. Dabei wird die in Abb. 4.17 dargestellte Vorzeichenkonventionzugrunde gelegt. Die Schnittgrößen Qy und Qz sind Querkräfte, die Größen My und Mz sindBiegemomente und Mx heißt Torsionsmoment.

Beispiel: Räumlicher Kragträger Ein räumlicher Kragträger wie in Abb. 4.18 dargestellt wird durch einehorizontale Last H in x-Richtung und eine vertikale Last V in z-Richtung belastet. Die Belastung und dieLängenabmessungen L, B sind gegeben. Gesucht sind die Schnittgrößen im Träger.

©2007-2009 Christian Bucher 24. Februar 2009 49

Page 50: Mechanik 1

SS 09 Mechanik 1

Abbildung 4.17: Räumliche Schnittgrößendefinition

a) Lagerreaktionen

−Az +V = 0 Az =V

Ax +H = 0 Ax =−H

Ay = 0

Max −V ·B = 0 Max =V ·B

May +V ·L = 0 May =−V ·L

Maz −H ·B = 0 Maz = H ·B

Abbildung 4.18: Räumlicher Kragträger

©2007-2009 Christian Bucher 24. Februar 2009 50

Page 51: Mechanik 1

SS 09 Mechanik 1

b) Schnittgrößen

Gleichgewicht am Schnitt:

N + Ax = 0 N =−Ax = H

−Qy + Ay = 0 Qy = Ay = 0

Qz − Az = 0 Qz = Az =V

Mx +Max = 0 Mx =−Max =−V ·B

My −May − Az · x = 0 My =V (x −L)

Mz −Maz + Ay · x = 0 Mz = H ·B

Abschnitt b − c mit verändertem Koordinatensy-stem:

N = 0

−Qy +H = 0 Qy = H

−Qz +V = 0 Qz =V

Mx = 0

−My −V (B −x) = 0 My =V (x −B)

−Mz −Maz +H(B −x) = 0 Mz = H(B −x)

c) Skizzen

©2007-2009 Christian Bucher 24. Februar 2009 51

Page 52: Mechanik 1

SS 09 Mechanik 1

5 Kinematik des Punktes und des starren Körpers

5.1 Kinematik des Massenpunktes

Der Begriff Massenpunkt beschreibt idealisierend einen Körper mit Masse m, dessen räumlicheAusdehnung als vernachlässigbar gering angenommen wird. Die Lage eines Massenpunktes Pim Raum ist eindeutig durch die Angabe von drei kartesischen Koordinaten x, y und z festge-legt. Dabei können diese Positionen Funktionen der Zeit t sein. Eine darüber hinausgehendeFestlegung (z.B. von Winkeln) ist aufgrund der vernachlässigten räumlichen Ausdehnung nichtmöglich.

Abbildung 5.1: Räumliche Bewegung eines Massenpunktes

Der Positionsvektor (Ortsvektor)~r ist von der Zeit abhängig. Durch~r(t ) wird eine Kurve imRaum beschrieben, deren Bogenlänge durch die Größe s bezeichnet wird. Die Kinematik einesMassenpunktes wird beschrieben durch die zeitlichen Ableitungen des Positionsvektors

~r =x

yz

(5.1)

Die erste Ableitung

~v =~r = d~r

dt=

xyz

(5.2)

ist die (vektorielle) Geschwindigkeit, Die Richtung des Geschwindigkeitsvektors fällt mit derRichtung der Tangente an die Bahnkurve zusammen. Die zweite Ableitung

~a =~r = d2~r

dt2 =x

yz

(5.3)

ist die Beschleunigung des Massenpunktes. Ihre Richtung ist i. A. nicht mit der Richtung derTangente an die Bahnkurve identisch.

©2007-2009 Christian Bucher 24. Februar 2009 52

Page 53: Mechanik 1

SS 09 Mechanik 1

Abbildung 5.2: Einwirkung einer Kraft auf einen Massenpunkt

Wird ein Massenpunkt, auf den eine Kraft~F einwirkt, entlang eines Weges verschoben, so wirddabei mechanische Arbeit verrichtet.

Entlang eines infinitesimalen Wegstückes d~r ist die verrichtete infinitesimale Arbeit

dA =~FT~dr (5.4)

Definition: Die Größe

A1,2 =~r2∫~r1

~FT d~r (5.5)

heißt Arbeit der Kraft~F entlang des Weges von P1 nach P2. Dabei kann~F von~r abhängig sein.Wenn in (5.5) das Ergebnis der Integration vom gewählten Weg zwischen P1 und P2 unabhängigist, so heißt die Kraft~F konservativ. Zur Bewegung entlang einer geschlossenen Kurve (~r1 =~r2)ist in konservativen Kraftfeldern keine Arbeit erforderlich. (A = 0).

5.2 Kinematik des starren Körpers

5.2.1 Allgemeines

Wir betrachten einen starren Körper zu zwei aufeinanderfolgenden Zeitpunkten t und t +∆t :

Die Bewegung ist beschreibbar durch unendlich viele Bahnkurven. Diese sind aber durch dieBedingung der starren Körperform miteinander verknüpft.

Die Position und Lage des Körpers zum Zeitpunkt t+∆t kann eindeutig festgelegt werden durchdie Verschiebung (Translation) eines beliebigen Punktes P0 und die Drehung (Rotation) umeine Achse durch diesen Punkt.

Für den Geschwindigkeitsvektor~v(r, t ) eines beliebigen Körperpunktes P mit dem Ortsvektor rgilt dann allgemein

~v(~r, t ) =~v0(t )+~ω(t )× [~r(t )−~r0(t )] (5.6)

©2007-2009 Christian Bucher 24. Februar 2009 53

Page 54: Mechanik 1

SS 09 Mechanik 1

Abbildung 5.3: Räumliche Bewegung eines starren Körpers

Darin ist~v0(t ) der Geschwindigkeitsvektor des Punktes P0 und ~ω(t ) der Winkelgeschwindig-keitsvektor.

Bedeutung von ~ω: Die Richtung von ~ω definiert die Drehachse, die Länge (Norm) ω = ||~ω||definiert die Winkelgeschwindigkeit der Rotation.

Sonderfälle

• Reine Translation: ω= 0→~v(~r, t ) =~v0(t )

• Rotation um eine feste Achse durch P0:

→~v(~r, t ) =~ω(t )× [~r−~r0]

5.2.2 Momentanpol

Für den Sonderfall der ebenen Bewegung (alle Geschwindigkeitsvektoren sind parallel zu einerEbene) kann jeder Bewegungszustand als reine Rotation um eine Achse normal zu dieser Ebenebeschrieben werden:

→~v(r, t ) =~ω× [~r−~rm] (5.7)

Dabei ist~rm der Ortsvektor eines noch zu bestimmenden Punktes M aus dieser Ebene. Er mussso gewählt werden, dass

~v =~v0 +~ω× [~r−~r0]!=~ω× [~r−~rm] (5.8)

©2007-2009 Christian Bucher 24. Februar 2009 54

Page 55: Mechanik 1

SS 09 Mechanik 1

Wendet man (5.7) auf den Punkt P0 an, so folgt

~v0 =~ω× (~r0 −~rm)

und daraus

~ω×~v0 =~ω× [~ω× (~r0 −~rm)] ==~ω~ωT (~r0 −~rm)︸ ︷︷ ︸

=0

−(~r0 −~rm)~ωT~ω︸ ︷︷ ︸=ω2

Der erste Term ist Null, wenn wir M in der Ebene normal auf ~ω durch P0 wählen.

Dann ergibt sich

~rM =~r0 + 1

ω2(~ω×~v0) (5.9)

Der Punkt M wird als Momentanpol bezeichnet. Seine Lage ist i.a. zeitabhängig und nicht anden Körper gebunden.

Aus der Darstellung (5.8) folgt, dass der Vektor vom Momentanpol zu einem beliebigen PunktP mit dem Geschwindigkeitsvektor dieses Punktes einen rechten Winkel einschliesst.

Beispiel: Rotation in der Ebene

Abbildung 5.4: Ebene Rotation

Die Geschwindigkeiten~v1 und~v2 können nicht beliebig vorgegeben werden!

5.3 Kinematische Ketten

Eine Anordnung von beweglich miteinander verbundenen starren Körpern wird als kinemati-sche Kette bezeichnet. Durch die Verbindung der Körper in den Gelenken ergeben sich kinema-tische Kopplungen, also ein Zusammenhang zwischen den Geschwindigkeiten der einzelnen

©2007-2009 Christian Bucher 24. Februar 2009 55

Page 56: Mechanik 1

SS 09 Mechanik 1

Abbildung 5.5: Kinematische Kette mit einem Freiheitsgrad

Körper. Dieser Zusammenhang wird ersichtlich, wenn die Momentanpole der Körper bekanntsind.

Beispiel: Viergelenk Wir betrachten ein System aus 4 miteinander gelenkig verbundenen geraden star-ren Stäben.

Wir geben die Winkelgeschwindigkeit des Stabes I als ω1 vor. Da der Stab I im Auflager a gehalten wird,

liegt sein Momentanpol in diesem Punkt. Ebenso liegt der Momentanpol des Stabes III im Lagerpunkt

b. Der Gelenkpunkt muss sich bei einer Drehung des Stabes I auf einer Bahn normal auf die Richtung zu

a bewegen, der Gelenkpunkt d kann sich nur normal auf die Richtung zu b bewegen. Sowohl c als auch

d liegen aber auch auf dem Stab II. Da ihre Bewegungsrichtungen normal auf die Richtung zum Mo-

mentanpol m sein müssen, folgt daraus, dass M im Schnittpunkt der Normalen auf die Richtungen der

Geschwindigkeiten liegen muss (im weiteren Bewegungsablauf verändert sich dessen Lage). Die Größe

der Winkelgeschwindigkeit ω2 folgt unmittelbar aus vc und ω1, analog ω3. •In einer kinematischen Kette heißen Punkte, um die sich ein Körper relativ zum ruhenden Be-zugssystem dreht Hauptpole und Punkte, um die sich zwei Körper relativ zueinander drehenNebenpole. Feste Lager sind stets Hauptpole, Verbindungsgelenke sind Nebenpole.

Satz: Die Hauptpole und der Nebenpol zweier zueinander beweglicher Körper liegen stets aufeiner Geraden.

Satz: Die Nebenpole dreier zueinander beweglicher Körper liegen stets auf einer Geraden.

©2007-2009 Christian Bucher 24. Februar 2009 56

Page 57: Mechanik 1

SS 09 Mechanik 1

Beispiel: Viergelenk

(0,1). . . Hauptpol von I(1,2). . . Nebenpol von I und II→ (0,2) muss auf einer Geraden durch (0,1) und(0,2) liegen.Analog: (0,2) muss auf einer Geraden durch (0,2)und (2,3) liegen.

•Beispiel: Dreigelenk

Haupt- und Nebenpole liegen nicht auf einer Gera-den → System ist nicht beweglich.

•Beispiel: Bewegliches Lager

Wegen der horizontalen Verschieblichkeit desGleitlagers liegt der Hauptpol von II auf einer verti-kalen Linie durch den Lagerpunkt.

•Beispiel: Fachwerk

(2,4), (2,5) und (4,5) liegen nicht auf einer Gera-den → II, IV und V sind nicht zueinander beweglich(wohl aber miteinander).

©2007-2009 Christian Bucher 24. Februar 2009 57

Page 58: Mechanik 1

SS 09 Mechanik 1

5.4 Bestimmung von Lagerreaktionen und Schnittgrößen

Definition Eine virtuelle Verschiebung δ~r eines Körperpunktes ist eine gedachte, bei festge-haltener Zeit ausgeführte, mit den kinematischen Bindungen verträgliche und infinitesimalkleine Verschiebung, bei sich die auf den Körper einwirkenden Kräfte nicht ändern.

Bei starren Körpern lassen sich virtuelle Verschiebungen immer auf eine virtuelle Translationδ~r0 und eine virtuelle Rotation δ~ϕ zurückführen (vgl. Gl. 5.6):

δ~r = δ~r0 +δ~ϕ× (~r−~r0) (5.10)

Die virtuelle Arbeit δWi einer am Körperpunkt~ri angreifenden Kraft~Fi ist definiert durch

δWi =~FTi δ~ri (5.11)

Die virtuelle Arbeit δWk eines Moments ~Mk ist definiert durch

δWk = ~MTk δ~ϕk (5.12)

Satz (Prinzip der virtuellen Arbeit in der Form virtueller Verschiebungen):Bilden die an einem starren Körper angreifenden Kräfte~Fi ; i = 1. . .n und Momente ~Mk ; k =1. . .m eine Gleichgewichtsgruppe, so verschwindet die virtuelle Arbeit dieses Kräftesystems fürjede beliebig gewählte virtuelle Verschiebung:

δW =n∑

i=1

~FTi δ~ri +

m∑k=1

~MTi δ~ϕk = 0 (5.13)

Verschwindet die virtuelle Arbeit eines an einem starren Körper angreifenden Kräftesystems fürjede beliebige virtuelle Verschiebung, so befindet sich dieses Kräftesystem im Gleichgewicht.

Satz Wenn zur Einleitung virtueller Verschiebungen kinematische Bindungen gelöst werden(”Schnitt”), so sind die virtuellen Arbeiten der an diesen Stellen wirkenden Schnittgrößen zuberücksichtigen.

©2007-2009 Christian Bucher 24. Februar 2009 58

Page 59: Mechanik 1

SS 09 Mechanik 1

Beispiel: Biegemoment eines Trägers auf zwei Stützen

Geg: p, LGes.: M(x)

Um das das System beweglich zu machen, muss ei-ne kinematische Bindung gelöst werden. Um dasBiegemoment an einer beliebigen Stelle x bestim-men zu können, muss dieses Biegemoment virtu-elle Arbeit leisten. Es wird daher an der Stelle xein Gelenk eingeführt und die dabei freigesetztenSchnittgrößen als Kraftwirkung mit angesetzt.

Die Relation zwischen δϕ1 und δϕ2 folgt aus

x ·δϕ1 = (L−x)δϕ2 → δϕ2 = x

L−xδϕ1

Damit wird die gesamte virtuelle Arbeit

δW = pxx

2δϕ1 +p(L−x)

L−x

2δϕ2 −Mδϕ1 −Mδϕ2 =

=[

pxx

2+p(L−x)

L−x

2

x

L−x−M −M

x

L−x

]δϕ1 = 0

→ M(x) = p

2x(L−x)

•Beispiel: Querkraft eines Trägers auf zwei Stützen

δW = pxx

2δϕ−p(L−x)

L−x

2δϕ+Qxδϕ+Q(L−x)δϕ=

=[−pL2

2+pLx +QL

]δϕ= 0

→Q(x) = p

2(L−2x)

©2007-2009 Christian Bucher 24. Februar 2009 59

Page 60: Mechanik 1

SS 09 Mechanik 1

Beispiel: Stabkräfte in einem Fachwerk

Für das dargestellte Fachwerk mit 13 Stäben sollendie Stabkräfte V3 und D3 mit Hilfe des Prinzips dervirtuellen Verschiebungen berechnet werden.

Um die Stabkräfte berechnen zu können, müs-sen Schnitte eingeführt werden, die eine Längs-verschieblichkeit der Stäbe ermöglichen. Da eineinem Fachwerk keine Querkräfte und Biegemo-mente vorhanden sind, können die Stäbe auch ein-fach entfernt werden, wenn die Stabkräfte auf diejeweiligen Knoten angesetzt werden.

a) V3

Die Pole (0,1), (0,4) und (1,4) liegen nicht auf einerGeraden. Daher sind I und IV nicht beweglich. DerPol (0,2) liegt daher im Pol (1,2).

Von allen Kräften leistet nur V3 virtuelle Arbeit:

δW =V3Lδϕ= 0 →V3 = 0

V3 ist also ein Nullstab.

b) D3

Aus (0,1) und (1,2) folgt eine Richtung zu (0,2),ebenso aus (0,4) und (2,4). Damit liegt der Haupt-pol (0,2) fest. Für den Hautpol (0,3) ist zunächstnicht genügend Information verfügbar. Dazu wirdder Nebenpol (2,3) benötigt. Aus (1,2) und (1,3) er-gibt sich eine Richtung zu (2,3), ebenso aus (2,4)und (3,4). Beide Richtungen sind parallel, der Ne-benpol (2,3) liegt also im Unendlichen. Verbindetman (0,2) mit (2,3) so ergibt sich eine Richtung zu(0,3), ebenso aus (0,1 = und (1,3). Damit liegt auchder Hauptpol (0,3 = fest.

Die virtuelle Arbeit aller Kräfte ist:

δW =−F ·Lδϕ−F ·2Lδϕ+F ·Lδϕ++D3 ·L

p2δϕ+D3 ·L

p2δϕ= 0

Daraus ergibt sich

D3 = Fp2

©2007-2009 Christian Bucher 24. Februar 2009 60

Page 61: Mechanik 1

SS 09 Mechanik 1

Beispiel: Dreigelenkrahmen Wir untersuchen ausgewählte Lagerreaktionen und Schnittgrößen für dasdargestellte System. Die Belastungsgrößen sind F = 20 kN, p = 1 kN/m.

a) AV

δW = AV ·12 ·δϕ−F ·8 ·δϕ+p ·8 ·4 ·δϕ= 0

AV = 1

12

(F ·8−p ·32

)= 10.667kN

b) AH

δW = AH ·12 ·δϕ−F ·4 ·δϕ+p ·8 ·8 ·δϕ= 0

AH = 1

12

(F ·4−p ·64

)= 1.333kN

©2007-2009 Christian Bucher 24. Februar 2009 61

Page 62: Mechanik 1

SS 09 Mechanik 1

c) Mc

δW = Mcδϕ+Mc ·2δϕ+F ·4 ·2δϕ−p ·8 ·4 ·δϕ= 0

Mc = 1

3

(−F ·8+p ·32)=−42.667kN m

d) Q`c

δW =Q`c ·8·δϕ+Q`

c ·4·δϕ+F ·4·δϕ+p ·8·4·δϕ= 0

Q`c = 1

12

(−F ·4−p ·32)=−9.333kN

•Beispiel: Zugbrücke

Eine Zugbrücke (homogener Balken mit Masse m) wird im Schwerefeld (g) über ein masseloses Seil (um-gelenkt über eine sehr kleine Rolle) durch eine Masse m

2 im Gleichgewicht gehalten. Welcher Winkel ϕstellt sich ein?

Wir wählen als virtuelle Verrückung eine infinitesi-mal kleine Verdrehung δϕ der Brücke. Dabei senktsich der Brückenschwerpunkt um

δr1 = L

2δϕsinϕ

ab. Das Gegengewicht hebt sich um den Betrag δr2.Dies entspricht der Verlängerung δs des Seils zwi-schen Brücke und Rolle. Die Seillänge s abhängigvom Winkel ϕ ist gegeben durch

s = 2L sinϕ

2

Daraus erhält man durch Taylorentwicklung

δs = ds

dϕδϕ= L cos

ϕ

2δϕ

©2007-2009 Christian Bucher 24. Februar 2009 62

Page 63: Mechanik 1

SS 09 Mechanik 1

Somit ist die virtuelle Arbeit

δW = mgδr1 − mg

2δr2 =

(mg

L

2sinϕ− mg

2L cos

ϕ

2

)δϕ= 0

Daraus folgt

sinϕ−cosϕ

2= 0 →ϕ= 60◦

•Beispiel: Fachwerk

Gegeben sind F und L, gesucht sind die Stabkräf-te S1 und S2 mittels Ritterschnitt und virtueller Ar-beit.

Der Stab S1 wird durch einen Dreistäbeschnittleicht berechnet:

∑Mc = 0 = S1 ·L

p2−F L → S1 = Fp

2

Für den Stab S2 läßt sich kein Ritterschnitt finden.

Mit Hilfe des Prinzips der virtuellen Arbeit berech-net man die Stabkraft S1 nach:

δW = F Lδϕ−S1 ·2Lδϕ

p2

2= 0 → S1 = Fp

2

und die Stabkraft S2 folgt aus

δW = F ·Lδϕ−S2Lp

2δϕ= 0 → S2 = Fp2

©2007-2009 Christian Bucher 24. Februar 2009 63

Page 64: Mechanik 1

SS 09 Mechanik 1

6 Formänderungen

6.1 Flächenmomente

Für die nachfolgenden Überlegungen benötigen wir einige Integrale, die als Flächenmomentebezeichnet werden.

Abbildung 6.1: Querschnittsfläche

Als Integral lässt sich der Flächeninhalt A eines Querschnittes das Flächenmoment 0. Ordnung)berechnen nach

A =ÏA

dA =ÏA

dy dz (6.1)

Die statischen Momente bezogen auf Achsen η und ζ parallel zu y und z durch den Punkt P(Flächenmomente 1. Ordnung) sind:

Sζ = Sp,z =ÏA

ηdy dz =ÏA

(y − yp )dy dz;

Sη = Sp,y =ÏA

ζdy dz =ÏA

(z − zp )dy dz(6.2)

Der Flächenschwerpunkt S ist dadurch gekennzeichet, dass die statischen Momente ver-schwinden, d.h. Ss,y = Ss,z = 0. Die Flächenträgheitsmomente (Flächenmomente 2. Ordnung)sind:

Ip,zz =ÏA

(y − yp )2 dy dz;

Ip,y z = Ip,z y =−ÏA

(y − yp )(z − zp )dy dz;

Ip,y y =ÏA

(z − zp )2 dy dz

(6.3)

©2007-2009 Christian Bucher 24. Februar 2009 64

Page 65: Mechanik 1

SS 09 Mechanik 1

Das sogenannte polare Flächenträgheitsmoment Ip,p ist

Ip,p = Ip,zz + Ip,y y =ÏA

(y − yp )2 dy dz +ÏA

(z − zp )2 dy dz =ÏA

r 2p dy dz (6.4)

Beispiel: Flächenmomente eines Kreises Die Integration erfolgt in diesem Fall durch Polarkoordinaten.

A =2π∫

0

R∫0

r dr dϕ=2π∫

0

R∫0

r dr = 2πR2

2= R2π

Das statische Moment Sm,z bezogen auf den Kreismittelpunkt M istgegeben durch

Sm,z =2π∫

0

R∫0

yr dr dϕ=2π∫

0

R∫0

r 2 cosϕdr dϕ

=2π∫

0

cosϕdϕ

R∫0

r 2dr = 0

Analog gilt Sm,y = 0. Das Flächenträgheitsmoment Im,zz ist:

Im,zz =2π∫

0

R∫0

y2r dr dϕ=2π∫

0

R∫0

r 3 cos2ϕ dr dϕ=2π∫

0

cos2ϕdϕ

R∫0

r 3dr =πR4

4

Es gilt Im,y y = Im,zz und Im,y z = 0.

Einfacher läßt sich das Flächenträgheitsmoment Im,zz aus dem polaren Flächenträgheitsmoment Im,p

berechnen. Wegen der Symmetrie des Kreises gilt ja Im,y y = Im,zz und daher

Im,y y = 1

2Im,p = 1

2

2π∫0

R∫0

r 2r dr dϕ= 1

22π

R4

4=πR4

4

•Sind die Flächenträgheitsmomente bezüglich des Schwerpunktes S bekannt, so können die Flä-chenträgheitsmomente bezüglich eines beliebigen anderen Punktes P nach folgenden Formelnberechnet werden (Steiner’scher6 Satz):

Ip,zz = Is,zz + (yp − ys)2 · A;

Ip,y z = Is,y z − (yp − ys)(zp − zs) · A;

Ip,y y = Is,y y + (zp − zs)2 · A

(6.5)

6Jakob Steiner, *1796 Utzenstorf, +1863 Bern

©2007-2009 Christian Bucher 24. Februar 2009 65

Page 66: Mechanik 1

SS 09 Mechanik 1

Beweis: Nach Gl. (6.3) gilt

Ip,zz =ÏA

(y − yp )2 dy dz =ÏA

(y − ys + ys − yp )2 dy dz

=ÏA

[(y − ys)2 +2(y − ys)(ys − yp )+ (ys − yp )2]dy dz

=ÏA

(y − ys)2 dy dz +2(ys − yp )ÏA

(y − ys)dy dz + (ys − yp )2ÏA

dy dz

= Is,zz +2(ys − yp )Ss,z + (ys − yp )2 · A. q.e.d.

(6.6)

Die Beweise für Ip,y z und Ip,y y verlaufen analog.

Die Flächenträgheitsmomente lassen sich in einer symmetrischen Matrix der Größe 2×2 an-ordnen:

[Ip ] =[

Ip,y y Ip,y z

Ip,y z Ip,zz

](6.7)

Dieser Trägheitstensor besitzt analog zum Spannungstensor des ebenen Spannungszustandeszwei Eigenwerte (Hauptträgheitsmomente) Ip,1 und Ip,2 die aus

det

[Ip,y y −λ Ip,y z

Ip,y z Ip,zz −λ]= (Ip,y y −λ)(Ip,zz −λ)− I 2

p,y z =

=λ2 − (Ip,y y + Ip,zz)λ+ Ip,y y Ip,zz − I 2p,y z = 0

Die Lösungen dieser quadratischen Gleichung sind

Ip,1,2 =Ip,y y + Ip,zz

√(Ip,y y − Ip,zz)2

4+ I 2

p,y z (6.8)

Die zugehörigen Hauptträgheitsachsen definiert die Winkel ϕ1 und ϕ2 ergeben sich aus denGleichungen [

Ip,y y −λ Ip,y z

Ip,y z Ip,zz −λ][

cosϕsinϕ

]=

[00

]Da diese Gleichungen linear abhängig sind, kann beispielsweise die erste Gleichung verwendetwerden:

(Ip,y y −λ)cosϕ+ Ip,y z sinϕ= 0

Durch Einsetzen der beiden Eigenwerte ergibt sich daraus:

tanϕ1,2 =Ip,1,2 − Ip,y y

Ip,y z(6.9)

Alternativ können diese Winkel auch ohne Kenntnis der Hauptträgheitsmomente aus

tan2ϕ1,2 =2Ip,y z

Ip,y y − Ip,zz(6.10)

berechnet werden.

Beispiel: Zusammengesetzter Querschnitt Der Querschnitt besteht aus zwei Rechtecken. Es sollen dieFlächenmomente 2. Ordnung bezogen auf den gemeinsamen Schwerpunkt S und die Haupträgheitsach-sen berechnet werden.

©2007-2009 Christian Bucher 24. Februar 2009 66

Page 67: Mechanik 1

SS 09 Mechanik 1

Die Berechnung erfolgt getrennt für die beiden Rechtecke. Der Schwerpunkt derFläche A liegt bei (1.5,0.5), der Schwerpunkt der Fläche B bei (0.5,2.0). Der Ge-samtschwerpunkt S hat die Koordinaten

ys = 1.5A+0.5B

A+B= 1.10m

zs = 0.5A+2B

A+B= 1.10m

Die Flächenträgheitsmomente der Fläche A bezogen auf Achsen durch ihren eigenen Schwerpunkt sind

Iy y,A = 1

1213 ·3 = 0.25m4, Izz,A = 1

121 ·33 = 2.25m4, Iy z,A = 0

die der Fläche B bezogen auf Achsen durch ihren eigenen Schwerpunkt sind

Iy y,B = 1

1223 ·1 = 0.67m4, Izz,B = 1

122 ·13 = 0.17m4, Iy z,B = 0

Mit Anwendung des Steiner’schen Satzes (6.5) ergibt sich:

Is,y y = Iy y,A + A · (1.10−0.50)2 + Iy y,B +B · (1.10−2.00)2 = 3.62m4

Is,y z = Iy z,A − A · (1.10−0.50)(1.10−1.50)+ Iy z,B −B · (1.10−2.00)(1.10−0.50) = 1.80m4

Is,zz = Izz,A + A · (1.10−1.50)2 + Izz,B +B · (1.10−0.50)2 = 3.62m4

Damit ergeben sich die Haupträgheitsmomente zu

Ip,1,2 = 3.62±1.80 ={

5.42

1.82m4

Die zugehörigen Richtungen sind nach Gl. (6.9) gegeben durch

tanϕ1 = 5.42−3.62

1.80= 1; tanϕ2 = 1.82−3.62

1.80=−1

bzw. nach der alternativen Formel (6.10)

tan2ϕ1,2 = 2 ·1.80

3.62−3.62=∞→ϕ1,2 =

{π43π4

6.2 Dehnungs- und Spannungsverteilung bei reiner Balkenbiegung

Es wird angenommen, dass im Querschnitt nur die Schnittgrößen My und Mz vorhanden sind(reine Biegung, keine Normal- bzw. Querkräfte, keine Torsion). Für die Formänderungen infol-ge Biegung wird angenommen, dass die Querschnitte des Balkens auch nach der Deformati-on infolge der Biegemomente eben bleiben (Bernoulli’sche7 Hypothese). Aus dieser Hypothe-se folgt, dass die Dehnungen εxx linear über den Querschnitt verteilt sind. Nimmt man ferner

©2007-2009 Christian Bucher 24. Februar 2009 67

Page 68: Mechanik 1

SS 09 Mechanik 1

Abbildung 6.2: Bernoulli-Hypothese

Abbildung 6.3: Lineare Verteilung der Normalspannung σxx

einen linear-elastischen Werkstoff an, so sind auch die Normalspannungenσxx linear über denQuerschnitt verteilt

σxx =C1 +C2 y +C3z (6.11)

Die Resultierenden der Spannungsverteilung müssen den vorgegebenen Schnittgrößen ent-sprechen:

N =∫A

σxxdy dz = 0, My =∫A

zσxxdy dz, Mz =−∫A

yσxxdy dz (6.12)

Mit Berücksichtigung der angenommenen Spannungsverteilung (6.11) wird daraus ein Glei-chungssystem für die drei Koeffizienten C1, C2 und C3:∫

A

(C1 +C2 y +C3z)dy dz =C1 A+C2 Ss,z +C3 Ss,y = N = 0

∫A

z(C1 +C2 y +C3z)dy dz =C1 Ss,y −C2 Is,y z +C3 Is,y y = My∫A

y(C1 +C2 y +C3z)dy dz =C1 Ss,z +C2 Is,zz −C3 Is,y z =−Mz

(6.13)

mit den Lösungen

C1 = 0; C2 =My Is,y z −Mz Is,y y

Is,y y Is,zz − I 2s,y z

; C3 =My Is,zz −Mz Is,y z

Is,y y Is,zz − I 2s,y z

(6.14)

Rückeinsetzen in (6.11) und Umordnen ergibt die Swain’sche Formel

σxx(y, z) = 1

Is,y y Is,zz − I 2s,y z

[My (y Is,y z + z Is,zz)−Mz(y Is,y y + z Is,y z)

](6.15)

7Jacob Bernoulli, *1654 Basel, +1705 Basel

©2007-2009 Christian Bucher 24. Februar 2009 68

Page 69: Mechanik 1

SS 09 Mechanik 1

Die Gerade, auf der die Spannung σxx zu Null wird, heißt Nullinie.

Sind die y- und z-Achsen Hauptträgheitsachsen, so vereinfacht sich diese Formel zu

σxx(y, z) = My

Is,y yz − Mz

Is,zzy (6.16)

Für gerade (achsrechte) Biegung um die y-Achse verbleibt dann noch

σxx(z) = My

Is,y yz (6.17)

In diesem Fall ist die Nullinie eine Gerade parallel zur y-Achse durch den Flächenschwerpunkt.

Die maximalen Spannungen im Querschnitt treten an den Punkten auf, die den größten Nor-malabstand von der Nullinie besitzen. Im Falle der Biegung um die y-Achse sind dies die Punktemit dem betragsgrößten Abstand von der y-Achse.

Abbildung 6.4: Lineare Verteilung der Normalspannung σxx

Die Größen

Wo = | Is,y y

zo|; Wu = | Is,y y

zu| (6.18)

werden als Widerstandmomente bezeichnet. Damit ergeben sich die maximalen Biegespannun-gen in einem Querschnitt einfach zu

|σo,u | = M

Wo,u(6.19)

Das Vorzeichen ist in dieser Formel anhand des Vorzeichens des Biegemoments zu wählen.

Beispiel: Dimensionierung auf Biegespannungen Die Höhe des Querschnitts eines Trägers auf zweiStützen unter einer Einzellast soll so dimensioniert werden, dass der Betrag der maximalen Biegespan-nung den Wert σmax = 200 N /mm2 nicht überschreitet.Gegeben sind: F = 5kN , L = 20.0m, B = 100mm, t = 5mm.

©2007-2009 Christian Bucher 24. Februar 2009 69

Page 70: Mechanik 1

SS 09 Mechanik 1

Lösung: Die maximale Biegespannung tritt in derTrägermitte auf. Dort ist das Biegemoment M = F L

4 .Das Flächenträgkeitsmoment Is,y y berechnet sichnach

Is,y y = 2B t 3

12+2B t

(H − t )2

4+ t (H −2t )3

12

und das Widerstandsmoment W = 2Is,y y

H . Die Grö-ße σ−σmax = F L

4W −σmax ist in der nebenstehen-den Abbildung als Funktion der QuerschnitthöheH dargestellt. Die Nullstelle liegt bei H = 0.2m. EinQuerschnitt mit der Höhe H > 200mm erfüllt alsodie Spannungsrestriktion.

6.3 Biegelinie

Ausgehend von der Bernoulli-Hypothese ergibt sich bei gerader Biegung um die y-Achse einerelative Verdrehung benachbarter Querschnitte (Abstand dx) um den Winkel dϕ. Daraus folgteine Änderung der Neigung der Balkenachse um denselben Winkel. Der Zusammenhang zwi-schen dϕ und dx wird durch den Krümmungsradius R hergestellt:

dx = R dϕ (6.20)

Andererseits kann die Neigungsänderung auch aus der Dehnungsdifferenz zwischen dem un-teren und oberen Querschnittrand bestimmt werden:

dϕ= εu −εo

zu − zodx (6.21)

Nimmt man ferner einen einachsigen Spannungszustand und lineares Werkstoffverhalten an,

Abbildung 6.5: Neigungszuwachs dϕ

so folgt1

R= dϕ

dx= σu −σo

E(zu − zo)=

(M zu

Is,y y− M zo

Is,y y

)1

E(zu − zo)= M

E Is,y y(6.22)

Die hier auftretende Größe E Is,y y heißt Biegesteifigkeit des Querschnitts.

Es gilt ferner tanϕ = −dwdx und daher für kleine Verformungen ϕ = −dw

dx sowie daraus und ausGl.(6.22):

d2w

dx2=− M

E Is,y y(6.23)

©2007-2009 Christian Bucher 24. Februar 2009 70

Page 71: Mechanik 1

SS 09 Mechanik 1

Abbildung 6.6: Verformung der Stabachse

Berücksichtigt man ferner die aus der Statik bekannten Beziehungen

Q = dM

dx; pz =−dQ

dx

so ergibt sich als Differentialgleichung der Biegelinie

pz = d

dx2

(E Is,y y

d2w

dx2

)(6.24)

Für Stäbe mit konstanter Biegesteifigkeit vereinfacht sich dies zu

w IV = pz

E Is,y y(6.25)

Rechnerisch ergeben sich für positive Biegemomente negative Krümmungen und umgekehrt(siehe Abb. 6.7).

Abbildung 6.7: Krümmung des Stabes bei positivem und negativem Biegemoment

Beispiel: Durchbiegung eines Kragträgers Ein Kragbalken aus Stahl mit der Spannweite L = 5 m, miteinem quadratischen Querschnitt 50×50 mm wird durch sein Eigengewicht belastet. Bestimmen Sie dieDurchbiegung w am rechten Trägerende.

Lösung: Die Biegesteifigkeit ist E I = 2.1 ·1011 0.054

12 = 109375 Nm2. Die Querbela-stung ist p = 7800 ·0.052 ·9.81 = 191.3 N/m. Die Differentialgleichung der Biege-linie wird durch Integration gelöst. Es gelten am linken Lager die Randbedingun-gen w(0) = 0 und w ′(0) = 0. Am rechten Trägerende gelten die Randbedingungen

M(L) = 0 und Q(L) = 0. Aus w IV = pE I folgt

w ′′′ = p

E Ix +C1; w ′′ = p

E I

x2

2+C1x +C2; w ′ = p

E I

x3

6+C1

x2

2+C2x +C3;

w = p

E I

x4

24+C1

x3

6+C2

x2

2+C3x +C4;

Aus der RB w(0) = 0 folgt C4 = 0 und aus der RB w ′(0) = 0 folgt dann C3 = 0. Die Randbedingung M(L) = 0is äquivalent zu w ′′(L) = 0 (siehe Gl. 6.25) und Q(L) = 0 is äquivalent zu w ′′′(L) = 0. Damit ergeben sich

C1 =− p

E IL; C2 =− p

E I

L2

2−C1L = p

E I

L2

2

©2007-2009 Christian Bucher 24. Februar 2009 71

Page 72: Mechanik 1

SS 09 Mechanik 1

Die Durchbiegung am rechten Trägerende ist somit

w(L) = p

E I

L4

24− p

E IL

L3

6+ p

E I

L2

2

L2

2= pL4

8E I

Der Zahlenwert ist w(L) = 191.3·54

8·109375 = 0.137 m.

•Beispiel: Durchbiegung eines beidseitig eingespannten Balkens

Der dargestellte beidseitig eingespannte Balken unter Gleichlast p wird untersucht. Die Integration derBiegelinie ergibt wie oben eine Parabel 4. Ordnung. Die Randbedingungen w(0) = w ′(0) = 0 ergebenC3 = 0 und C4 = 0. Am rechten Ende gelten die Randbedingunen w(L) = w ′(L) = 0. Daraus folgt

C1 =− pL

2E I; C2 = pL2

12E I

Durch Einsetzen in die zweite Ableitung w ′′(0) ergibt sich damit das Einspannmoment M(0) =− pL2

12 . •

6.4 Formänderungsenergie

Als einfachsten Beanspruchungszustand betrachten wir den einachsigen Spannungszustandwie er bei einer reinen Normalkraftbeanspruchung eines Zugstabes auftritt. An diesem Stab

Abbildung 6.8: Beanspruchung eines Zugstabes

wirkt eine Kraft F , die langsam aufgebracht, d.h. vom Wert 0 auf den Wert F vergrößert wird.Entsprechend verlängert sich der Stab und der Lastangriffspunkt verschiebt sich um den Weg unach unten. Die äußere Kraft leistet also eine Arbeit

W =u∫

0

F du (6.26)

©2007-2009 Christian Bucher 24. Februar 2009 72

Page 73: Mechanik 1

SS 09 Mechanik 1

Bei Annahme linear-elastischen Verhaltens gilt folgender Zusammenhang zwischen Kraft undVerschiebung

u = F L

E A→ F = E A

Lu (6.27)

Damit wird die Arbeit W der Last F zu

W = E A

2Lu2 = F 2L

2E A= 1

2Fu (6.28)

Die Arbeit der inneren Kräfte (Spannungen) kann wie folgt ermittelt werden: Die NormalkraftN (vgl. Abb. 6.8, rechts) in einem differentiellen Stück des Stabes mit Länge dx leistet die Arbeit

dU = 1

2Nεdx (6.29)

Mit Anwendung des Elastizitätsgesetzes

ε= σ

E= N

E A

folget durch Integration über die Stablänge L

U = 1

2

L∫0

N 2

E Adx (6.30)

Für Stäbe mit konstante Normalkraft N = F und konstanter Dehnsteifigkeit ergibt dies

Π= 1

2

N 2

E A

L∫0

dx = 1

2

N 2L

E A(6.31)

Im Vergleich mit Gl.(6.28) erkennt manW =U (6.32)

Diese grundlegende Aussage (Arbeitssatz) gilt in allen elastischen Systemen.

Für Kräfte berechnet sich die äußere Arbeit W aus dem Produkt von Kraft und Verschiebungdes Kraftangriffspunktes, für Momente berechnet sich die äußere Arbeit aus dem Produkt vonMoment und Drehwinkel am Momentenangriffspunkt.

Die innere Arbeit U ist je nach Beanspruchungsart unterschiedlich zu berechnen. Für Biegungerfolgt die Berechnung am differentiellen Element aus der gegenseitigen Verdrehung benach-barter Querschnitte

dU = 1

2Mdϕ= 1

2Mϕ′dx

Anwendung der Elastizitätsgesetzes M = E Iϕ′ (siehe Gl. 6.22) und Integration über die Stablän-ge L ergibt

U = 1

2

L∫0

M 2

E Idx (6.33)

©2007-2009 Christian Bucher 24. Februar 2009 73

Page 74: Mechanik 1

SS 09 Mechanik 1

Abbildung 6.9: Verformung eines Balkens infolge Biegung

Beispiel: Kragbalken mit Einzellast

Die Durchsenkung we am Lastangriffspunkt soll mittels des Arbeitssatzes berechnet werden. Verfor-mungsanteile aus Querkraftwirkung werden vernachlässigt. Es gilt

W = 1

2F ·we ; U = 1

2

L∫0

M 2(x)

E Idx

Darin ist die Momentenfunktion gegeben durch M(x) =−F (L−x). Somit

U = 1

2E I

L∫0

F 2(L2 −2Lx −x2)dx = F 2L3

6E I

Aus U =W folgt somit

we = F L3

3E I

©2007-2009 Christian Bucher 24. Februar 2009 74

Page 75: Mechanik 1

SS 09 Mechanik 1

Beispiel: Gekoppelte Federn Elastische Elemente lassen sich verinfacht durch Federn mit einer Feder-steifigkeit k repräsentieren. Dabei hängt der numerische Wert von k wesentlich von der Art der Bean-spruchung des elastischen Elements ab (z.B Normalkraft oder Biegung). Die Beziehung zwischen KraftF , Formänderungsarbeit U und Verformung w ist dann gegeben durch

F = k ·w ; U = F 2

2k= kw 2

2

Gekoppelte elastische Elemente lassen sich wiederum auf einfache Ersatzfedern zurückführen, derenFedersteifigkeit die Beziehung zwischen Kraft und Verformung beschreibt.

Serienschaltung

Die Kräfte sind in beiden Federn gleich. Daher giltU = F 2

2k1+ F 2

2k2und mit W = 1

2 F we folgt daraus

we = F

(1

k1+ 1

k2

)bzw.

F = 11

k1+ 1

k2

we = kersatzwe

Parallelschaltung

Hier sind beide Federverformungen gleich, also

U = k1w 2e

2 + k2w 2e

2 . Es folgt unmittelbar

F = (k1 +k2) we = kersatzwe

©2007-2009 Christian Bucher 24. Februar 2009 75

Page 76: Mechanik 1

SS 09 Mechanik 1

7 Hydrostatik

7.1 Spannungszustand

Eine wesentliche Eigenschaft von Flüssigkeiten ist, dass sie im Ruhezustand keine Schubspan-nungen aufnehmen können. Der Spannungstensor ist somit nur auf der Hauptdiagonalen be-legt:

[S] = σxx 0 0

0 σy y 00 0 σzz

(7.1)

Da aber die Schubspannungen bezogen auf jedes beliebige Paar von orthogonalen Achsen ver-schwinden muss, ist Spannungsvektor~t auf einer beliebigen Ebene mit Normaleneinheitsvek-tor~n (vgl. Gl. 3.5) parallel zum Normalenvektor (sonst hätte er ja Schubspannungsanteile) undes gilt somit:

~t = σxx 0 0

0 σy y 00 0 σzz

· nx

ny

nz

= σxxnx

σy y ny

σzznz

!= a · nx

ny

nz

; a 6= 0 (7.2)

Offensichtlich ist dies nur möglich, wenn

σxx =σy y =σzz =−p (7.3)

also alle Normalspannungen identisch sind. Hier ist p der Druck. Aus den Gleichgewichtsbe-dingungen (3.3) ergibt sich nunmehr

~f−∇p =~0 (7.4)

Im Schwerefeld gilt

fx = 0; fy = 0; fz =−ρg (7.5)

und somit aus (7.4) unmittelbar

p(x, y, z) =−ρg z +C (7.6)

Der Druck in einer ruhenden Flüssigkeit im Schwerefeld ist nur von der Höhe z abhängig. DieKonstante C ergibt sich durch Vorgabe des Drucks p0 in einer Referenzhöhe z0. Oft wird p0 alsLuftdruck gewählt.

7.2 Auftrieb

Wir betrachten einen allseitig von Flüssigkeit umgebenen Körper (vgl. Abb. 7.1) Auf die Ober-fläche dieses Körpers wirkt ein von der Höhe z abhängiger Druck p(z). Die resultierende Kraft-wirkung der Flüssigkeit auf den Körper kann mit Hilfe einer einfachen Überlegung bestimmtwerden. Der eingetauchte Körper verdrängt insgesamt soviel Flüssigkeit wie in seinem Volu-men VD enthalten wäre. Die resultierende Kraft auf dieses Flüssigkeitsvolumen wäre gleich der

©2007-2009 Christian Bucher 24. Februar 2009 76

Page 77: Mechanik 1

SS 09 Mechanik 1

Abbildung 7.1: Von Flüssigkeit umgebener Körper

Gewichtskraft GD der Flüssigkeit in diesem Volumen, da die Flüssigkeit sich ja im Gleichgewichtbefindet. Somit übt die Flüssigkeit einsgesamt eine resultierende Kraft von

FS =GD = ρgVD (7.7)

auf den Körper aus. Diese Kraft wird als Auftriebskraft bezeichnet. Im Gleichgewicht befindetsich der Körper, wenn sein Gewicht GK gerade gleich dem Auftrieb ist. Die Lage, die ein getauchtschwebender Körper einnimmt, wird durch die Lage des Körperschwerpunktes SK und die Lagedes Schwerpunktes SD des verdrängten Flüssigkeitsvolumens bestimmt. Es stellt sich eine Lageein, dass die beiden Schwerpunkte auf einer vertikalen Linie liegen, und dabei SK tiefer als SD

liegt.

Bei schwimmenden Körpern stellt sich die Eintauchtiefe so ein, dass die Auftriebskraft FS wie-derum gleich dem Gewicht GK des Körpers ist (Auftrieb in Luft ist hier vernachlässigt). Anders

Abbildung 7.2: In Flüssigkeit schwimmender Körper

als beim schwebenden Körper kann auch eine Lage, bei der SK oberhalb von SD liegt, stabilsein. Dies wird am Beispiel eines Quaders gezeigt. Für einen homogenen Körper mit Dichte ρk

©2007-2009 Christian Bucher 24. Februar 2009 77

Page 78: Mechanik 1

SS 09 Mechanik 1

Abbildung 7.3: In Flüssigkeit schwimmender quaderförmiger Körper

in einer Flüssigkeit mit Dichte ρ ist eine Gleichgewichtslage durch t = ρKρ

H gegeben. Selbst-verständlich ist hier ρ > ρK vorausgesetzt. Zur Feststellung der Stabilität der gezeichneten Lageuntersuchen wir eine um den kleinen Winkelϕ verdrehte Lage (siehe Abb. 7.3, rechtes Bild). Daauch in der gedrehten Lage die Summe der Kräfte verschwinden muss, bleibt die Größe von AS

dabei unverändert. Allerdings verschiebt sich der Angriffspunkt der Auftriebskraft hin zu S′D .

Dadurch entsteht eine Momentendifferenz

∆M = FS ·∆y (7.8)

∆y ist die horizontale Verschiebung des Angriffspunkts der Auftriebskraft. Das Moment ∆Mkommt durch die Hinzunahme bzw. Wegnahme von Flüssigkeitskraftwirkungen im Bereich desFlüssigkeitsspiegels zustande:

∆M =∫A

yρg y ϕ dA = ρgϕ∫A

y2dA = ρgϕIxx (7.9)

Darin ist A die Schwimmfläche und Ixx das Flächenträgheitsmoment der Schwimmfläche be-zogen auf die Drehachse (hier: x-Achse). Der Schnittpunkt M der Wirkungslinie des AuftriebsFS mit der Verbindungslinie von SD und SK wird als Metazentrum bezeichnet. Seine Lage wirddurch die metazentrische Höhe hM beschrieben (siehe Abb. 7.3, rechts). Es gilt nach Abb. 7.3 fürkleine Drehwinkel ϕ:

∆y = (hM +e)ϕ (7.10)

und weiter aus (7.9)

(hM +e)ϕ= ∆M

FS= ρg Ixx

ρg t Aϕ= Ixx

VDϕ→ hM = Ixx

VD−e (7.11)

Das Vorzeichen von hM bestimmt das Vorzeichen des resultierenden Moments M des Kräfte-paars GK und FS . Wenn hM positiv ist, so entsteht bei Neigung des Körpers ein rückdrehendes

©2007-2009 Christian Bucher 24. Februar 2009 78

Page 79: Mechanik 1

SS 09 Mechanik 1

Moment, der Körper dreht sich wieder in die Ausgangslage zurück. Somit ist die Ausgangslagestabil. Ist hingegen hM negativ, so ist die Ausgangslage instabil.

Konkret gilt für den Quader

e = 1

2(H − t ) = 1

2

ρ−ρK

ρH ; Ixx = AL2

12; VD = At = ρK

ρH A (7.12)

und weiter:hM

H= 1

12

L2

H 2

ρ

ρK− 1

2

(1− ρK

ρ

)(7.13)

Für den Sonderfall ρk = 0.5ρ ergibt sich die Stabilitätsgrenze

hM

H= 1

6

L2

H 2− 1

4> 0 → L >

√3

2H = 1.225H (7.14)

Ein Würfel (H = L) schwimmt in der angegebenen Lage stabil, wenn s = ρKρ die Bedingung

1

12s− 1

2(1− s) > 0 → 6s2 −6s +1 > 0 (7.15)

erfüllt. Dies ist äquivalent zu

(s − s1) · (s − s2) > 0 mit s1,2 = 1

2±p

3

6=

{0.7887

0.2113(7.16)

Dies bedeutet dass entweder s > 0.7887 oder s < 0.2113 sein muss.

7.3 Flüssigkeitsdruck

7.3.1 Ebene Flächen

Wir betrachten eine beliebig berandete ebene Fläche A, die sich vollständig unterhalb des Flüs-sigkeitsspiegels befindet (siehe Abb. 7.4). Der Druck auf ein Flächenelement dA ist durch die

Abbildung 7.4: Flüssigkeitsdruck auf eine ebene Fläche

©2007-2009 Christian Bucher 24. Februar 2009 79

Page 80: Mechanik 1

SS 09 Mechanik 1

Flüssigkeitshöhe z bestimmt. Wegen z = y sinα gilt für die resultierende Kraft FD des Wasser-drucks auf die Fläche A:

FD =∫A

pdA =∫A

ρg zdA = ρg sinα∫A

y dA (7.17)

Das letzte Integral ist das statische Moment Sx der Fläche A um die x-Achse. Es gilt dabei, dassSx = A · ys . Somit folgt

FD = ρg sinαys A = ρg zs A = ps A (7.18)

Die resultierende Druckkraft FD ergibt sich daher als Produkt des Drucks ps im Flächenschwer-punkt S und der Größe der Fläche A. Die Lage der Wirkungslinie von FD ergibt sich aus einerMomentenbedingung. Das Moment Mx des Wasserdrucks auf A bezüglich der x-Achse ist

Mx =∫A

pydA = ρg sinα∫A

y2 dA (7.19)

Das Integral in dieser Gleichung ist das Flächenträgheitsmoment Ixx bezogen auf die x-Achse.Die Lage yd des Angriffspunkts D der resultierenden Druckkraft ist somit gegeben durch

yd = Mx

FD= Ixx

Sx(7.20)

Analog kann die Position xd bezüglich der y-Achse bestimmt werden.

Anmerkung: Der Luftdruck p0 wurde in diesen Überlegungen nicht berücksichtigt. Da für diemeisten Anwendungen der Luftdruck auf beiden Seiten der betrachteten Flächen wirkt, ergibtsich daraus keine resultierende Kraftwirkung.

Beispiel: Druck auf eine kreisförmige Klappe Eine Klappe mit Radius R befindet sich mit ihrem Schwer-punkt in der Höhe H in einer Flüssigkeit. Es soll die Größe der resultierenden Wasserdruckkraft FD unddie Lage yD ihres Angriffspunktes bestimmt werden.

Nach Gl. 7.18 gilt

FD = ρg HR2π

und aus Gl. 7.20 ergibt sich

Sx = HR2π; Ixx = R4π

4+H 2R2π=

(R2

4+H 2

)R2π→ yD = R2

4H+H

7.3.2 Gekrümmte Flächen

Wir betrachten eine beliebig berandete gekrümmte Fläche A, die sich vollständig unterhalb desFlüssigkeitsspiegels befindet (siehe Abb. 7.5). Auf ein Flächenelement dA in der Tiefe z wirkt die

©2007-2009 Christian Bucher 24. Februar 2009 80

Page 81: Mechanik 1

SS 09 Mechanik 1

Abbildung 7.5: Flüssigkeitsdruck auf eine gekrümmte Fläche

Kraft dF = p dA. Die Zerlegung dieser Kraft in eine vertikale und eine horizontale Komponenteergibt

dFV = p dA cosα= ρg z dA cosα= ρg dV

dFH = p dA sinα= p dA∗

Integration ergibt

FV =Ñ

V

p dV = ρgV

FH =ÏA∗

p dA∗ = ρgÏA∗

z dA∗ = ps A∗(7.21)

Die resultierende Vertikalkraft ist also gleich dem Gewicht der Flüssigkeit über der Fläche Aund die resultierende Horizontalkraft ist gleich dem Produkt aus der in die Vertikale projiziertenFläche a∗ und dem Druck im Schwerpunkt dieser Fläche.

Beispiel: Gekrümmte Staumauer

Das Volumen der über der Fläche A liegenden Flüssigkeit ist ein Viertelzylinder mit Radius R und LängeL. Daher ist die resultierende Vertikalkraft

FV = ρgR2π

4L

Die Projektion des Zylindermantels in die Vertikale ergibt als Fläche A∗ ein Rechteck mit der Breite R

©2007-2009 Christian Bucher 24. Februar 2009 81

Page 82: Mechanik 1

SS 09 Mechanik 1

und der Länge L. Der Flächenschwerpunkt S∗ liegt in einer Tiefe von R2 . Damit ist die resutierende Hori-

zontalkraft

FH = ρgR

2RL

Als Folge der Kreisgeometrie bilden alle Kraftwirkungen des Wasserdrucks in der Ebene ein zentrales

Kraftsystem dessen Resultierende durch den Kreismittelpunkt M geht. •

©2007-2009 Christian Bucher 24. Februar 2009 82