52
Titelmasterformat durch Klicken bearbeiten Titelmasterformat durch Klicken bearbeiten © CADFEM 2017 Sicherheit und Innovation durch Simulation Lucas Kostetzer, CADFEM GmbH 1

Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Embed Size (px)

Citation preview

Page 1: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Titelmasterformat durch Klicken bearbeitenTitelmasterformat durch Klicken bearbeiten

© CADFEM 2017

Sicherheit und Innovation durch SimulationLucas Kostetzer, CADFEM GmbH

1

Page 2: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

2

Page 3: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Simulation for e-Mobility

• Motor Design• Motor Cooling• NVH (Noise Vibration Harshness)• Structural Dynamics• Power Electronics

© CADFEM 2017

• Power Electronics• Battery• Charging• EMC/EMI• System

3

Page 4: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Simulation for e-Mobility

• 1. Motor Design• 2. Motor Cooling• 3. NVH (Noise Vibration Harshness)• Structural Dynamics• Power Electronics

© CADFEM 2017

• Power Electronics• 4. Battery• 5. Charging• EMC/EMI• 6. System

4

Page 5: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

1. Motor Design: Motor-CAD SoftwareØ Application specific tool for design and simulation of

electric motors

Ø EMag: template driven 2D FEA combined with analytical equations for fast calculation of motors electromagnetic/electrical performance

Ø Therm: heat transfer and flow network circuits

5

Ø Therm: heat transfer and flow network circuits automatically set up to give quick steady-state & transient thermal predictions

Ø Lab: Provides efficiency mapping, continuous & peak torque envelopes and duty cycle transient thermal analysis within seconds/minutes

Page 6: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

1. Motor Design: Performance Prediction for Nissan LEAF Motor

Ø Using published teardown data for Nissan LEAF motor

Ø Developed models to validate & demonstrate software tools for modellingtraction applications

6

Page 7: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

1. Motor Design: Performance Prediction for Nissan LEAF Motor

Ø Predicted efficiency map validated by test data

Ø Thermal model validated by 50kW, 60kW,

Motor-LAB

7

50kW, 60kW, 70kW, 80kW thermal transient test data

good match

Measured

Page 8: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

1. Motor Design: Drive Cycle Prediction (Nissan LEAF)

Ø Prediction of efficiency map and 10 repetitive US06 Drive Cycle thermal transient in a few minutes

Torque vs time

Total Loss

8

time

Speed vs time

Copper Loss

Iron Loss

Page 9: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

1. Motor Design: Detailed Electromagnetic Analysis

• 3D Effects• Demagnetisation• Eddy Currents, Losses• Excentricity• Tolerances

© CADFEM 2017

• Tolerances• Short Circuit, Faults• Inverter Induced Losses• Extraction of Reduced Order

Model, ECE

9

Page 10: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

2. Motor Cooling:

• Cooling• Extraction ROM, MOR, LTI• Transient Behaviour

© CADFEM 2017 10

Page 11: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

2. Motor Cooling: Modeling Water Jacket Cooling Channels

© CADFEM 2017

Path LinesStatic Pressure

Page 12: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

2. Motor Cooling: Modeling Water Jacket Cooling Channels

Distribution of coolant using different channel configurations

© CADFEM 2017

Temperature Profile

Page 13: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

2. Motor Cooling: Air Cooling

© CADFEM 2017

Transient EM to calculate losses

Separate mesh for flow domain

EM loss data transferred and automatically mapped

Flows and temperatures in CFD

Page 14: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

2. Motor Cooling: Thermal model for System Simulation

• Cooling of a electric motor with given losses

• Convective heat transport through the system due to water flow (or air, oil,…)

FEM to System

© CADFEM 2017

• Model Reduction in ANSYS Mechanical with CADFEM MOR-ACT

• Validation of the created "system" in ANSYS Simplorer

14

Page 15: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

2. Motor Cooling: ANSYS Simplorer FullDutyCycle

• Separated analysis for Load Cycle (heat losses)• duration T=800s• peak value approx. 20kW

H

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00Time [s]

0.00

10.00

20.00

H1.

H [k

W] Curve Info

H1.HTR

heat_generation_1

CASCON_Motor_ROM

NL

LoadCycle

GAIN

Shift

© CADFEM 2017 15

• Thermal network with Reduced Order Model for the Motor

• Simulation time is about 1/1000 compared with 3D FEM • Kühlung ausreichend

• TMAX=13°C

0

THM1

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00Time [s]

273.15

283.15

293.15

303.15

310.00

THM

1.T

[kel

]

Curve InfoTHM1.T

TR

H

H1

NL GAIN

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00Time

273.15

283.15

293.15

303.15

310.00

THM

1.T

[kel

]

270.00

280.00

290.00

300.00

310.00

Mec

hani

calT

empe

ratu

r

Curve InfoTHM1.T

TR

MechanicalTemperaturImported

Page 16: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

3. NVH: General Concepts of Electric Drive Acoustics inside ANSYS

Origin of Noise by Electrical Drives:

Magnetic Circuit Fluidics

Cooling

Drive Side

Gearbox etc.Reluctance, geometry

© CADFEM 2017 16

è Electric Drive Acoustics inside ANSYS

Gap forces

Magnetostriction

Inverter- synchronous pulse- asynchronous pulse

Current waveform

Magnetic saturation

Courtesy of Elektromotorenwerk Grünhain GmbH

Page 17: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

3. NVH: Electric Drive Acoustics inside ANSYS

Workflow From Computation of Excitation Loads to ERP Postprocessing:

Electro-magnetic

Harmonic Vibration DFT

Oscillation,ERP,

External computation of excitation loads

© CADFEM 2017 17

magnetic Analysis

Vibration Analysis

DFT ERP,Waterfall PlotExcitation

Loads

ERP = Equivalent Radiated Power

Page 18: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

3. NVH: General Concepts of Electric Drive Acoustics inside ANSYS

Harmonic Analysis Based on Mode Superposition:

• Time and memory saving

• Eigenmodes and -frequenciesas intermediate result

ANSYS Project Structure:

© CADFEM 2017

• Excitation loads will be imported into the harmonicanalysis using functions of Electric Drive Acousticsinside ANSYS.

18

Mode 1 Mode 3 Mode 6610 Hz 1456 Hz 2654 Hz

Modal Analysis Harmon. Analysis

Excitations

Page 19: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

3. NVH: General Concepts of Electric Drive Acoustics inside ANSYS

Data Processing: Load application always at Remote Points attached to faces!

Excitation spectra in frequency domain

Excitation loads in time domain, supplied by user

DFT

© CADFEM 2017 19

Surface

Mode-SuperpositionHarmonic Analysis

(Sweep of Rot. Speed)

Computation ofERP-spectrum

Modal coordinates(.mcf-file)

Page 20: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

3. NVH: General Concepts of Electric Drive Acoustics inside ANSYS

Concept of Interpolation of Excitations Through a Rotational Speed Range:

• Example:Supply excitations only for a few operatingpoints of the motor characteristics.

n1

n2n1 n2

Frad

© CADFEM 2017

• After DFT: One excitation spectrumper force/moment component andoperating point.è Interpolation between OPs.

20

n(sweep)

n2

n3

n4

n5

n1 n2

n3 n4 n5

Motor characteristics

Torq

ue

Speed

Page 21: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

3. NVH: Vibration Function Overview

ERP-Visualization:

• ERP Spectrum(selected single speed point)

© CADFEM 2017

• ERP Waterfall (speed range)

• Watt or dB

21

Page 22: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: Challenges in battery pack design

• Minimize temperature differencesbetween cells and inside cells

• Guarantee an optimal temperature range

© CADFEM 2017 22

• Balance cell usage• Resistance/Capacitance f(T)

• Operating conditions under control to avoid explosion / run-away

Thermal runaway of the battery for auxiliary power of a Japan Airlines 787Source: U.S. national Transportation Safety

Page 23: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: Chalenges

• Multi-Scale Physics in Li+ Batterymaterial electrode pair cell, pack

Pos

itive

el

ectro

de

Neg

ativ

e el

ectro

de

Sep

arat

or

© CADFEM 2017

• Approaches in this presentation• Cell, pack : Field based• Pack and Vehicle integration: System based

10-6~10-4 10-2~10010-9~10-8

Pos

itive

el

ectro

de

Neg

ativ

e el

ectro

de

Sep

arat

or

23

Length scale[m]

Page 24: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: Equivalent Circuit Model (ECM)

© CADFEM 2017

• Circuit components• A)

• B)User Defined

• Coupling @ Cell level

24

VolIj = ( ) ÷

øö

çèæ ---= -+ dT

dUTVVol

Iq OCVECh jj&

( )( )( )( ) 210

210

expexp

aSOCaaCaSOCaaR

ai

ai

+=+=

÷ø

öçè

æ=

÷ø

öçè

æ=

å

å

=

=

5

0

5

0

n

nni

n

nni

SoCaC

SoCaR

ECM: typical approach from OEM‘s!Circuit tables are derived fromstandard measurementsOR

Page 25: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Contour of φ-

4. Battery: Example: single battery cell

© CADFEM 2017

Contour of φ-

Temperature

Cylindrical cell with discrete tabsPrismatic cell 25

Page 26: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: 1P20S with air cooling channel

Velocity field

© CADFEM 2017

Total heat generation rate

Temperature profile26

Page 27: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: Module Level – CFD Thermal - Optimization

Initial Optimized

© CADFEM 2017

Velocity Distribution

27

Velocity Distribution

Page 28: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: System based battery simulation

• How about current load conditions and the design of thermal management control?>System simulation

© CADFEM 2017 28

• How to use detailed FIELD models/results to improve System modeling ?>ROM ( Reduce Order Model ) + System Simulation

Drive cycle BMW I3 Pack, Source: BMWBlog

Page 29: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: LTI – ROM - Principle

• Thermal model is a linear system (Linear Time Invariant)

Input1_Tin

Input2_Cyl1

Input3_Cyl2

Output1_Tout

Output2_Cyl1

Output3_Cyl2

HeatTemperature

© CADFEM 2017 29

• LTI can be characterized and indentified with step response (or impulse)• Convolution is used to build any response of this system

• ROM: find a simple LTI to emulate the original CFD response

timetime

Page 30: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: LTI – ROM - Workflow

1) Get step responses of the system

3) Use ROM in system simulation

2) Extract ROM

© CADFEM 2017 30Fluent or Mechanical SimplorerSimplorer

Heat

time

Temperature

time

Page 31: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Heat Profile

4. Battery: Application example

© CADFEM 2017

LTI ROM gives the same results as CFD. LTI ROM runs in less than 2 seconds while the CFD runs 2 hours on one single CPU.

X. Hu, S. Lin, S. Stanton, W. Lian, “A Foster Network Thermal Model for HEV/EV Battery Modeling,” IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 47, NO. 4, JULY/AUGUST 2011X. Hu, S. Lin, S. Stanton, W. Lian, “A State Space Thermal Model for HEV/EV Battery Modeling", SAE 2011-01-1364 31

Page 32: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

4. Battery: Application example 2

Cell model Battery pack

Heat

Temperature

Pack thermal Model

© CADFEM 2017

Cell Electrochemistry Model

Temp.

Heat loss

32

Page 33: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: Wireless Charging for Electro or Hybrid VehiclesWhy?

• Comfortable (no searching for the charging cable, fitting connectors)

• Protection against vandalism at public areas• Automatic wireless charging (several shorter charge cycles

lead to longer battery life)• Fast energy transfer with high efficiency• Dynamic charging while driving

© CADFEM 2017 33

• Dynamic charging while driving

Challenges• Positioning of the vehicle• Stray fields and EMC• Matching network and parasitic effects• Transmission and system efficiency• Detecting foreign objects• Standards and compatibility

Ref.: www.mercedes-benz.de

Ref.: www.qualcomm.com

Ref.: www.toyota-global.com

Page 34: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: BasicsTransformer principle• With closed magnetic circuit:

• Magnetic circuit bundles flow and leads to a lower leakage flux

• Analytical calculation possible• With Air gap:

• Analytically difficult to calculate -> FEM Ref.: Prof. Dr.-Ing. Nejila Parspour, „Induktives Laden – ein Themenschwerpunkt der Elektromobilität“

© CADFEM 2017 34

• Analytically difficult to calculate -> FEM Themenschwerpunkt der Elektromobilität“

1mm 1cm 10cm 1m 10m 100m

100%

50%

0%

Transfer Distance

Effi

cien

cy

Resonance type

Induction type (~15W)Induction type (~50kW)

Microwave type

Page 35: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: Analysis Plan

Electromagnetic field simulation• Identifying of saturated areas• Extracting of equivalent circuit parameters• Position dependent sensitivity analysis • Determination of stray fields and losses

© CADFEM 2017

00

E1

W

+

WM1

W

+

WM2

C1

11.74nF

C2

30.45nF

Rload

3ohm

R1dc

21mOhm

R2dc

7.2mOhm

Current1:src Current2:srcCurrent1:snk Current2:snk

Mx_SS1

35

Electrical circuit and system simulation• Circuit optimization (resonant capacitors)• Calculation of the system efficiency

Page 36: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: Demonstrator Model

Components• Two flat cylindrical coils• Ferrite shell (Ground Module)• Ferrite disc (Car Module)• Aluminum shielding plates

Transmitter Coil

Reciver CoilFerrite Disc

Aluminum Shielding Plate

Car Module:

Ground Module:

© CADFEM 2017 36

Position

Gap

Sliding

Ferrite Shell

Aluminum Shielding Plate

Spulen Spezifikationen:• Litzendraht: Æ 0.25mm x 384 strands• Kupfer: 5.8x107 [S/m]• Anzahl Wicklungen: 10

Ferrit:• Relative Permeability: μi = 2400 • Relative Loss Factor: 1x10-9

Speisung:• Spannung: 200 V / 10 kW• Design Resonanz Frequenz: 150 kHz

Page 37: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: Model Simulation with ANSYS

Eddy Current Analyses (Maxwell – Eddy Current Solver)

Magnetostatic Analyses (Maxwell – Magnetostatic Solver)

Preliminary Investigation:

Electromagnetic Field Simulation:

• Maximum B-Fields

• Eddy Currents• Core Losses• Inductance matrix

© CADFEM 2017 37

(Maxwell – Eddy Current Solver)

Circuit and System Simulation (Simplorer)

System Simulation:

Temperature, mechanical stress, electromagnetic radiation

• Inductance matrix

• Resonance frequency • Efficiency

Further investigations

Page 38: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: Eddy Current Analyses – Inductance Matrix

• The self- and mutual inductances are position dependent

• A parametric sweep was used to determine a matrix for the coupling coefficent, self- and mutual inductance

© CADFEM 2017 38

Page 39: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: Circuit Simulation – Equivalent Circuit • An equivalent circuit can be created from the

electric circuit components and the parameter extracted from the electromagnetic field simulation

• Additional losses can be taken into account by additional resistors in the circuit (analytically calculated or measured)

SlR

s=

C 1=

DC Resistance:

Ss

l

Resonant Capacitance:

© CADFEM 2017 39

00

E1

W

+WM1

W

+ WM2C1

11.74nF

C2

30.45nF

Rload

3ohm

R1dc

21mOhm

R1ac

85.656mOhm

R2ac

46.715mOhm

R2dc

7.2mOhm

L1

95.861uH

L2

36.969uH

M12

0.09232

Resonant Circuit Conductiv LossesLoad

LC 2

0w=

Behaviour Model

Page 40: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

5. Inductive Charging: System Simulation

SlR

s=

C 1=

DC Resistance:

Ss

l

Resonant Capacitance:

• An equivalent circuit can be created from the electric circuit components and the parameter extracted from the electromagnetic field simulation

• Additional losses can be taken into account by additional resistors in the circuit (analytically calculated or measured)

• Replacing the concentrated quantities with a behavioral model or SPICE model

© CADFEM 2017 40

LC 2

0w=

00

E1

W

+WM1

W

+ WM2C1

11.74nF

C2

30.45nF

Rload

3ohm

R1dc

21mOhm

R1ac

85.656mOhm

R2ac

46.715mOhm

R2dc

7.2mOhm

L1

95.861uH

L2

36.969uH

M12

0.09232

Resonant Circuit Conductiv LossesLoad

Behaviour Model

behavioral model or SPICE model

Page 41: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

6. System: Which parts belong to our system?Safety Requirements

Actuators

Battery

© CADFEM 2017 41

Sensors

Electronic Control Units

Operating ConditionsEmbedded Software

Operational Profiles

Page 42: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

6. System: ….and how do they interact with each other?

© CADFEM 2017 42

Page 43: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

6. System: System simulation – some thoughts to start with

• Which design-stage?

• In which physical domain? Across domains?

• How big is the system:

© CADFEM 2017

• How big is the system: • System with several components across several physical domains• System of Systems

• What are the time-scales?

→Level of abstraction

43

Page 44: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

6. System: Which Representation?

Reduced Order Model Creation

System Model Interoperability

Embedded Software Integration

Co-simulationwith 3D Physics

Language-Based Modeling

Multi-Domain Model Libraries

© CADFEM 2017 44

Thousands of Built-inComponent Models

Industry Standardsfor System Modeling

Interfaces with all ANSYS 3D Physics 3rd Party SystemModeling Tools

ANSYS SCADEand More

Page 45: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

6. System: ECE Model extraction

• FEM to System • model order reduction: ECE-model

(equiv. circuit extraction)• variation of currents Id, Iq and

rotational angle θm

b

© CADFEM 2017 45

rotational angle θm• lookup-table: flux linkage Ψd, Ψq, Ψ0 + torque

• takes into account: saturation due to material nonlinearities

• does not take into account: eddy current effects

a

c

Page 46: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

6. System Simulation Motor control

© CADFEM 2017 46

Page 47: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

6. System: Next Step: Add driving cycle and thermal model?

• Different time scales!• Existing motor model too

detailed• Use VHDL-AMS model

instead

© CADFEM 2017

instead

47

Page 48: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

…maybe like this

© CADFEM 2017 48

Page 49: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Advanced Magnetics ModelingElectric Drive Acoustics

Motor / Inductive Charging

Lab

Efficient Motor Design ToolkitMotor-Design Battery

Control logic, softwareSystem Validation

LabElectro-thermal modeling

ROM for system simulation

Design Analysis Operation

© CADFEM 2017

EmagThermal

3D Physical Validation

Concept Design

System Validation

49

Page 50: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Many Thanks to

• Martin Hanke• James Goss, Dave Staton, MDL• Matthias Voss• Rene Fuger• Hanna Baumgartl

© CADFEM 2017

• Hanna Baumgartl• Evgeny Rudnyi• Ulrich Bock• Kanchan Mahajan• Jürgen Wibbeler• Christian Römelsberger

50

Page 51: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

CADFEM – Simulation is more than Software

PRODUCTS Software und IT Solutions

SERVICESAdvice, Support, Engineering

© CADFEM 2017 51

KNOW-HOWTransfer of knowledge

CADFEM in D, A, CH• 1985 founded• 2,300 customers• 11 locations• 220 employees (worldwide > 350)• ANSYS Elite Channel Partner

Page 52: Sicherheit und Innovation durch Simulation … Dokumente/… ·  · 2018-03-20• Short Circuit, ... analysis using functions of Electric Drive Acoustics ... Transformer principle

Career-integrated Master Applied Computational Mechanics

Master‘s Students

150+

Certificate andModule Students

30+

© CADFEM 2017 www.esocaet.com/en/studies

„The master course allows me to apply simulationmethods to their full potential. Furthermore I don‘tonly apply simulation now, I really understand it.“Stefan Hermann, M.Eng.Liebherr Aerospace Lindenberg GmbH

150+ 30+