19
© CADFEM 2018 Mid-frequency challenge efficient simulation of sound radiation from electric motors M. Moosrainer, M. Jegham, CADFEM GmbH 19.03.2018, DAGA 2018 Munich

Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

Titelmasterformat durch Klicken bearbeiten

© CADFEM 2018

Mid-frequency challenge – efficient simulation

of sound radiation from electric motors

M. Moosrainer, M. Jegham, CADFEM GmbH

19.03.2018, DAGA 2018 Munich

Page 2: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

ANSYS simulation platform

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors 2

Platform

Common data models

Common IT infrastructure

Structures

Fluids

Magnetics

Electronics

Software

Multiphysics

Systems

Fatigue

Magnetics

Power

electronics

Controller

Cooling

Complete Systems

Acoustics

CAD-Interfaces

Geometry preprocessing High Performance

Computing

Multiphysics

Workflows Parametric

Optimization

CAD/

PLM

Page 3: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

DAGA 2017 revisited: electric drives as a source of noise

3

Electro Mobility

Marine Propulsion

Power Engineering

Industrial Drives

Vacuum Cleaner, Fan

Universal Motors, …

Wikipedia

Wikipedia

Schottel

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Page 4: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

ANSYS Mechanical with Electric Drive Acoustics

inside ANSYS

Concept of FEM-based noise computation: workflow

4 Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Electro-

magnetic

Analysis

Harmonic

Vibration

Analysis DFT

Oscillation,

ERP,

Waterfall Plot Excitation

Loads EM excitation loads

Page 5: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Concept of FEM-based noise computation: acoustic results

5 Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

f

n

ERP [dB]

Identify critical OPs Vibration shapes for

critical OPs Radiated acoustic

sound field

DAGA 2018:

acoustics workflow

DAGA 2017:

vibration ERP workflow

Page 6: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Concept of FEM-based structure-borne sound computation

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

• Equivalent Radiated Power (ERP) as a rough estimate

• mean-square structural normal velocity vn on radiating surface A

• advantage: returns a fast figure of generated noise

• indicates critical operating points

• efficient comparison of designs

• performance factors

• electromagnetic excitation: rpm interpolation for complex load spectra

• structural vibration: mean square v efficiently computed in modal subspace

• acoustics: no acoustic field calculation, no meshing of fluid space

6

dAvcPA

n

2

ERP ||2

1

Wibbeler, J; Moosrainer, M.; Hanke M.: FEM-basierte Körperschallanalyse für elektrische Antriebe. In: Fortschritte der Akustik (DAGA 2017), Dt. Gesell. für Akustik e.V., Kiel (2017).

ERP: radiation efficiency σ = ?

air-borne sound radiation in

the following!

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000 20000

Torq

ue

[N

m]

Speed [rpm]

n1 n2

n3 n4 n5

To

rqu

e

rpm

Page 7: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Electric motor a=0.2m

Helmholtz number: non-dimensional scale for sound radiation tasks

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Rule of thumb

• He < 1: low frequency problem

• He 10: high frequency problem

Helmholtz number

7

aakHe

2

λ a

f=100 Hz, λ=3.4m, He=0.4

f=1 kHz, λ=0.34m, He=4

f=10 kHz, λ=0.034m, He=40

Hermann von Helmholtz

Page 8: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

• fmax controls element size

• fmin controls acoustic domain size due

to absorbing boundary conditions ABC

• wide frequency range fmin < f < fmax

large acoustic domain R & small elements ESIZE huge number of DOFs

exponential increase in computational resources

R

Mid-frequency challenge for mesh-based acoustics simulation

8

10, min

max

min

ESIZE

f

c

4, max

min

max

R

f

c

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

R(f)

idea: f parameterization

Acoustic Cavity

E-motor

Page 9: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

• smaller range fmin to fmax for each band

• smaller air domain R(f)

• larger elements ESIZE(f)

• smaller number of DOFs

• more efficient solution in each band

Acoustic HPC performance optimization: frequency sub-ranges

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors 9

full model for total freq. range

3 Mio. DOF's

freq. band n

410.000 DOFs

freq. band 1

240.000 DOFs freq. band 2

300.000 DOFs

Table of parameterized

frequency bands

Page 10: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

ANSYS HPC Mesh Domain Decomposition (MDD)

• decomposes the problem into “n“ subset of elements

• each mesh group is computed by one core

10

“n” subsets

1 freq point

Mesh domain 1

Mesh domain 2

Mesh domain 3

Mesh domain n

Mesh domain 1

Core 1

Mesh domain n

Core n

• MDD smaller sub-domains

• distributed on all cores

• less RAM is required per core

• solves one frequency at a time

• huge MPI data communication

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Page 11: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

ANSYS HPC Frequency Domain Decomposition (FDD)

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

• decomposes the problem into “n“ frequency bands

• each band is calculated by “NProcPerSol“ cores • NSUBST,50 with 100 CPU cores (-dis -np 100) & DDOPTION,FREQ, NProcPerSol =2

50 parallel sets of calculations, each working on a

frequency point using 2 cores for MDD

(2 groups of elements per frequency).

11

“n” freq. bands

1 freq band

Freq 1

Freq 2

Freq 3

Freq 4

Freq 5

Freq 6

Freq 7

Freq n

Freq1 Core 1

Core 2

Freq n Core 1

Core 2

• large amount of RAM is required

• solves one frequency band at a time

• some CPU's may remain idle in FDD

• very little MPI data communication

Page 12: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Acoustic HPC performance optimization: balancing of MDD & FDD

12

14 CPU, 180 GB RAM

0...5 kHz, 500…2500 rpm

75 solutions

frequency bands: no

MDD: no

FDD: no

frequency bands: no

MDD: yes

FDD: no

frequency bands: yes

MDD: yes, balanced

FDD: yes, balanced

# DOFs 3 Mio. 3 Mio. 0.6 Mio

used CPU 2 14 14

Elapsed time [hours] 80 31 2

RAM [GB] 124 110 32

Elapsed time [h] RAM

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Page 13: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Acoustic HPC performance optimization: high-frequency

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

• low 10 Hz to high-frequency 10 kHz:

30 steps

• from 500rpm to 5000rpm:

10 load cases

• elapsed time 7 hours for

300 solutions on a machine

with 14 CPU’s and 180 GB RAM

13

Page 14: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

SPL at 1 kHz

14 Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Page 15: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Structure-borne (ERP) vs. air-borne sound power level: 500 rpm

15 Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Page 16: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Structure-borne (ERP) vs. air-borne sound power level: 5000 rpm

16 Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Page 17: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Air-borne sound analysis: resulting radiation efficiency σ ≠ 1

17

1 [dB],log10 0

0

L

Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

•complicated behavior

•no good experience with look-up tables for σ

Page 18: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Waterfall Diagram: 0 - 10kHz and n [500 - 5000 rpm]

18 Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors

Page 19: Titelmasterformat durch Klicken bearbeiten Mid-frequency … · 2019. 8. 8. · Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric

© CADFEM 2018

Conclusions and outlook for electric drive acoustics

• electromagnetic – structural vibration – acoustics workflow

• from structure-borne (ERP) to air-borne sound radiation

• ANSYS efficiently computes multi-rpm air-borne sound up to 10 kHz

• SPL waterfall diagram from 500 rpm to 5000 rpm and from 10Hz to 10kHz

within 7 hours elapsed time on a computer with 14 cores and 180 GB RAM

• ANSYS Mechanical HPC performance optimization based on

• optimal selection of absorbing boundary condition

• parameterized frequency f, element size ESIZE(f), acoustic domain size R(f)

• optimized balancing of MDD & FDD adapted to model size, freq. range & hardware

• outlook to DAGA 2019

acoustic model order reduction for further speed-up

19 Moosrainer, Jegham: Mid-frequency challenge – efficient simulation of sound radiation from electric motors