55
Tohru Fukuyama: Inspiring Nature Through Total Synthesis Chris Regens SED Group Meeting Sept. 11, 2007 O O O OH OH OH HO H NH HN HO H 2 N O O Me H O O O H HO Me Et H H Me M HO HO H Me OMe Me CO 2 H Me Tetrodotoxin Monensin N O H O H H N Strychnine O H N O N Me Gelsemine

Tohru Fukuyama: Inspiring Nature Through Total Synthesis

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Tohru Fukuyama: Inspiring Nature Through TotalSynthesis

Chris RegensSED Group Meeting

Sept. 11, 2007

O O

O

OH

OH

OHHO H

NHHN

HO

H2N

O OMeH O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2H

Me

Tetrodotoxin Monensin

N

O

H

OH

H

N

Strychnine

O

HNO

N

Me

Gelsemine

Fukuyama's Graduate and Post Doc. Work With Kishi

N

NSS

O

O

Me

MeN

Me

HO

H

Cl

MeO

OMe

N NSS

O

O

MeH

HO

HO

O O

O

OH

OH

OHHO H

NHHN

HO

H2N

N NH

OMe

OCONH2O

O

MeO

Me

N NH

OMe

OCONH2O

O

H2N

Me

HNOH

Me

Me

HNOHO O

Me H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2H

Me8

7

9

1

26

12

X

Sporidesmin A: X = OH

Sporidesmin B: X = H

Gliotoxin Tetrodotoxin

Mitomycin A

Porfiromycin

Perhydrohistrionicotoxin HistrionicoxtinMonensin

J. Org. Chem. 1975, 40, 2009; 2011.

J. A.C.S. 1972, 94, 9217; 9219.

Tetrahedron Lett. 1970, 59, 5127; 5129.

J. A.C.S. 1977, 99, 8115.

Tetrahedron Lett. 1977, 4295.

J. A.C.S. 1973, 95, 6490; 6492; 6493.

J. A.C.S. 1976, 98, 6723.

Tetrahedron Lett. 1974, 1549; 1971,

4657; 1976, 3393.

J. A.C.S. 1979, 101, 259; 260; 262.

Three Different Forms of Tetrodotoxin

O O

O

OH

OH

OHHO H

NHHN

HO

H2NStructural Features:

-!Contains a unique dioxaadamantane skeleton with hydroxyl functionality-!Ortho-ester functional group-!Cyclic guanidine with a hemiaminal group

4,9-Anhydrotetrodotoxin

(anhydride form)

O OOH

O

OH

OHNH

HO H

HN

H2N

HO

Tetrodotoxin

(ortho-ester form)

O OOH

O

OH

OHNH

O H

HN

H2N

94 4

9 HOO

OH

O

OH

OHNH

HO

HN

H2N

HO 49

(lactone form)

(±)-Tetrodotoxin: Densely Functionalized 6-Membered Ring

O OOH

O

OH

OHNH

HO H

HN

H2N

HO 49 O O

OH

O

OH

OHH2N

HO H

OHC4 6

4a

5

9

7

HO

OHC

OH

OH

HO CO2H

HOOH

NH2

5

4

4a

67

8a

guanidine synthesis

ortho esterformation

Tetrodotoxin "tetrodoamine"

-General Retrosynthetic Analysis

- Key Challenges

- Construct a highly oxygenated and a densely functionalized cyclohexane skeleton - Construction of tetrasubstituted stereocenters C(6) and C(8a)- Introduction of the C(8a) amine - Prevent epimerization at C(9) and !-elimination of the hydroxyl group at C(5)- This is 1972 so, stereochemistry was determined through coupling constants and chemical derivativation

HOOH

OHOH

OHH2N

OHC4 6

4a

5

HOCO2H

8a

(±)-Tetrodotoxin: Beginning Diels Alder

O OOH

O

OH

OHNH

HO H

HN

H2N

HO 49

Tetrodotoxin

ortho esterformation

guanidine

O OOAc

O

OAc

OAcHN

H9

Ac

AcO

pyrolysis

4

O OOAc

O

OAc

OAcHN

H9

Ac

AcO

4

AcO10

4a

126

intramolecularcarboxylate addn.

oxocarbeniumion trapping

O

O NH

H

O

O

AcAcO OAc

O

H H12

10

44a

6

7

Baeyer-Villager

H

NHAcO

H

O

Ac

OAc

O

O

OAc

12

stereoselectivehydroxylation

H

NH

H

Ac

HO

O

O

129

9

MeH

epoxideopening

epoxidation

hydridereduction

HO

O

Me

N

Diels-Alder

OHMe

epoxidation

allylic oxidation

Ac

O

O

Me

N

HO

Me

(±)-Tetrodotoxin: How Does One Install the C(8a) Nitrogen?

HO

O

Me

N

OH

O O

O

OH

OHNH

HO H

HN

H2N

HO 49

O

O

Me

N

Me

HO

SnCl3

CH3CN, rt

83%Me

6

4a8a

1. ClOSO2CH3, Et3N

2. H2O, 100 oC?

C13H15NO3

OH

(±)-Tetrodotoxin: Building the Tricycle

H

HN

O

O

Me

8a

Me O

H

HN

OH

O

Me

8a

Me O

5

H

HN

OH

O

Me

8a

Me O

5O

H

HN

H

Ac

Me

O

O

12

HO

H H

HN

H

Ac

Me

O

O

12

O

H

H

HN

H

Ac

Me

O

AcO12

H

5 54a4a

5

O

O

O O

O

OH

OHNH

HO H

HN

H2N

HO 49 OH

NaBH4

MeOH, 96%

m-CPBA, CSA

75%

CrO3.py

CH2Cl2, 90%

HO OH1. ,BF3.Et2O

2. Al(Oi-Pr)3

3. Ac2O, pyr. 95%

H

H

HN

H

Ac

Me

O

H12

H

5

O

OH

OAc

Dihedral angle = 90o

J = 0 Hz

H

7

8

Dihedral angle = 30o

J = 6 Hz

(±)-Tetrodotoxin: Finishing the 6-Memered Ring

H

HN

H

Ac

Me

O

OAc

12

H

5

O

O

87

O O

O

OH

OHNH

HO H

HN

H2N

HO 49 OH

1. SeO2, 180 oC

2. NaBH4, MeOH (100% 2 steps)

H

HN

H

Ac

O

OAc

12

H

5

O

O

87

OH

m-CPBA

90 oC, 95%

H

HN

H

Ac

O

OAc

12

H

5

O

O

8

OH

O

1. Ac2O, pyr.

2. CF3CO2H, H2O 70 oC3. Ac2O, pyr. (80% 3 steps)

H

HN

H

Ac

O

OAc

12

H

5

8

OAc

O

O

1. CH3C(OEt)3, EtOH, CSA

2. Ac2O, pyr.

H

HN

H

Ac

O

OAc

12

H

5

8

OAc

O

EtO

EtOCl

Cl

H

HN

H

Ac

O

OAc

H OAc

O

EtO,reflux

(±)-Tetrodotoxin: Installing the C(9) Hydroxyl Group

O O

O

OH

OHNH

HO H

HN

H2N

HO 49 OHm-CPBA

CH2Cl2, K2CO3

H

HN

H

Ac

O

OAc

H OAc

O

EtO

H

HN

H

Ac

O

OAc

H OAc

O

EtOO

AcOH, rt

(70% 3 steps)

H

HN

H

Ac

O

OAc

H OAc

O

EtO

HO

H

HN

H

Ac

O

OAc

H OAc

O

OHO

EtO

Me

O

H

HN

H

Ac

O

OAc

H OAc

OEtO

OO

OHMe

H

HN

H

Ac

O

OAc

H OAc

O

OO

Me

OEt

H

HN

H

Ac

O

OAc

H OAc

O

AcO

O

(±)-Tetrodotoxin: Key Step

H

HN

H

Ac

O

OAc

H OAc

O

AcO

O

O

O NH

H

O

OAc

AcAcO OAc

O

H H12

10

44a

6

7

O

O NH

O

OAc

AcAcO OAc

H

10

44a

6

7

OH

12

AcO

OO

AcHN O

OAc

AcO

OAc

H

10

44a

6

7

OH

12AcO

O

O

AcO

OH

OAc

O

AcO

HAcHN

H

OAc

O OOAc

O

OAc

OHHN

H9

Ac

AcO

4

AcO10

4a

126

O O

O

OH

OHNH

HO H

HN

H2N

HO 49 OHm-CPBA

100%

AcOK, AcOH

90 oC, 2 h.(quant)

(±)-Tetrodotoxin: Assembling the Cyclic Guanidine

O OOAc

O

OAc

OAcHN

H9

Ac

AcO

4

AcO10

4a

126

O OOAc

O

OAc

OAcHN

H9

Ac

AcO

4

10

4a6

EtS

NAc

SEt

O OOAc

O

OAc

OAcN

H9

AcO

AcHN

NHAcO O

OAc

O

OAc

OAcN

H9

AcO

H2N

NHAc

O OOAc

O

OAc

OHHN

H9

Ac

AcO

4

AcO10

4a

126

Ac2O

CSA (cat.)(quant)

290 - 300 oC

high vac.80%

Et3OBF4, Na2CO3

then AcOH/H2O92%

O OOAc

O

OAc

OAcH2N

H9

AcO

4

10

4a6

120 oC, 12h1.

2. Acetamide, 150 oC, 1h

(20% 2 steps)

NH3

MeOH/CH2Cl2

(quant)

(±)-Tetrodotoxin: Done!

O OOAc

O

OAc

OAcN

H9

AcO

H2N

NHAc

1. OsO4, THF, -20 oC

2. NaIO4, THF/H2O, 0 oC then ethylene glycol

O OOAc

O

OAc

OAcN

H

OHC9

OHCAcO

H2N

NHAc

NH4OH, MeOH, H2O

(25% 2 steps)

O O

O

OH

OHNH

HO H

HN

H2N

HO 49 OH

(±)-Tetrodotoxin

(±)-Tetrodotoxin: Conclusion

O O

OH

O

OH

OHNH

HO H

HN

H2N

HO

guanidine

intramolecularcarboxylate addn.

- 32 Steps- C(8a) and C(4a): diastereoselective Diels-Alder Reaction- C(8) and C(5) stereospecific, substrate controled hydride reductions- C(7) carboxylate attack onto epoxide

- Development of a novel way to synthesize a cyclic guanidine

10

8a

4a

5 7

8

(+)-Monensin: Historically Significant

O OMe H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2H

Me8

7

9

1

26

12

Monensin

Properities:

- Ionophore: ability to complex inorganic cations for translocation thorugh a lipophilic interface.- Polyether antibiotic (terminate with a carboxylate and contains numerous cyclic ethers).- Isolated from Streptomyces cinamonensis-Displays anticoccidial activity, used to combat such infections in cattle and poultry.

Structure:

- 17 stereocenters, 6 contiguous of the 26 carbons- Contains only 3 elements O, H, C.- Monensin maintains a cyclic structure through H-bonding at C(1) and HO at C(26)- 2 THF rings 1 THP ring and a unique 1,6-dioxaspiro[4.5]decane

History:

- 5th polyether isolated, 1st characterized- Kishi reported the first synthesis (1979)

- The synthesis is noted for: - Convergency - The way it exploits acyclic conformational control elements allylic 1,3-strain, to achieve stereochemical control in acyclic systems

(+)-Monensin: Retrosynthesis

O OMe H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2H

Me8

7

9

1

26

12

Monensin

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12

OHO

Me

OBn

Me

OMe

Me

CO2Me

7

5

1

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12MeCHO

Me

OBn

Me

OMe

Me

CO2Me

7

5

1

O

OMeMe

OMe

Me

OH

6

51

MeOO O O

H Et H

Me

H H

Me Me

OMe

OH129

Spiroketalization Aldol condensation

A

B

(+)-Monensin: Retrosynthesis of Fragment B

OMeMe

OMe

Me

OH

6

51

MeOO O O

H Et H

Me

H H

Me Me

OMe

OH129

A

B

MeOO O

H Et H

Me

HMe Me

129

OOP

O

O CCl3

MeOO OH

H Et H

Me

129

Me

Me

Bromoetherification

BromideDisplacement

Wittig reaction

2120

17

22

19

MeOO O

H Et H

Me

129 2017

OH

Hydroxy epoxide cyclization

Ring closure

OH

OMe

Et

H

MeO

16

18

13

(+)-Monensin: Retrosynthesis of Fragment A

O

MeMe

OMe

Me

OH

6

51

MeOO O O

H Et H

Me

H H

Me Me

OMe

OH129

A

B

O

MeMe

OMe

Me

OH

6

51

O

MeMe

OMe

O

51

O

MeMe

OEt5

1

O

O

CN1

Horner-Wadsworth-

Emmons

(+)-Monensin: Nice Johnson Ortho Claisen

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12Me

O

HO OH 1. PhCHO, CSA

2. LAH-AlCl3 (1:4) (93% 2 steps)

HO OBn

NCOMe

1. (S)-(+)-1-(1-naphthyl) ethyl isocyanate, Et3N

2. resolution3. LAH

HO OBnH

1. PCC

2. Et

MgBr

HO OBnH

EtCH3C(OEt)3

CH3CH2CO2H140 oC

OEtOH

OBn

[3,3]Johnson ortho ester

Claisen

Et

OBnH

EtO O

Et16

17

1617

1. LAH

2. PCC

Et

OBnH

O

16

17

(+)-Monensin: Expoxide Opening

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12Me

O

1617Et

OBnH

O

16

17

MeO MgBr1.

2. CrO3, H2SO4

H2O - (CH3)2CO

3. BCl3[31% from resolution]

Et

OHH

O

16

17

MeO

13

Aryl

O

Et

HHO[destabilized byallylic 1,3-strain]

1316

17 18

Aryl

O

Et

H

1316

17 18

OH

m-CPBA

NaHCO3OAryl

O

Et

OH

16

13

18

Hydroxyl directedepoxidation

1. p-TsCl, py

2. LAHOHAryl

O

Et

Me

16

13

18

CSA

O OH

Me

H Et HAryl

13 16

18

H

7:2 mixture of C(13) epimers

(+)-Monensin: SN2 Displacement with KO2

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12Me

O

1617

O OH

Me

H Et HAryl

13 16

18 OsO4, NaIO4

H2O-dioxane(36% 4 steps)

O O

Me

H Et HAryl

13 16

18

OH20

Me Me

Ph3P

DMSO78%

O OH

Me

H Et HAryl

13 16

18

20

Me Me

2124

26

O

Me

BrH !

!

C26-C22

C13-C16

17

20

O

Me

BrH !

!

C13-C16

17 20

C26-C22

NBS, CH3CN

57%

O O

Me

H Et HAryl

13 16

18

20

Me Me

Br21

22

KO2, 18-crown-6

46% O O

Me

H Et HAryl

13 16

18

20

Me Me

H21

22

OH

(+)-Monensin: Birch Reduction

O O

Me

H Et HAryl

13 16

18

20

Me Me

H21

22

OH

1. Cl3CCOCl, pyr2. OsO4, pyr., THF

3. PhCOCl, pyr., 4. CrO3, H2SO4, HO(CH3)2CO

Aryl O OH Et H

Me

HMe Me

13

OO

O

O CCl3

22

20 Ph

O

16

1. NaOMe, MeOH

2. (CH3O)3CH, MeOH, CSA (53% 6 steps)

O O OH Et H

Me

H H

Me Me

OMe

OH

MeO

Li, EtOH

NH3(l)

O O OH Et H

Me

H H

Me Me

OMe

OH

MeO

(+)-Monensin: One Last THF Ring To Go

O O OH Et H

Me

H H

Me Me

OMe

OH

MeO

1. (CH3O)3CH, MeOH CSA, CH2Cl2

2. O3,MeOH, -78 oC3. MgBr, CH2Cl2-H2O

O O OH Et H

Me

H H

Me Me

OMe

OH

OOHC O

Me

MeMgBr

Et2O

O O O

H

Et H

Me

H H

Me Me

OMe

OH

OOHC O

MeMg

L L

O O O

H

Et H

Me

H H

Me Me

OMeOH

OHO

Me

MeMe

OH

"Me"

Re face addtion

(+)-Monensin: Completing the Right Hand Portion

O O O

H

Et H

Me

H H

Me Me

OMeOH

OHO

Me

MeMe

OH

1. O3, MeOH -78 oC

2. conc. HCl MeOH(22% 7 steps)

O O OH Et H

Me

H H

Me Me

OMeOH

OOMe

MeLi, THF

-78 oC100%

O O O

H

Et H

Me

H H

Me Me

OMeOHMe

OHO Me

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12Me

O

(+)-Monensin: Resolution

OMeMe

OH

5

1

OMeMe

5

1

OBn

HO2C

MeMe

OMe

6

1

OBn

CHO

Me

OCHO1

Me

CO2Et

Me

Ph3P1.

2. LAH3. BnBr (95% 2 steps)

racemic

(E:Z 95:5), 70%

B2H6, THF0 oC; then

KOH, H2O2

85%(dr 8:1)

OMe

Me

51

OBn

H

BH3

OBn

!-face attack

1. KH, MeI

2. H2, 10% Pd-C MeOH (88% 2 steps)

OMeMe

OMe

5

1

OH

Ph

Me

NCO

(S)-(-)-!-methylbenzylisocyanate

1.

Et3N, 50 oC2. resolution3. LAH

OMeMe

OMe

5

1

OH

enantiopure

(+)-Monensin: Hydroboration to Set C(5)-C(6) Stereocenters

OMeMe

OMe

Me

OH

6

51

HO2C

MeMe

OMe

6

1

OBn

CHO

Me

OMeMe

OMe

5

1

OH 1. PCC (88%)

2. CO2Me

Me

(MeO)2P(O)

3. LAH, (73% 2 steps)

H

Me

OH

Me

H OMe

Me

O

BH3

B2H6, THF, 0 oCthen H2O2

10% aq. KOH, THF, 25 oC

(dr 12:1) (80%)exclusive Z

!-face attack

OMeMe

OMe

Me

65

1

OH OH 1. MOMBr, PhNMe2

2. KH, BnBr (68% 2 steps)

(+)-Monensin: Completing the Left Hand Portion

HO2C

MeMe

OMe

6

1

OBn

CHO

Me

OMeMe

OMe

Me

65

1

OBn OMOM 1. O3, MeOH -78 oC

2. CH2N2

(55 % 2 steps)MeMe

OMe

Me

65

1

OBn OMOM

MeO

O1. HCl, MeOH

2. PCC, CH2Cl2

MeMe

OMe

Me

65

1

OBn O

MeO

O

H

(+)-Monensin: Building the Spiroketal

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12MeCHO

Me

OBn

Me

OMe

Me

CO2Me

7

5

1

O

i-Pr2NMgBr

THF, -78 oC

(21% yield; 92% yield)based on recovered ketone C5-C1

H Me

C OH

Nu

7

HO OMe H O

O

MeEt

HH Me

MeHO

HO

H

8

9

26

12

OHO

Me

OBn

Me

OMe

Me

CO2Me

7

5

(>8:1 mixture of C(7) epimers)

O OMe H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2Me

Me8

7

9

1

26

121. H2, Pd-c MeOH-AcOH (100:5)

2. CSA, H2O, CH2Cl2-Et2O (3:1)

(+)-Monensin: Completing the Synthesis

O OMe H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2Me

Me8

7

9

1

26

12 1N NaOH-MeOH (1:5)

60 oC(quant)

O OMe H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

Me8

7

9

1

26

12

NaO

O

(+)-monensin sodium salt

(+)-Monensin: Conclusion

O OMe H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2H

Me

Spiroketalization

Aldol condensation

- First Total Synthesis of (+)-Monensin in 1979- Cross-Aldol to bring together both left and right fragments- Beautiful illistration of ''stereospecific synthesis by induction or stereochemical communication'' by influence of preexisting stereocenters- Hydroboration to establish 4 of the 5 stereocenters- Demonstrated the importance of using allylic 1,3-strain as a controlling element

(+)-Gelsemine: Biological Activity?

O

HNO

N

Me

1

7

8

10

12

21

18

20

3

6

17

14

(+)-GelsemineO

NMe NH

O

17

18

2021

312

8

1017

6

14

5

- contains a [3.2.1] octane skeleton

- unique hexacyclic cage structure

- The C(20) and C(7) stereogenic centers are anchoring the spirooxindole the pyrrolidine moiety, and the very hindered tetrahydropyranyl ring on the concave face of the molecule

- isolated from gelsemium sempervirens- it has been known since 1870

- Biological activity?

" The degree of attention which has been lavished by many laboratorieson the total synthesis of gelsemine surely dod not arise from any documented information suggesting that this alkaloid might have valuable properties. Actually, reports concering any biological activity associated with gelsemine areat best sketchy and often anecdotal in style. Rather, the attratction to gelsemine as a target in total synthesis has been driven by its fascinating three-dimensional architecture.''

-Danishefsky

(+)-Gelsemine: Key Challenges in the Synthesis

O

HNO

N

Me

1

7

8

10

12

21

18

20

3

6

17

14

(+)-GelsemineO

NMe NH

O

17

18

2021

312

8

1017

6

14

5

- contains a [3.2.1] octane skeleton

- unique hexacyclic cage structure

- The C(20) and C(7) stereogenic centers are anchoring the spirooxindole the pyrrolidine moiety, and the very hindered tetrahydropyranyl ring on the concave face of the molecule

Challenges:

- Controlling the stereochemistry of the spiroindolinone system- Formation of the C(5) and C(6) bond

(+)-Gelsemine: Retrosynthesis

O

NMe NH

O

17

18

2021

312

8

1017

6

14

5

CO2R

X

NHO

O

H

HNO

CO2R

OH

NMe NR

O

O

intramolecularoxymercuration

intramolecular Michaeladditon

MeHN

Michaeladdition

RO2C

X

NHO

divinylcyclopropanerearrangement

RO2C

X

NHO

!"OC

Z

O

!"OC

ZZ

ClCl

CO!"

(+)-Gelsemine: Rearrangement of exo Epoxide to Cyclopropane

N O

O

BnCl

O

+

HMe2Si Et2AlCl

-78 oC88%

Cl

X O

SiMe2H 1. Sm(OTf)3 (cat.). MeOH

2. H2O2, KF, KHCO3

THF/MeOH (53% 2 steps)

Cl

MeO O

OH

[VO(acac)2], t-BuOOH,

benzene, 100%

Cl

MeO O

OH

O

OTES

O

MeO2C

1. TESOTf, lutidine

2. t-BuOK, benzene (95% 2 steps)

MAD, PhMe

-20 oC65-78%

MAD =

TESO

CHO

CO2MeMe

t-Bu

t-Bu

O Al Me

t-Bu

t-Bu

O

Me

(+)-Gelsemine: Rearrangement of exo Epoxide to Cyclopropane

TESO

CHO

CO2Me

OTES

O

MeO2C

MAD, PhMe

-20 oC

65-78%

OTES

O

MeO2C

''Al''

OTES

O

MeO2C

''Al''

OTES

O

MeO2C

''Al''

H

OTES

O

MeO2C H TESO

CHO

CO2Me

(+)-Gelsemine: Installing the Oxoindole

HO

CHO

CO2Me

NH

O

cat.NH

,MeOH, rt

60%from racemic

synthesis

+

(E) (Z)(4:1)

OAc

HO CO2Me

OAc

NH

O HO CO2Me

OAc NHO

h!

+

(E) (Z)(1:1)HO CO2Me

OAc

NH

O HO CO2Me

OAc NHO

(+)-Gelsemine: 4-Iodooxindole Saves the Day

HO

CHO

CO2Me

NH

O

cat.NH

,MeOH, rt

89%from racemic

synthesis

+

(E) (Z)

OAc

HO CO2Me

OAc

NH

O HO CO2Me

OAc NHO

!

!

!

PM3 calculations suggest thatthe Z-isomer is more stable by 9.4 kcal/mol

(+)-Gelsemine: Divinylcyclopropane Rearrangement

TESO

CHO

CO2Me

NH

O

cat.NH

,MeOH, rt

99%

!

TESO CO2Me

NH

O

! 1. TBAF2. CrO3, H2SO4

3. PhMe/MeCN, reflux (72% 3 steps)

CO2Me

NH

O

!

O

mixture of cis andtrans isomers + A

O

MeO2C

NHO

!A

H

(+)-Gelsemine: How It Works.

CO2Me

NH

O

!

O

O

MeO2C

NHO

!H

Basic idea:

O

MeO2C

NH

H

O

! H

Two Michael Additions: Building the Pyrrolidine Ring

O

MeO2C

NHO

!

1. (EtO)2POCH2CO2t-Bu, n-BuLi, THF, 65 oC

2. MOMCl, t-BuOK3. n-Bu3SnH, AIBN (54% 3 steps) MeO2C

NO MOM

H CO2t-Bu

MeNH2, MeOH

100%

NO MOM

CO2t-Bu

CO2Me

MeN

H1. AllocCl, pyr. (cat.) DMAP

2. LiBH4, (cat.) LiEt3BH (88% 2 steps)

NO MOM

CO2t-Bu

MeN

Alloc

OH

1. [Pd(PPh3)4], pyrrolidine THF

2. ICH2CN, i-Pr2NEt, MeCN (78% 2 steps)

(+)-Gelsemine: Reduction and Protection

NO MOM

CO2t-Bu

MeN

Alloc

OH

1. [Pd(PPh3)4], pyrrolidine THF

2. ICH2CN, i-Pr2NEt, MeCN (78% 2 steps)

NO MOM

CO2t-Bu

MeN

OH

NC KHMDS, THF

-78 to 0 oC62%

NO MOM

CO2t-Bu

MeN

OH

NC 1. PhCOCl, pyr. (cat.) DMAP

2. HCO2H3. ClCO2Et, Et3N, then NaBH4, H2O (71% 3 steps)

NO MOM

MeN

OCOPh

NC

OH

(+)-Gelsemine: Oxidation of Cyanopyrrolidine and Oxymercuration

NO MOM

MeN

OCOPh

NC

OH

NO2

SeCN ,PBu3

THF, m-CPBAthen NEt3, 97%

NO MOM

MeN

OCOPh

NC1. m-CPBA, THF/H2O

2. K2CO3, MeOH

NO MOM

MeN

OH

O 1. Hg(OTf)2, PhNMe2

NaOH, MeNO2

then aq. NaCl (97%)

2. NaBH4, NaOH, BnNEt3Cl CH2Cl2/H2O (63%) O

NMe N

OMOM

O

(+)-Gelsemine: Completing the Synthesis

O

NMe N

OMOM

O

1. TMSCl, NaI, NEt3 MeOH (63%)

2. DIBAL-H (90%)

O

NMe NH

O

(+)-Gelsemine

(+)-Gelsemine: Conclusion

O

NMe NH

O

intramolecularoxymercuration

intramolecular Michaeladditon

divinylcyclopropanerearrangement

- 21 Steps, enantioselective synthesis- Reconized that the spiro-indoline was the most challenging and was able to control the stereochemistry by simple condnesation of 4-iodooxindole- The bicyclic [3.2.1] core was assembled through a divinylcyclopropane rearrangement

(-)-Strychnine: Structure and Prosperities

Biological Properities:

- LD50 10 mg, used as a pesticide for killing small vertebrates- Causes muscular convulsions and eventually death through asphyxia- Most bitter substances known. Its taste is detectable in concentrations as low as 1 ppm.

N

O

N

O

H

H

7

H

3

4

(-)-Strychnine

Structure:

- Most celebrated member of the Strychnos alkaloids- Isolated from the seeds of the Strychnos nux vomica tree- Possess a complex polycyclic structure, assembled from 24 atoms- Unique heptacyclic framework as well as 6 contigous chiral centers with 5 of them in one unsaturated 6-membered ring

(-)-Strychnine: Key Step Using Nitrobenzenesulfonamide Chemistry

N

O

N

O

H

H

7

H

3

4

NH

O

N

H

HO

7

H

3

4

Wieland-Gumlich aldehyde

NH

MeO2C CO2Me

N

H7

H

3

4

Kuehne's intermediate

transannular cyclization

NH

CO2Me

N

7

H

3 O

H

Ns

Double Mistunobuvia nitrobenzene-

sulfonamide chemistry

NH

CO2Me

OH

7

H

3

H

HO

OMOM

Pd-mediatedcoupling

NH

CO2Me

CO2Me

TBSO

OTBS

O

+

(-)-Strychnine: Radical Cyclization of 2-Alkenylthioanilides

N

CSCl2, Na2CO3

THF-H2O, 0 oC

NaBH4, MeOH

0 oC

56%

HO

NCS

TBSO

NCS

CO2Me

CO2Me ,NaH

THF, 0 oC to rt

71%

TBSCl

imd.

CH2Cl298%

TBSO

NH

S

CO2Me

CO2Me

Bu3SnH

Et3B

PhMe, rt

TBSO

NH

SSnBu3

CO2Me

CO2Me

NH

HOTBS

SSnBu3R

NH

TBSO

CO2Me

CO2Me

Bu3SnH

-Bu3Sn

NH

HOTBS

SSnBu3R N

H

HOTBS

R

(-)-Strychnine: Preparation of Vinylepoxide

HO2C MeO2C MeO2C OH

Br

MeO2C OAc

Br

MeO2C OH

Br

OH

Br

HO TBSO

O

1. Na, liq. NH3-EtOH -78 oC

2. AcCl, MeOH, NaOMe rt

NBS, H2O, DMSO

rt (62% 3 steps)

Lipase AYS

vinyl acetate, 40 oC

DIBAL-H

0 oC

1. NaOMe, MeOH, rt

2. TBSCl, imd. (61% 2 steps)

+

46%, 99% ee 50%, 99% ee

(-)-Strychnine: Palladium-Mediated Coupling

TBSO

O

NH

CO2Me

CO2Me

TBSO

NH

TBSO

MeO2C

H

OTBS

OH

CO2Me

Pd2(dba)3 (5 mol%)

P(2-furyl)3 (5 mol%)PhMe, rt

86%

+

TBSO

ONH

CO2Me

CO2Me

TBSO

+H

Pd

LLTBSO

OHNH

CO2Me

CO2Me

TBSO

+

Pd

LL

NH

TBSO

MeO2C

H

OTBS

OH

CO2Me

NH

TBSO

MeO2C

H

OTBS

OH

CO2Me

''Pd''

(-)-Strychnine: Building the 9-Membered Ring

NH

TBSO

MeO2C

H

OTBS

OH

CO2Me

N

HO

H

OH

OMOM

CO2Me

1. MOMCl, i-Pr2NEt

2. LiI, collidine, 80 oC3. Boc2O, DMAP, MeCN4. NH4F.HF, DMF-NMP (72% 4 steps)

NsNH2, PPh3, DEAD

PhMe, rt, 95%

N

NsN

H

OH

OMOM

CO2Me

H

N

CO2Me

H

NNs

OMOM

Boc

BocBoc

(-)-Strychnine: Setting the Stage for Cross-Transannulation

N

CO2Me

H

NNs

OMOM

Boc

1. DBU, PhMe, 100 oC

2. aq. HCl, THF, 50 oC3. DMP, 0 oC (69% 3 steps)

N

CO2Me

H

NNs

O

Boc

1. TMSOTf, Et3N

2. m-CPBA, aq. NaHCO3-CH2Cl2 aq. HCl, MeOH, rt (66% 2 steps)

N

CO2Me

H

NNs

O

Boc

OH

Pb(OAc)4

MeOH-PhH0 oC

N

CO2Me

CO2MeH

NNs

Boc

O

PhSH, CsCO3, MeCN

N

CO2Me

CO2MeH

NH

Boc

O

(-)-Strychnine: Transannulation-How Does it Work?

NH

CO2Me

N

CO2MeH

PhSH, CsCO3, MeCN

then TFA, Me2S, CH2Cl250 oC (84% 2 steps)

NH

CO2Me

N

CO2MeH

N

CO2Me

CO2MeH

NH

Boc

O NH

CO2Me

N

CO2MeH

NH

CO2Me

N

CO2MeHNH

CO2Me

N

CO2MeH

HO

(-)-Strychnine: Completing the Synthesis

NH

CO2Me

N

CO2MeH

1. NaBH3CN, AcOH, 10 oC

2. NaOMe, MeOH-THF, rt

N

O

N

O

H

H

H

NH

O

N

H

HO

H

Wieland-Gumlich aldehyde

DIBAL-H, BF3.OEt2

CH2Cl2, -78 oC93%

NH

CO2Me

N

HOH

NH

CO2Me

N

HOH

DIBAL-H, -98 oC

CH2Cl2

(-)-Strychine

CH2(CO2H)2, NaOAc

Ac2O, AcOH, 110 oC(42 %, 4 steps)

(-)-Strychnine: Conclusion

N

O

N

O

H

H

H

Double Mistunobuvia nitrobenzene-

sulfonamide chemistry

- Utilized their own chemistry nitrobenzenesulfonamide Mitsunobu reaction radical cyclizations of 2-alkenylthioanilides- Double Mitsunobu nice way to build the 9-membered ring - Cross-Transannulation beautiful cascade to pentacyclic core

Conclusion

N

O

N

O

H

H

H

Double Mistunobuvia nitrobenzene-

sulfonamide chemistry

O

NMe NH

O

intramolecularoxymercuration

intramolecular Michaeladditon

divinylcyclopropanerearrangement

O OMe H O

O

OH

HO MeEt

HH Me

MeHO

HO

HMe

OMe

Me

CO2H

Me

Spiroketalization

Aldol condensation

O OOH

O

OH

OHNH

HO H

HN

H2N

HO

guanidine

intramolecularcarboxylate addn.

Bibliography(±)-Tetrodotoxin:

(1). Y. Kishi, M. Aratani, T. Fukuyama, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino,

S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94, 9217 – 9219;

(2). Y. Kishi, T. Fukuyama, M. Aratani, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino,

S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94, 9219 – 9221.

(3). T. Goto, Y. Kishi, S. Takahashi, Y. Hirata, Tetrahedron 1965, 21, 2059 – 2088;

(+)-Monensin:

(1). Kishi, Y. Aldrichimica Acta 1980, 13, 23.

(2). Fukuyama, T.; Vranesic, B.; Negri, D.P.; Kishi, Y. Tetrahedron Lett. 1978, 2741.

(3). Johnson, M.R.; Nakata, T.; Kishi, Y. ibid. 1979, 4343.

(4). Johnson, M.R.; Nakata, T.; Kishi, Y. ibid. 1979, 4347

(5). Hasan, I.; Kishi, Y. ibid. 1980, 21, 4229.

(6). Nakata, T.; Schmid, G.; Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y.

J. Am. Chem. Soc. 1978, 100, 2933.

(7). Schmid, G.; Fukuyama, T.; Akasaka, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101,

259..

(8). Fukuyama, T.; Wang, C.-L.J.; Kishi, Y. ibid. 1979, 101, 260.

(9). Fukuyama, T.; Akasaka, K.; Karanewsky, D.S.; Wang, C.-L. J.; Schmid, G.;

Kishi, Y. ibid. 1979, 101, 262.

(10). Class i cs in Total Synthesis, Targets, Strategies, Methods. Nicolaou, K.C.;

Sorensen, E.J. VCH-Publishers, Inc. New York, 1996.

(+)-Gelsemine:

(1). Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Angew. Chem. Int. Ed. 2000, 39,

4073.

(-)-Strychnine:

(1). Kaburagi, Y.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2004, 126, 10246.