21
n studied with intermediate-energy Coulomb excitati Dissertation zur Erlangung des Grades “Doktor der Naturwissenschaften” am Fachbereich Physik der Johannes Gutenberg-Universität in Mainz Leontina Adriana Banu

108 Sn studied with intermediate-energy Coulomb excitation

  • Upload
    banyan

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

108 Sn studied with intermediate-energy Coulomb excitation. Dissertation zur Erlangung des Grades “Doktor der Naturwissenschaften” am Fachbereich Physik der Johannes Gutenberg-Universit ät in Mainz Leontina Adriana Banu. Outline. Motivation Why to study 108 Sn ? - PowerPoint PPT Presentation

Citation preview

Page 1: 108 Sn studied with intermediate-energy Coulomb excitation

108Sn studied with intermediate-energy Coulomb excitation

Dissertation zur Erlangung des Grades “Doktor der Naturwissenschaften”

am Fachbereich Physikder Johannes Gutenberg-Universität

in Mainz

Leontina Adriana Banu

Page 2: 108 Sn studied with intermediate-energy Coulomb excitation

OutlineOutline

Motivation Why to study Why to study 108108Sn ?Sn ? Why to study it with Coulomb excitation ?Why to study it with Coulomb excitation ?

Experimental method description Most significant features of intermediate-energyMost significant features of intermediate-energy Coulomb excitationCoulomb excitation Experimental set-up

Data analysis

Experimental results Theoretical interpretation

Page 3: 108 Sn studied with intermediate-energy Coulomb excitation

Why to study Why to study 108108Sn ?Sn ?

• magic numbers shell closuresmagic numbers shell closures

Nuclear shell modelNuclear shell model

• 100100Sn (N=Z=50)Sn (N=Z=50) principle test groundprinciple test ground

• insight into the structure of insight into the structure of 100100SnSn by by studying the nuclei in its vicinitystudying the nuclei in its vicinity

• how rigid is the the doubly-magic core how rigid is the the doubly-magic core when valence neutrons are being when valence neutrons are being added ?added ? ((studying A=102-130 Sn isotopesstudying A=102-130 Sn isotopes))

• investigation on quadrupole investigation on quadrupole polarization ofpolarization of the doubly-magic corethe doubly-magic core ((E2 core polarization effectE2 core polarization effect))

• B(E2;0B(E2;0++->2->2++)=|<)=|<ff||||OOE2E2||||ii>|>|22 is the is the mostmost sensitive to E2 collective effectssensitive to E2 collective effects

108108SnSn

5858

112112SnSn

6262

N=ZN=Z

Number of neutrons (N)

Num

ber

of

pro

tons

(Z)

Z = 2,8,20,28,50,82Z = 2,8,20,28,50,82 N = N = 2,8,20,28,50,82,1262,8,20,28,50,82,126

100Sn

Sn(N,Z) = B(N,Z) – B(N-1,Z)N oddZ even

22 88 2020 2828 5050 8282 126126

Neutr

on s

epara

tion e

nerg

y [

MeV

]

Avera

ge e

nerg

y o

f th

e fi

rst

exci

ted s

tate

s in

even

- even n

ucl

ei

Page 4: 108 Sn studied with intermediate-energy Coulomb excitation

Why Coulomb excitation to study Why Coulomb excitation to study 108108Sn ?Sn ?

• B(E2) determination:B(E2) determination:Lifetime measurement B(E2) valueB(E2) value

( ~ 7 ns) isomeric state( ~ 7 ns) isomeric state

B(E2;6B(E2;6++->4->4++) = 3 W.u.) = 3 W.u.

Z. Phys. A352 (1995) 373Z. Phys. A352 (1995) 373

E2E2

00++

22++

44++

66++

108108SnSn

905905

253253

12061206

(HI,xn(HI,xn) reaction) reaction

(< 0.5 ps)(< 0.5 ps)

• Electromagnetic decay of lowest excited 2Electromagnetic decay of lowest excited 2++state:state:

transition probability

τ1

secB(E2)ET(E2) 15γ

lifetime

22++

00++

EE(())

Coulomb excitation B(E2) valueB(E2) value

cross section

((E2) ~ B(E2))

66++

E2E2

2+

0 keV0 keV

1207 keV

Page 5: 108 Sn studied with intermediate-energy Coulomb excitation

Intermediate-energy Coulomb Intermediate-energy Coulomb excitationexcitation

~ ~ 3%3%

E=1.3 MeVD = 70 cm

1 Ge-Cluster 1 Ge-Cluster detectordetector

Composite

Composite

detector

detector

E/E

0 [%

]

Detector opening angle Detector opening angle =3°=3°

lab

[deg]

= 0.57= 0.57

= 0.43= 0.43

= 0.11= 0.11

• Nuclear excitation (±)

• Lorentz boost (+)

• Doppler broadening (-)

• Atomic background

radiation (-)

n

Nuclear excitationNuclear excitation

Coulomb excitationCoulomb excitation

target1.5θmax( in our case ) = 0.43

Page 6: 108 Sn studied with intermediate-energy Coulomb excitation

UNILACSIS

ESR

FRSFRS

GSI accelerator facilityGSI accelerator facility

Page 7: 108 Sn studied with intermediate-energy Coulomb excitation

Experimental set-upExperimental set-up

Primary beam

124Xe @ 700 A•MeV

9Be, 4 g/cm2

• projectile fragmentation (production method)

• in-flight fragment separation

(Bρ-E-Bρ method)

βγBρ

uce

ZA

(~ 150 A•MeV)

Secondary beam @ reaction target:108Sn/112Sn

197Au, 0.4 g/cm2

Beam directionBeam direction

CATE (Si) CATE (CsI)

Page 8: 108 Sn studied with intermediate-energy Coulomb excitation

Fragment identification Fragment identification beforebefore//afterafter targettarget

108108SnSn

Selection with FRSSelection with FRS Selection with CATESelection with CATE

βγBρ

uce

ZA

res

2

EΔEAZ

ΔE

Page 9: 108 Sn studied with intermediate-energy Coulomb excitation

Scattering angle measurementScattering angle measurement

p

MW MW CATE

Si CsITarget

Beam trackingBeam tracking

• Event–by–event Doppler shift correction:Event–by–event Doppler shift correction:

• Impact parameter determination:Impact parameter determination:

γ

20γγ βcosΘ1

β1EE

[rad]Θ1

MeV]}[AT2ucMeV])[A{(TA

MeV])[AT(ucZZ~b[fm]

plab22

labp

lab2

tp

511 keV

40K

~ 50%

rest

in-flight

Page 10: 108 Sn studied with intermediate-energy Coulomb excitation

Analysis of intermediate-energy Coulomb Analysis of intermediate-energy Coulomb excitationexcitation

• Fragment selectionFragment selection beforebefore secondary secondary targettarget

• Fragment selectionFragment selection afterafter secondary secondary targettarget

• Scattering angle selection (1°- 2°)Scattering angle selection (1°- 2°)

• Prompt Prompt time ‘window’ time ‘window’

• Ge-Cluster multiplicity: MGe-Cluster multiplicity: M(E(E > 500 keV) > 500 keV) = 1= 1

Elastic scattering dominates

Nuclear excitation contributiongrazzing = 1.5° ± 0.5°

Page 11: 108 Sn studied with intermediate-energy Coulomb excitation

Experimental resultsExperimental results

B(E2; 0B(E2; 0+ + -> 2-> 2++) = 0.230 (57) e) = 0.230 (57) e22bb22

A. Banu et al.A. Banu et al., submitted to Phys. Rev. C (2005), submitted to Phys. Rev. C (2005)

0.88I

N

N

I)B(E2)B(E2 112

γ

112p

108p

108γ112108

• Measure:Measure:-particle coinc.-particle coinc.

particle singles

II

Np

• Deduce B(E2) for Deduce B(E2) for 108108Sn as follows:Sn as follows:

)(atom/cmNN

/εIσ(E2) 2

tp

γγ

)B(E2)f(bσ(E2) min

exp.exp.

theorytheory

0.240 (14) e0.240 (14) e22bb22 --- previous work

Page 12: 108 Sn studied with intermediate-energy Coulomb excitation

Theoretical interpretationTheoretical interpretation

Neutron numberNeutron number

B(E

2 )

eB

(E2

) e

2 2 bb

22

This workThis work

theory (theory (neutron valenceneutron valence and and 100100SnSn as closed-shell core)as closed-shell core)

••••••••

5810850Sn

Neutron/proton single-particle statesin a nuclear shell-model potential:

theory (theory (neutron valenceneutron valence + proton core excitations+ proton core excitations and and

9090ZrZr as closed-shell core)as closed-shell core)

t=0

t=2t=4

t=4

Proton np-nh core excitations (t=n)&

100Sn core is open

Page 13: 108 Sn studied with intermediate-energy Coulomb excitation

Conclusion and OutlookConclusion and Outlook

• 108108Sn the heaviest Z-nucleus studied with Sn the heaviest Z-nucleus studied with intermediate-energy Coulomb excitationintermediate-energy Coulomb excitation

• B(E2;0B(E2;0++->2->2++) measured for the first time) measured for the first time

• The experimental result is in agreementThe experimental result is in agreement with latest large scale shell model calculationswith latest large scale shell model calculations

• This work brings more insight into the investigation ofThis work brings more insight into the investigation of E2 correlations related to E2 correlations related to 100100Sn core polarizationSn core polarization

• 108108Sn further step towards Sn further step towards 100100SnSn

Page 14: 108 Sn studied with intermediate-energy Coulomb excitation

““Art is I, Science is We.” - Claude BernardArt is I, Science is We.” - Claude Bernard

Thanks to…Thanks to…

J. Gerl (GSI), J. Pochodzalla (Uni. Mainz) - thesis advisorsJ. Gerl (GSI), J. Pochodzalla (Uni. Mainz) - thesis advisors

C. Fahlander (Lund), M. GC. Fahlander (Lund), M. Górska (GSI) - spokespersonsórska (GSI) - spokespersons

H. Grawe, T.R. Saito, H.-J. Wollersheim (GSI) H. Grawe, T.R. Saito, H.-J. Wollersheim (GSI)

M. Horth-JensenM. Horth-Jensen et al. (Oslo Uni.), et al. (Oslo Uni.), F.NowackiF.Nowacki et.al et.al (IRES)(IRES)

and last but not least…and last but not least…

Page 15: 108 Sn studied with intermediate-energy Coulomb excitation

The local RISING team

Page 16: 108 Sn studied with intermediate-energy Coulomb excitation

Seniority scheme in Sn isotopes:Seniority scheme in Sn isotopes:

E(E(jj22J) ~ VJ) ~ V00tan(tan(/2)/2) for T=1, J even for T=1, J even

-residual interaction in a -residual interaction in a jjnn configuration configuration

00++

22++

44++

66++

jjnn00

22

22

22

= 2= 2

= 0= 0

= 0= 0

22++

44++

66++

00++

(V(V1212(() = -V) = -V00((rr11--rr22))))

minmin

ener

gy a

xis

jj

j

j

j

j

j j

JJ

JJJJ

JJ

Page 17: 108 Sn studied with intermediate-energy Coulomb excitation
Page 18: 108 Sn studied with intermediate-energy Coulomb excitation

Data SummaryData Summary

Primary beamPrimary beam

SIS energySIS energy (MeV/nucleon)

Primary beam intensityPrimary beam intensity (s-1)

124124XeXe

700700

6 6 × 10× 1077

124124XeXe

700700

6 6 × 10× 1077

Secondary beamSecondary beam

Sec. beam abundance Sec. beam abundance (%)

Sec. beam rate Sec. beam rate (s-1)

Sec. beam energy @ target Sec. beam energy @ target (MeV/nucleon)

112112SnSn

6060

24002400

147147

108108SnSn

6262

24802480

142142

EE(2(211++->0->0++) ) (keV)

Data collection timeData collection time (h)

12571257

3333

12061206

5858

Page 19: 108 Sn studied with intermediate-energy Coulomb excitation

Single-particle states in shell-model Single-particle states in shell-model potentialpotential

2j+12j+1 nnjjll

Spectrsoscopic notation:Spectrsoscopic notation:

ll -> orbital angular momentum

jj -> total angular momentum

l= 0, 1, 2, 3, 4, 5, 6

s, p, d, f, g, h, is, p, d, f, g, h, i

jj = = ll + s + s

s = 1/2s = 1/2j = l ± ½

2j+1 2j+1 nucleons /orbitalnucleons /orbital

inertinert core

+activeactive valencenucleons

••••••••

5810850Sn

Page 20: 108 Sn studied with intermediate-energy Coulomb excitation

Single-particle states in shell-model Single-particle states in shell-model potentialpotential

2j+12j+1 nnjjll

Spectrsoscopic notation:Spectrsoscopic notation:

ll -> orbital angular momentum

l= 0, 1, 2, 3, 4, 5, 6

s, p, d, f, g, h, is, p, d, f, g, h, i

jj -> total angular momentum

jj = = ll + s + s

s = 1/2s = 1/2j = l ± ½

2j+1 2j+1 nucleons /orbitalnucleons /orbital

Page 21: 108 Sn studied with intermediate-energy Coulomb excitation

B(E2;0B(E2;0++ -> 2 -> 2++) ) ~ f(1-f)~ f(1-f) wherewhere

Generalized seniority scheme:Generalized seniority scheme:

f = (N – 50)/ 32f = (N – 50)/ 32