16
TS7QFT26220-6S Transcend Information Inc. 1 : __創見 4GB DDR2 667 FB-DIMM_ : TS7QFT26220-6S __ : 4GB 240Pin FB-DIMM DDR2-667 ECC Fully Buffered DIMM : __研華科技股份有限公司__ : ___________________________________ : ________________________________________ : ________________________________________ : ________________________________________ Transcend 創見資訊股份有限公司 Your Supplier, Your Partner, Your Friend. Transcend Information Inc. 地址:台北市內湖區行忠路 70 TEL(886) 2-2792-8000 FAX(886) 2-2793-2222/2-2796-8014

名: 創見 4GB DDR2 667 FB-DIMM - Advantechwfcache.advantech.com/www/certified-peripherals/... · 05 vdd 45 rfu* 85 vss 125vdd 165rfu* 205vss 06 vdd 46 vss 86 rfu* 126vdd 166vss

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • TS7QFT26220-6S

    Transcend Information Inc. 1

    品 名: __創見 4GB DDR2 667 FB-DIMM_

    創 見 料 號: TS7QFT26220-6S __

    規 格: 4GB 240Pin FB-DIMM DDR2-667 ECC Fully Buffered DIMM

    廠 商: __研華科技股份有限公司__

    廠 商 料 號: ___________________________________

    日 期: ________________________________________

    頁 數: ________________________________________

    結 論: ________________________________________

    Transcend 創見資訊股份有限公司 Your Supplier, Your Partner,

    Your Friend. Transcend Information Inc.

    地址:台北市內湖區行忠路 70 號 TEL: (886) 2-2792-8000

    FAX: (886) 2-2793-2222/2-2796-8014

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 1

    Description The TS7QFT26220-6S is a 512M x 72bits ECC

    DDR2-667 Fully Buffered DIMM. The TS7QFT26220-6S

    consists of 36pcs 256Mx4bits DDR2 DRAM in 60 balls

    FBGA package, 1 pc AMB IC, and a 2048 bits serial

    EEPROM on a 240-pin printed circuit board. The

    TS7QFT26220-6S is a 240pin fully buffered dual in-line

    memory module.

    The Advanced Memory Buffer also allows buffering of

    memory traffic to support large memory capacities. All

    memory control for the DRAM resides in the host,

    including memory request initiation, timing, refresh,

    scrubbing, sparing, configuration access, and power

    management. The Advanced Memory Buffer interface is

    responsible for handling channel and memory requests to

    and from the local DIMM and for forwarding requests to

    other DIMM on the memory channel. Fully Buffered

    DIMM provides a high memory bandwidth, large capacity

    channel solution that has a narrow host interface.

    Features

    RoHS compliant products.

    240pin fully buffered dual in-line memory module

    3.2Gb/s, 4.0Gb/s link transfer rate

    1.8V +/- 0.1V Power Supply for DRAM VDD/VDDQ

    1.5V +/- 0.075V Power Supply for AMB VCC

    3.3V +/- 0.3V Power Supply for VDDSPD

    Buffer Interface with high-speed differential

    point-to-point Link at 1.5 volt

    Channel error detection & reporting

    Channel fail over mode support

    Serial presence detect with EEPROM

    8Banks

    Posted CAS

    Programmable CAS Latency: 3, 4, 5

    Automatic DDR2 DRAM bus and channel calibration

    MBIST and IBIST Test functions

    Hot add-on and Hot Remove Capability

    Transparent mode for DRAM test support

    Support ECC Function.

    Placement

    FED

    B

    A

    C

    G

    H

    MIJ

    KL

    AMB

    N

    PCB: 09-2622

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 2

    Dimensions Side Millimeters Inches

    A 133.35±0.15 5.250±0.006

    B 51.00 2.00

    C 67.00 2.64

    D 5.00 0.197

    E 2.50 0.0980

    F 1.50 0.059

    G 5.175 0.204

    H 2.175 0.086

    I 3.00 0.118

    J 9.50 0.374

    K 17.30 0.681

    L 30.35±0.15 1.2±0.006

    M 1.27±0.10 0.050±0.004

    N 6.80 0.268

    (Refer Placement)

    Pin Description Symbol Function

    SCK System Clock Input, positive line

    /SCK System Clock Input, negative line

    PN[13:0] Primary Northbound Data, positive lines

    /PN[13:0] Primary Northbound Data, negative lines

    PS[9:0] Primary Southbound Data, positive lines

    /PS[9:0] Primary Southbound Data, negative lines

    SN[13:0] Secondary Northbound Data, positive lines

    /SN[13:0] Secondary Northbound Data, negative lines

    SS[9:0] Secondary Southbound Data, positive lines

    /SS[9:0] Secondary Southbound Data, negative lines

    SCL Serial Presence Detect (SPD) Clock Input

    SDA SPD Data Input / Output

    SA[2:0] SPD Address Input, also used to select the DIMM number in the AMB

    VID[1:0]

    Voltage ID: these pins must be unconnected for DDR2-base Fully Buffered DIMMs VID[0] is VDD value:OPEN=1.8V,GND=1.5V VID[1] is Vcc value:OPEN=1.5V,GND=1.2V

    RESET AMB reset signal

    RFU Reserved for Future Use

    VCC AMB Core Power and AMB Channel interface Power (1.5 Volt)

    VDD DRAM Power and AMB DRAM I/O Power (1.8 Volt)

    VTT DRAM Address/Command/Clock Termination Power (VDD/2)

    VDDSPD SPD Power

    VSS Ground

    DNU/M_Test

    The DNU/M Test pin provides an external connection R/Cs A-D for testing the margin of Vref which is produced by a voltage divider on the module. It is not intended to be used in normal system operation and must not be connected(DNU) in a system. This test pin may have other features on future card designs and if it does, will be included in this specification at that time.

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 3

    Pinouts: Pin No

    Pin Name

    Pin No

    Pin Name

    Pin No

    Pin Name

    PinNo

    Pin Name

    PinNo

    Pin Name

    PinNo

    Pin Name

    01 VDD 41 /PN13 81 VSS 121 VDD 161 /SN13 201 VSS 02 VDD 42 VSS 82 PS4 122 VDD 162 VSS 202 SS4 03 VDD 43 VSS 83 /PS4 123 VDD 163 VSS 203 /SS4 04 VSS 44 RFU* 84 VSS 124 VSS 164 RFU* 204 VSS 05 VDD 45 RFU* 85 VSS 125 VDD 165 RFU* 205 VSS 06 VDD 46 VSS 86 RFU* 126 VDD 166 VSS 206 RFU* 07 VDD 47 VSS 87 RFU* 127 VDD 167 VSS 207 RFU* 08 VSS 48 PN12 88 VSS 128 VSS 168 SN12 208 VSS 09 VCC 49 /PN12 89 VSS 129 VCC 169 /SN12 209 VSS 10 VCC 50 VSS 90 PS9 130 VCC 170 VSS 210 SS9 11 VSS 51 PN6 91 /PS9 131 VSS 171 SN6 211 /SS9 12 VCC 52 /PN6 92 VSS 132 VCC 172 /SN6 212 VSS 13 VCC 53 VSS 93 PS5 133 VCC 173 VSS 213 SS5 14 VSS 54 PN7 94 /PS5 134 VSS 174 SN7 214 /SS5 15 VTT 55 /PN7 95 VSS 135 VTT 175 /SN7 215 VSS 16 VID1 56 VSS 96 PS6 136 VID0 176 VSS 216 SS6 17 /RESET 57 PN8 97 /PS6 137 DNU/M_ Test 177 SN8 217 /SS6 18 VSS 58 /PN8 98 VSS 138 VSS 178 /SN8 218 VSS 19 RFU** 59 VSS 99 PS7 139 RFU** 179 VSS 219 SS7 20 RFU** 60 PN9 100 /PS7 140 RF** 180 SN9 220 /SS7 21 VSS 61 /PN9 101 VSS 141 VSS 181 /SN9 221 VSS 22 PN0 62 VSS 102 PS8 142 SN0 182 VSS 222 SS8 23 /PN0 63 PN10 103 /PS8 143 /SN0 183 SN10 223 /SS8 24 VSS 64 /PN10 104 VSS 144 VSS 184 /SN10 224 VSS 25 PN1 65 VSS 105 RFU** 145 SN1 185 VSS 225 RFU** 26 /PN1 66 PN11 106 RFU** 146 /SN1 186 SN11 226 RFU** 27 VSS 67 /PN11 107 VSS 147 VSS 187 /SN11 227 VSS 28 PN2 68 VSS 108 VDD 148 SN2 188 VSS 228 SCK 29 /PN2 69 VSS 109 VDD 149 /SN2 189 VSS 229 /SCK 30 VSS 70 PS0 110 VSS 150 VSS 190 SS0 230 VSS 31 PN3 71 /PS0 111 VDD 151 SN3 191 /SS0 231 VDD 32 /PN3 72 VSS 112 VDD 152 /SN3 192 VSS 232 VDD 33 VSS 73 PS1 113 VDD 153 VSS 193 SS1 233 VDD 34 PN4 74 /PS1 114 VSS 154 SN4 194 /SS1 234 VSS 35 /PN4 75 VSS 115 VDD 155 /SN4 195 VSS 235 VDD 36 VSS 76 PS2 116 VDD 156 VSS 196 SS2 236 VDD 37 PN5 77 /PS2 117 VTT 157 SN5 197 /SS2 237 VTT 38 /PN5 78 VSS 118 SA2 158 /SN5 198 VSS 238 VDDSPD 39 VSS 79 PS3 119 SDA 159 VSS 199 SS3 239 SA0 40 PN13 80 /PS3 120 SCL 160 SN13 200 /SS3 240 SA1

    RFU = Reserved Future Use * These pin position are reserved for forwarded clocks to be used in future module implementations ** These pin positions are reserved for future architecture flexibility

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 4

    Block Diagram

    D M /C S D Q S /D Q S

    U 0I/O 0I/O 1I/O 2I/O 3

    D Q 0D Q 1D Q 2D Q 3

    D Q S 0/D Q S 0

    /S 1/S 0

    N o te :1 . D Q -to I/O w ir in g m a y b e c h a n g e d w ith in a b y te.2 . T h e re a re tw o p h y s ic a l c o p ie s o f e a c h a d d re s s/c o m m a n d /c o n tro l/c lo c k .3 . T h e re a re fo u r p h y s ic a l c o p ie s o f e a c h c lo c k.

    S D AS C L

    S A 0 S A 1 S A 2

    E E P R O M

    W P

    /D Q S 0 ~ /D Q S 8S C LS D A

    S A 1 ~ S A 2

    /R E S E T

    P N 0 ~ P N 1 3/P N 0 ~ /P N 1 3

    P S 0 ~ P S 9/P S 0 ~ /P S 9D Q 0 ~ D Q 6 3

    C B 0 ~ C B 7D Q S 0 ~ D Q S 1 7

    AMB

    S C K //S C K

    S N 0 ~ S N 1 3/S N 0 ~ /S N 1 3S S 0 ~ S S 9/S S 0 ~ /S S 9S 0 -> /C S (U 0 ~ U 1 7 )C K E 0 -> C K E (U 0 ~ U 1 7 )S 1 -> /C S (U 1 8 ~ U 3 5 )

    O D T -> O D T (a ll S D R A M s)B A 0 ~ B A 2 (a ll S D R A M s)A 0 ~ A 1 5 (a ll S D R A M s)/R A S (a ll S D R A M s)/C A S (a ll S D R A M s)/W E (a ll S D R A M s)C K //C K (a ll S D R A M s)

    V S S

    U 1 8I/O 0I/O 1I/O 2I/O 3

    U 1I/O 0I/O 1I/O 2I/O 3

    D Q 8D Q 9D Q 1 0D Q 1 1

    U 1 9I/O 0I/O 1I/O 2I/O 3

    U 2I/O 0I/O 1I/O 2I/O 3

    D Q 1 6D Q 1 7D Q 1 8D Q 1 9

    U 2 0I/O 0I/O 1I/O 2I/O 3

    U 3I/O 0I/O 1I/O 2I/O 3

    D Q 2 4D Q 2 5D Q 2 6D Q 2 7

    U 2 1I/O 0I/O 1I/O 2I/O 3

    U 4I/O 0I/O 1I/O 2I/O 3

    D Q 3 2D Q 3 3D Q 3 4D Q 3 5

    U 2 2I/O 0I/O 1I/O 2I/O 3

    U 5I/O 0I/O 1I/O 2I/O 3

    D Q 4 0D Q 4 1D Q 4 2D Q 4 3

    U 2 3I/O 0I/O 1I/O 2I/O 3

    U 6I/O 0I/O 1I/O 2I/O 3

    D Q 4 8D Q 4 9D Q 5 0D Q 5 1

    U 2 4I/O 0I/O 1I/O 2I/O 3

    U 7I/O 0I/O 1I/O 2I/O 3

    D Q 5 6D Q 5 7D Q 5 8D Q 5 9

    U 2 5I/O 0I/O 1I/O 2I/O 3

    U 8I/O 0I/O 1I/O 2I/O 3

    C B 0C B 1C B 2C B 3

    U 2 6I/O 0I/O 1I/O 2I/O 3

    U 9I/O 0I/O 1I/O 2I/O 3

    /D Q S 9

    D Q 4D Q 5D Q 6D Q 7

    D Q S 9

    U 2 7I/O 0I/O 1I/O 2I/O 3

    U 1 0I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 0

    D Q 1 2D Q 1 3D Q 1 4D Q 1 5

    D Q S 1 0

    U 2 8I/O 0I/O 1I/O 2I/O 3

    U 1 1I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 1

    D Q 2 0D Q 2 1D Q 2 2D Q 2 3

    D Q S 1 1

    U 2 9I/O 0I/O 1I/O 2I/O 3

    U 1 2I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 2

    D Q 2 8D Q 2 9D Q 3 0D Q 3 1

    D Q S 1 2

    U 3 0I/O 0I/O 1I/O 2I/O 3

    U 1 3I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 3

    D Q 3 6D Q 3 7D Q 3 8D Q 3 9

    D Q S 1 3

    U 3 1I/O 0I/O 1I/O 2I/O 3

    U 1 4I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 4

    D Q 4 4D Q 4 5D Q 4 6D Q 4 7

    D Q S 1 4

    U 3 2I/O 0I/O 1I/O 2I/O 3

    U 1 5I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 5

    D Q 5 2D Q 5 3D Q 5 4D Q 5 5

    D Q S 1 5

    U 3 3I/O 0I/O 1I/O 2I/O 3

    U 1 6I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 6

    D Q 6 0D Q 6 1D Q 6 2D Q 6 3

    D Q S 1 6

    U 3 4I/O 0I/O 1I/O 2I/O 3

    U 1 7I/O 0I/O 1I/O 2I/O 3

    /D Q S 1 7

    C B 4C B 5C B 6C B 7

    D Q S 1 7

    U 3 5I/O 0I/O 1I/O 2I/O 3

    V T TA ll a d d re s s /c o m m a n d /c o n tro l/c lo c k

    V D D S P D

    V D D

    V R E F

    V S S

    S P D , A M B

    U 0 ~ U 3 5 , A M B

    U 0 ~ U 3 5

    U 0 ~ U 3 5 , S P D , A M B

    V T T T e rm in a to rs

    V C C A M B

    C K E 1 -> C K E (U 1 8 ~ U 3 5 )

    S A 0

    D Q S 1/D Q S 1

    D Q S 2/D Q S 2

    D Q S 3/D Q S 3

    D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D M /C S D Q S /D Q S D M /C S D Q S /D Q S

    D Q S 4/D Q S 4

    D Q S 5/D Q S 5

    D Q S 6/D Q S 6

    D Q S 7/D Q S 7

    D Q S 8/D Q S 8

    This technical information is based on industry standard data and tests believed to be reliable. However, Transcend makes no warranties, either expressed or implied, as to its accuracy and assume no liability in connection with the use of this product. Transcend reserves the right to make changes in specifications at any time without prior notice.

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 5

    Absolute Maximum Ratings Parameter Symbol Value Unit Notes

    Voltage on any pin relative to Vss Vin, Vout -0.3~1.75 V 1 Voltage on Vcc pin relative to Vss Vcc -0.3~1.75 V 1 Voltage on VDD relative to Vss VDD -0.5~2.3 V 1 Voltage on VTT pin relative to Vss VTT -0.5 ~ 2.3 V 1 Storage temperature TSTG -55~+100 °C 1 DDR2 SDRAM device operation temperature (Ambient) Tcase 0~85 °C 1,2 AMB device operation temperature (Ambient) Tj 0~110 °C 1,2

    1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability.

    Note:

    2. DDR2 SDRAM of FBDIMM should require this specification.

    Input DC Operation Condition Parameter Symbol MIN Nom MAX Unit Notes

    AMB supply voltage Vcc 1.46 1.50 1.54 V DDR2 SDRAM supply voltage VDD 1.7 1.8 1.9 V Termination voltage VTT 0.48xVDD 0.50xVDD 0.52xVDD V EEPROM supply voltage VDDSPD 3.0 3.3 3.6 V SPD Input HIGH (logic 1) voltage VIH(DC) 2.1 - VDDSPD V 1 SPD Input LOW (logic 0) voltage VIL(DC) - 0.8 V 1 RESET Input HIGH (logic 1) voltage VIH(DC) 1.0 - V 2 RESET Input LOW (logic 0) voltage VIL(DC) - 0.5 V 1 Leakage Current (RESET) IL -90 - 90 uA 2 Leakage Current (link) IL -5 - 5 uA 3

    1.Applies for SMB and SPD bus signals. 2.Applies for AMB CMOS signal RESET #.

    Note:

    3.For all other AMB related DC parameter. Please refer to the high-speed differential link specification.

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 6

    Timing Parameters Parameter Symbol MIN Nom MAX Unit Note

    EI Assertion Pass-Thru Timing tEI Propagate t 4 clks -

    EI Deassertion Pass-Thru Timing tEID Bitlock clks 2

    EI Assertion Duration tEI 100 clks 1,2

    FBD Cmd to DDR Clk out that latches Cmd 8.1 ns 3

    FBD Cmd to DDR Write TBD ns

    DDR Read to FBD (last DIMM) 5.0 ns 4

    Resample Pass-Thru time 1.075 ns

    ResynchPass-Thru time 2.075 ns

    Bit Lock Interval tBitLock 119 frames 1

    Frame Lock Interval tFrameLock 154 frames 1 1. Defined in FB-DIMM Architecture and Protocol Spec 2. Clocks defined as core clocks = 2x SCK input

    Note:

    3. @DDR2-667 - measured from beginning of frame at southbound input to DDR clock output that latches the first command of a frame to the DRAMs

    4. @ DDR2-667 - measured from latest DQS input AMB TO start of matching data frame at northbound FB-DIMM outputs.

    VTT Currents Description Symbol Typ MAX Units

    Idle current, DDR2 SDRAM device power down ITT1 500 700 mA Active power, 50% DDR2 SDRAM BW ITT2 500 700 mA

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 7

    Power specification parameter and test condition Symbol Condition Power Supply Units

    Icc_Idle_0 1.5V MA Icc_Idle_0

    Idle Current, single or last DIMM L0 state, idle (0 BW) Primary channel enabled, Secondary Channel Disabled CKE high. Command and address lines stable. DRAM clock active.

    1.8V mA

    Idd_Idle_0 Total Power W Icc_Idle_1 1.5V mA Icc_Idle_1

    Idle Current, first DIMM L0 state, idle (0 BW) Primary and Secondary channels enabled CKE high. Command and address lines stable. DRAM clock active.

    1.8V mA

    Idd_Idle_1 Total Power W Icc_Idle_2 1.5V mA Icc_Idle_2

    Idle Current, DRAM power down L0 state, idle (0 BW) Primary and Secondary channels enabled CKE low. Command and address lines floated. DRAM clock active, ODT and CKE driven low.

    1.8V mA

    Idd_Idle_2 Total Power W Icc_Active_1 1.5V mA Idd_Active_1

    Active Power L0 state. 50% DRAM BW, 67% read, 33% write. Primary and Secondary channels enabled. DRAM clock active, CKE high.

    1.8V mA

    Idd_Active_1 Total Power W Icc_Active_2 1.5V mA Idd_Active_2

    Active Power, data pass through L0 state. 50% DRAM BW to downstream DIMM, 67% read, 33% write. Primary and Secondary channels enabled CKE high. Command and address lines stable. DRAM clock active.

    1.8V mA

    Idd_Active_2 Total Power W Icc_L0s 1.5V mA Idd_L0s

    Channel Standby Average power over 42 frames where the channel enters and exits L0s. DRAMs Idle (0 BW). CKE low. Command and address lines floated DRAM clock active, ODE and CKE driven low.

    1.8V mA

    Idd_L0s Total Power W Idd Traning

    (for AMB spec, Not in SPD)

    1.5V mA

    Training Primary and Secondary channels enabled. 100% toggle on all channel lanes DRAMs idle. 0 BW. CKE high, Command and address lines stable. DRAM clock active.

    1.8V mA

    Idd_Training Total Power W

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 8

    Power specification (Vdd Max = 1.900V , Vcc Max = 1.575V) 4GB Notes Unit

    Icc_Idle_0 TBD 1.5V mA Idd_Idle_0 TBD 1.8V mA P_idle_0 TBD W

    Icc_Idle_1 TBD 1.5V mA Idd_Idle_1 TBD 1.8V mA P_idle_1 TBD W

    Icc_active_1 TBD 1.5V mA Idd_active_1 TBD 1.8V mA P_active_1 TBD W

    Icc_active_2 TBD 1.5V mA Idd_active_2 TBD 1.8V mA P_active_2 TBD W Icc_training TBD 1.5V mA Idd_training TBD 1.8V mA P_training TBD W

    Reference Clock Input Specification

    Values Parameter Symbol MIN MAX

    Units Note

    Reference clock frequency @3.2 Gb/s (nominal 133.33 MHz)

    FRefclk-3.2 126.67 133.40 MHz 1,2

    Reference clock frequency @4.0 Gb/s (nominal 166.67 MHz)

    FRefclk-4.0 158.33 166.75 MHz 1,2

    Rise time, fall time TSCK-RISE, TSCK-FULL 175 700 ps 3 Voltage high VSCK-HIGH 660 850 mV Voltage low VSCK-LOW -150 mV Absolute crossing point VCROSS-ABS 250 550 mV 4 Relative crossing VCROSS-REL calculated calculated 4,5 Percent mismatch between rise and fall times

    VSCK-RISE-FALL-MATCH - 10 %

    Duty cycle of reference clock VSCK-DUTYCYCLE 40 60 % Clock leakage current II-CK -10 10 uA 6,7 Clock input capacitance CI-CK 0.5 2 pF 7 Clock input capacitance delta CI_CK(D) -0.25 0.25 pF 8 Transport delay T1 5 ns 9,10 Phase jitter sample size NSAMPLE 1016 Periods 11 Reference clock jitter, filtered TREF-JITTER 40 ps 12,13 Reference clock deterministic jitter TREF-DJ TBD ps

    1.133MHz for PC2-4200 and 166MHz for PC2-5300. 2. Measured with SSC disabled. 3. Measured differentially through the range of 0.175V to 0.525V. 4. The crossing point must meet the absolute and relative crossing point specification simultaneously. 5. VCROSS_REL_(MIN) and VCROSS_REL(MAX) are derived using the following calculation : Min =

    0.5(Vhavg-0.710)+0.250;and Max=0.5(Vhavg-0.710)+0.550, where Vhavg is the average of VSCK-HIGHM.

    Note:

    6. Measured with a single-ended input voltage of 1V.

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 9

    7. Applies to reference clocks SCK and SCK. 8. Difference between SCK and SCK input. 9. T1 = [Tdatapath-Tclockpath](excluding PLL loop delays). This parameter is not a direct clock output parameter

    but in indirectly determines the clock output parameter TREF-JITTER. 10. The net transport delay is the difference in time of flight between associated data and clock paths. The data

    path is defined from the reference clock source, through the TX, to data arrival at the data dampling point in the RX. The clock path is defined from the reference clock source to clock arrival at the same sampling point. The path delays are caused by copper trace routes, on-chip routing, on-chip buffering, etc. They include the time-of flight of interpolators or other clock adjustment mechanisms. They do not include the phase delays caused by finite PLL loop bandwidth because these delays are modeled by the PLL transfer functions.

    11. Direct measurement of phase jitter records over 1016 periods is impractical. It is expected that the jitter will be measured over a smaller, yet statistically significant, sample size and the total jitter at 1016 samples extrapolated from an estimate of the sigma of the random jitter components.

    12. Measured with SSC enabled on reference clock generator.

    13. As measured after the phase jitter filter. This number is separate from the receiver jitter budget that is defined by the TRXTotal – MIN parameters

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 10

    Differential Transmitter Output Specification Parameter Symbol Min Max Units Comments

    Differential peak-to-peak output voltage for large voltage swing

    VTX-DIFFp-p_L 900 1300 mV EQ1,Note1

    Differential peak-to -peak output voltage for reqular voltage swing

    VTX-DIFFp-p_R 800 - mV EQ1,Note1

    Differential peak-to-peak output voltage for small votage swing

    VTX-DIFFp-p_S 520 - mV EQ1,Note1

    DC common code output voltage for large voltage swing

    VTX-CM_L - 375 mV EQ2,Note1

    DC common code output voltage for small voltage swing

    VTX-CM_S 135 280 mV EQ2,Note1,2

    De-emphasized differential output voltage ratio for -3.5 dB de-emphasis

    VTX-DE-3.5-Ratio -3.0 -4.0 dB 1,3,4

    De-emphasized differential output voltage ratio for -6.0 dB de-emphasis

    VTX-DE-6.0-Ratio -5.0 -7.0 dB 1,2,3

    AC peak-to-peak common mode output voltage for large swing

    VTX-CM-Acp-p-L - 90 mV EQ7,Note1,5

    AC peak-to-peak common mode output voltage for regular swing

    VTX-CM-Acp-p-R - 80 mV EQ7,Note1,5

    AC peak-to-peak common mode output voltage for small swing

    VTX-CM-Acp-p-S - 70 mV EQ7,Note1,5

    Maximum single-ended voltage in EI condition DC+AC

    VTX-IDLE-SE - 50 mV 6

    Maximum single-ended voltage in EI condition DC+AC

    VTX-IDLE-SE-DC - 20 mV 6

    Maximum peak-to-peak differential voltage in EI condition

    VTX-IDLE-DIFF-p-p - 40 mV

    Single-ended voltage (w.r.t. VSS) on D+/D- VTX-SE -75 750 mV 1,7 Mimimum TX eye width, 3.2 and 4.0 Gb/s VTX-Eye-MIN 0.7 - UI 1,8 Mimimum TX eye width 4.8 Gb/s VTX-Eye-MIN4.8 TBD - UI 1,8 Maximum TX deterministic jitter, 3.2 and 4.8Gb/s

    VTX-DJ-DD - 02 UI 1,8,9

    Maximum TX deterministic jitter, 4.8 Gb/s VTX-DJ-DD-4.8 - TBD UI 1,8,9 Insantaneous pulse width VTX-PULSE 0.85 - UI 10 Differential TX output rise/fall time VTX-RISE TTX-FALL 30 90 ps 20~80% voltage, Note1Mismatch between rise and fall times VTX-RF-MISMATCH - 20 ps Differential return loss RLTTX-DIFF 8 - dB 1~2.4GHz, Note11 Common mode return loss RLTTX-CM 6 - dB 1~2.4GHz, Note11 Transmitter termination impender RTX 41 55 12

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 11

    D+/D-TX Impedance difference RTX-MATCH-DC - 4 % EQ 4, Boundaries are applied separately to high and low output voltage states

    Lane-to lane skew at TX LTX-SKEW1 - 100+3UI ps 13,15 Lane-to lane skew at TX LTX-SKEW2 - 100+2UI ps 14,15

    Differential Receiver Input Specification

    Parameter Symbol Min Max Unit Comments Differential peak-to-peak input voltage for large voltage swing VRX-DIFFp-p

    170 TBD mV EQ5, Note1

    Maximum single-ended voltage in El condition VRX-IDEL-SE - 75 mV 2,3 Maximum single-ended voltage in Ei condition (DC only) VRX-IDEL-SE-DC - 50 mV 2,3

    Maximum peak-to-peak differential voltage in El condition VRX-IDEL-DIFFp-p - 65 mV 3

    Single-ended voltage (w.r.t. VSS) on D+/D- VRX-SE -300 900 mV 4

    Single-pulse peak differential input voltage VRX-DIFF-PULSE 85 - mV 4,5

    Amplitude ratio between adjacent symbols VRX-DIFF-ADJ-RATIO - TBD 4,6 Maximum RX inherent timing error, 3.2 and 4.0 Gb/x TRX-TJ-MAX - 0.4 UI 4,7,8

    Maximum RX inherent deterministic timing error, 3.2 and 4.8 Gb/s TRX-TJ-MAX4.8 - TBD UI 4,7,8

    Single-pulse width as zero-voltage crossing VRX-DJ-DD - 0.3 UI 4,7,8,9

    Skingle-pulse width at minimum-level crossing VRX-DJ-DD-4.8 - TBD UI 4,7,8,9

    Differential RX input rise/fall time VRX-PW-ZC 0.55 - UI 4,5

    common mode fo the input voltage VRX-PW-ML 0.2 - UI 4,5

    Differential RX output rise/fall time TRX-RISE TRX-FALL 50 - ps 20~80% voltage

    Common mode of input voltage VRX-CM 120 400 mV EQ6, Note1,10 AC peak-to-peak common mode of input voltage VRX-CM-Acp-p - 270 mV EQ7, Note1

    Ratio of VRX-CM-ACp-p to minimum VRX-DIFFp-p VRX-CM-EH-RATOP - 45 % 11

    Differential return loss RLRX-DIFF 9 - dB 1~2.4GHz, Note12

    Common mode return loss RLRX-CM 6 - dB 1~2.4GHz, Note12

    RX termination impedance RRX 41 55 Ω 13 D+/D- RX Impedance difference RRX-MATCH-DC - 4 % EQ8

    Lane-to lane PCB skew at RX LRX-PCB-SKEW - 6 UI

    Lane-to-lane skew at the receiver that must be tolerated. Note 14

    Minimum RX drift tolerance TRX-DRIFT 400 - ps 15

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 12

    Minim data tracking 3dB bandwidth FTRK 0.2 - MHz 16

    Electrical idle entry detect time TEI-ENTRY-DETECT - 60 ns 17

    Electrical idle exit detect time TEI-EXIT-DETECT - 30 ns

    Bit Error Ratio BER - 10-12 18 1. Specified at the package pins into a timing and voltage compliant test setup. Note that signal levels at the pad

    will be lower than at the pin. 2. Single-ended voltages below that value that are simultaneously detected on D+ and D-are interpreted as the

    Electrical Idle condition. Worst-case margins are determined for the case with transmitter using small voltage swing.

    3. Multiple lanes need to detect the El condition before the device can act upon the El detection. 4. Specified at the package pins into a timing and voltage compliance test setup. 5. The single-pulse mask provides suffcient symbol energy for reliable RX reception. Each symbol must comply

    with both the single-pulse mask and the cumulative eyemask. 6. The relative amplitude ratio limit between adjacent symbols prevents excessive intersymbol interference in the

    RX. Each symbol must comply with the peak amplitude ratio with regard to both the preceding and subsequent symbols.

    7. This number does not include the effects of SSC or reference clock jitter. 8. This number includes setup and hold of the RX sampling flop. 9. Defined as the dual-dirac deterministic timing error. 10. Allows for 15 mV DC offset between transmit and receive devices. 11. The received differential signal must satisfy both this ratio as well as the absolute maximum AC peaktopeak

    common mode specification. For example, if VRX-DIFFp-p is 200 mV, the maximum AC peak-to peak common mode is the lesser of (200 mV*0.45=90mV)and VRX-CM-AC-p-p.

    12. One of the components that contribute to the deterioration of the return loss is the ESD structure which needs to be carefully designed.

    13. The termination small signal resistance; tolerance across voltage from 100 mV to 400 mV shall not exceed +/-5 W with regard to the average of the values measured at 100 mV and at 400 mV for that pin.

    14. This number represents the lane-to-lane skew between TX and RX pins and does not include the transmitter output skew from the component of the end-to-end channel skew in the AMB specification.

    15. Measured from the reference clock edge to the center of the input eye. This specification must be met across specified voltage and temperature ranges for a single component. Drift rate of change is significantly below the tracking capability of the receiver.

    16. This bandwidth number assume the specified minimum data transition density. Maximum jitter at 0.2 MHz is 0.05 UI,

    17. The specified time includes the time required to forward the El entry condition.

    Note:

    18. BER per differential lane.

    VRX-DIFFp-p = 2x[VRX-D+-VRX-D-] (EQ5)

    (VRX-CM = DC(avg) of [VRX-D+ + VRX-D-] /2) (EQ 6)

    VRX-CM-AC=((Max[VRX-D+ + VRX-D]/2]((Min [VRX-D+ + VRX-D-]/2] (EQ 7) RRX-MATCH-DC = 2x((RRX-D+-RRX-D-)/(RRX-D+ + RRX-D-) (EQ 8)

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 13

    SERIAL PRESENCE DETECT SPECIFICATION Serial Presence Detect

    Byte No. Function Described Standard Specification Vendor Part

    0 Number of Serial PD Bytes Written / SPD Device Size / CRC Coverage

    CRC coverage 0~116Byte, SPD Byte Total :256Byte, SPD Byte Use : 176Byte

    92h

    1 SPD Revision Revision 1.1 11h 2 Key Byte / DRAM Device Type DDR2 SDRAM FB-DIMM 09h 3 Voltage Levels of this Assembly Channel 1.8V /DRAM 1.5V 12h

    4 SDRAM Addressing

    Number of Row Address : 14, Number of Col Address : 11, Number of Bank Address : 8

    49h

    5 Module Physical Attributes Thickness : Under 8.2mm, Height : 30.35mm 24h

    6 Module Type / Thickness FBDIMM(width 133.35mm) 07h 7 Module Organization 2Rank/x4 10h 8 Fine Timebase Dividend and Divisor 5 ps 51h 9 Medium Timebase Dividend 1 01h 10 Medium Timebase Divisor 4 04h 11 SDRAM Minimum Cycle Time (tCKmin) 3ns 0Ch 12 SDRAM Maximum Cycle Time (tCKmax) 8ns 20h 13 SDRAM CAS Latencies Supported CL 3, 4, 5 33h 14 SDRAM Minimum CAS Latency Time (tAA) 15ns 3Ch 15 SDRAM Write Recovery Times Supported 2,3 clk 22h 16 SDRAM Write Recovery Time (tWR) 15ns 3Ch 17 SDRAM Write Latencies Supported 2,3,4,5 clk 42h 18 SDRAM Additive Latencies Supported 0,1,2,3 clk 40h 19 SDRAM Minimum RAS to CAS Delay (tRCD) 15ns 3Ch

    20 SDRAM Minimum Row Active to Row Active Delay (tRRD) 7.5ns 1Eh

    21 SDRAM Minimum Row Precharge Time (tRP) 15ns 3Ch 22 SDRAM Upper Nibbles for tRAS and tRC - 00h 23 SDRAM Minimum Active to Precharge Time (tRAS) 45ns B4h

    24 SDRAM Minimum Auto-Refresh to Active/Auto-Refresh Time (tRC) 55ns DCh

    25 SDRAM Minimum Auto-Refresh to Active/Auto-Refresh Command Period (tRFC)

    127.5ns FEh

    26 SDRAM Minimum Auto-Refresh to Active/Auto-Refresh Command Period (tRFC)

    127.5ns 01h

    27 SDRAM Internal Write to Read Command Delay (tWTR) 7.5ns 1Eh

    28 SDRAM Internal Read to Precharge Command Delay (tRTP) 7.5ns 1Eh

    29 SDRAM Burst Lengths Supported BL 4,8 03h 30 SDRAM Terminations Supported 50, 75, 150 ohm 07h 31 SDRAM Drivers Supported Weak Drivers 01h

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 14

    32 SDRAM Average Refresh Interval (tREFI) / Double Refresh mode bit / High Temperature self-refresh rate support indication

    7.8us 02h

    33 Bits 7:4: Tcasemax Delta 3:0: DT4R4W Delta 85°C/ 0.40°C 01h 34 Thermal resistance of SDRAM 24.5 31h 35 DT0 0.3°C 04h

    36 DT2N/DT2Q 1.5°C 0Fh

    37 DT2P 0.15°C 0AH

    38 DT3N 1.65°C 0Bh

    39 DT4R/Mode Bit: Bits 7:1: Case temperature rise from ambient due to IDD4R/page open 9.6°C, DT4W is greater

    than DT4R 18h

    40 DT5B: Case temperature rise from ambient due to IDD5B/burst refresh operation 9°C 12h

    41 DT7: Case temperature rise from ambient due to IDD7/bank interleave read mode operation 10.5°C 15h

    42~78 Reserved Reserved 00h

    79 ODT definition Rank0(150ohm), Rank1(75ohm) 12h

    80 Reserved Reserved 00h

    81 FB-DIMM Channel Protocols Supported Least Significant Byte - 02h

    82 FB-DIMM Channel Protocols Supported Most Significant Byte - 00h

    83 b2b access turnaround bubble (assumes at tCK) - 00h 84 CMD2DATA (800) - 36h 85 CMD2DATA (667) - 34h 86 CMD2DATA (533) - 32h 87 TR AMB (free air JEDEC) - 2Ah 88 AMB DT Idle_0 - 5Eh 89 AMB DT Idle_1 - 73h 90 AMB DT Idle_2 - 5Ch 91 AMB DT Active_1 - 9Bh 92 AMB DT Active_2 - 80h 93 AMB DT L0s - 00h 94 reserved (TR dram) - 00h 95 reserved (TR AMB) - 00h 96 reserved (TR DRAM2AMB) - 00h 97 reserved (TR AMB2DRAM) - 00h 98 AMB Junction Temperature Maximum(Tj max) 125°C 1Fh 99 Air Flow Impedance,DRAM type, HS Type Type3,Planar,FDHS 0Ah

    100 reserved - 00h 101 AMB Personality Bytes: Pre-initialization - 40h 102 AMB Personality Bytes: Pre-initialization - C0h 103 AMB Personality Bytes: Pre-initialization - 02h 104 AMB Personality Bytes: Pre-initialization - 44h

  • TTTSSS777QQQFFFTTT222666222222000---666SSS 240PIN DDR2 667 Fully Buffered DIMM

    4GB With 256Mx4 CL5

    Transcend Information Inc. 15

    105 AMB Personality Bytes: Pre-initialization - 9Ch 106 AMB Personality Bytes: Pre-initialization - 30h 107 AMB Personality Bytes: Post-initialization - 60h 108 AMB Personality Bytes: Post-initialization - 33h 109 AMB Personality Bytes: Post-initialization - 60h 110 AMB Personality Bytes: Post-initialization - 1Bh 111 AMB Personality Bytes: Post-initialization - 60h 112 AMB Personality Bytes: Post-initialization - 1Bh 113 AMB Personality Bytes: Post-initialization - 60h 114 AMB Personality Bytes: Post-initialization - 1Bh 115 AMB Manufacturer’ s JEDEC ID Code IDT 80h

    116 AMB Manufacturer’ s JEDEC ID Code IDT B3h

    117~118 Module ID: Module Manufacturer’ s JEDEC ID Code

    Transcend 01h, 4Fh

    119 Module ID: Module Manufacturing Location T 54 120~125 Module ID: Module Manufacturing Date - 00h 126~127 Cyclical Redundancy Code - B5h, 1Fh

    54 53 35 31 32 4D

    46 42 37 32 56 36128~145 Manufacturers Part Number TS7QFT26220-6S

    54 2D 54 20 20 20146~147 Module Revision Code - 30h,20h 148~149 SDRAM Manufacturer's JEDEC ID Code Micron 80h, 2Ch 150~175 Manufacturer's Specific Data - 00h 176~255 Open for customer use - 00h

    TS7QFT26220-6S.pdfDescription Input DC Operation Condition Timing Parameters MAX

    Power specification parameter and test condition

    ParameterSymbolUnitsComments