31
Tobias Pusch Daniel Jaschke Betreuer: Prof. Dr. J. Ankerhold Dr. L. Kecke Hauptseminar Quantenmechanisches Tunneln Tunnelzeit Ulm 16.12.2010 Institut für Theoretische Physik

Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Tobias Pusch Daniel Jaschke

Betreuer: Prof. Dr. J. Ankerhold Dr. L. Kecke

Hauptseminar Quantenmechanisches Tunneln

Tunnelzeit

Ulm 16.12.2010

Institut für Theoretische Physik

Page 2: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Agenda

1. Definitions and background

2. Dwell time

5. Further concepts

3. Phase times

4. Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 2

Agenda

7. Conclusions

6. Results of some experiments

Page 3: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Definition of the environment

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 3

1. Basics

x b a x

d

    1                                                                                                                                                                               2 

I II III V

x

!(x) =

!""""#

""""$

!I(x, k) = eikx +!Rei!e"ikx x < b

!II(x, k) b < x < a

!III(x, k) =!Tei"eikx x > a

(1)

any

shap

e

Page 4: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Scheme of reflection and transmission

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 4

1. Basics

([1], p. 924)

Page 5: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Three ways of time measurement

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 5

1. Basics

1.) Peak

2.) Center of mass

3.) Wave front

After tunneling

1.) The peak could change his position. 2.) The center of mass could change his position. 3.) Incabability of measurement unless you have a rectangular wave-packet.

Page 6: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Definition of different tunneling times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 6

1. Basics

•Dwell time: !D(x1, x2, k)• Phase time: !"T (x1, x2, k)• Extrapolated phase time: !!"T• Local Larmor time: !LyT• Büttiker-Landauer time: !BLT

Page 7: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Agenda

1. Definitions and background

2. Dwell time

5. Further concepts

3. Phase times

4. Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 7

Agenda

7. Conclusions

6. Results of some experiments

Page 8: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Characteristics

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 8

2. Dwell time

Problems of the dwell time: •  v(k) is in general not constant •  The dwell time is an average time taken over both channels •  Mathematical approach Could not be checked in an experiment

Dwell time

!D(x1, x2, k) = 1v(k)

! x2

x1dx | "(x, k) |2 d!1"

x1=b,x2=a

2mk

!#k20

(2)

=# limk$0

!D(d, k) = 0 (3)

• d = 0 =# R = 0 =# !D(x1, x2, k) = x1%x2v(k)

• d $ & =# T = 0 =# !D(x1, x2, k) = 0•

• !D(x1, x2, k) = R · !R + T · !T

Dwell time

!D(x1, x2, k) = 1v(k)

! x2

x1dx | "(x, k) |2 d!1"

x1=b,x2=a

2mk

!#k20

(2)

=# limk$0

!D(d, k) = 0 (3)

• d = 0 =# R = 0 =# !D(x1, x2, k) = x1%x2v(k)

• d $ & =# T = 0 =# !D(x1, x2, k) = 0•

• !D(x1, x2, k) = R · !R + T · !T

Page 9: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Usage: Revise other results

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 9

2. Dwell time

Dwell time

!D(x1, x2, k) = 1v(k)

! x2

x1dx | "(x, k) |2 d!1"

x1=b,x2=a

2mk

!#k20

(2)

=# limk$0

!D(d, k) = 0 (3)

• d = 0 =# R = 0 =# !D(x1, x2, k) = x1%x2v(k)

• d $ & =# T = 0 =# !D(x1, x2, k) = 0•

• !D(x1, x2, k) = R · !R + T · !T

If you assume, that the dwell time is a good expression for the tunneling time, you can compare other results for the tunneling time to the dwell time. Especially in two cases it is quite easy:

For any other case, consider the convex combination of your result:

The results for this comparison are integrated in the following presentation of the other times.

Page 10: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Agenda

1. Definitions and background

2. Dwell time

5. Further concepts

3. Phase times

4. Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 10

Agenda

7. Conclusions

6. Results of some experiments

Page 11: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Definitions for a rectangular potential

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 11

3. Phase time

Phase time

k20 = 2mV0

! , k2 = 2mE

! , !2 = k20 ! k2 (4)

b = 0 (5)

eikx+i!t Barrier="!"#

"$

Reflection:#

Rei"(k)eikx+i!t

Transmission:#

Tei#(k)eikx+i!t(6)

%T (k) exp

&

'i"(k) + ikx ! iE(k)t!

(

) (7)d

dk (7)=" d

dk"(k) + xpeak ! E(k)t

!!= 0 (8)

v(k) = "$

v(k) = !k

m= const. (9)

#$T (x1, x2, k) = 1

v(k) · (x2 ! x1 + "$(k)) (10)

!#$T (b, a, k) = 1

v(k) · (a ! b + "$(k)) = 1v(k) · (a ! "$(k)) (11)

#$R(x1, k) = 1

v(k) · (!2x1 + $$(k)) (12)

!#$R(b, k) = 1

v(k) · (!2b + $$(k)) == $$(k)v(k) (13)

!d % 1 =" !#$R(d, k) & 2m

!k!& !#$

T (d, k) (14)

Page 12: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Derivation of the phase time

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 12

3. Phase time

Phase time

k20 = 2mV0

! , k2 = 2mE

! , !2 = k20 ! k2 (4)

b = 0 (5)

eikx+i!t Barrier="!"#

"$

Reflection:#

Rei"(k)e!ikx

Transmission:#

Tei#(k)eikx(6)

%T (k) exp

&

'i"(k) + ikx ! iE(k)t!

(

) (7)d

i·dk (7)=" d

dk"(k) + xpeak ! dE(k)

dk

t

!!= 0 (8)

=" v(k) = !k

m= const., #T = "$

v(k) (9)

$$T (x1, x2, k) = 1

v(k) · (x2 ! x1 + "$(k)) (10)

!$$T (b, a, k) = 1

v(k) · (a ! b + "$(k)) = 1v(k) · (a ! "$(k)) (11)

$$R(x1, k) = 1

v(k) · (!2x1 + %$(k)) (12)

!$$R(b, k) = 1

v(k) · (!2b + %$(k)) = %$(k)v(k) (13)

!d % 1 =" !$$R(d, k) & 2m

!k!& !$$

T (d, k) (14)

Page 13: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Derivation of the phase time

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 13

3. Phase time

Phase time

k20 = 2mV0

! , k2 = 2mE

! , !2 = k20 ! k2 (4)

b = 0 (5)

eikx+i!t Barrier="!"#

"$

Reflection:#

Rei"(k)eikx+i!t

Transmission:#

Tei#(k)eikx+i!t(6)

%T (k) exp

&

'i"(k) + ikx ! iE(k)t!

(

) (7)d

dk (7)=" d

dk"(k) + xpeak ! E(k)t

!!= 0 (8)

v(k) = "$

v(k) = !k

m= const. (9)

#$T (x1, x2, k) = 1

v(k) · (x2 ! x1 + "$(k)) (10)

!#$T (b, a, k) = 1

v(k) · (a ! b + "$(k)) = 1v(k) · (a ! "$(k)) (11)

#$R(x1, k) = 1

v(k) · (!2x1 + $$(k)) (12)

!#$R(b, k) = 1

v(k) · (!2b + $$(k)) == $$(k)v(k) (13)

!d % 1 =" !#$R(d, k) & 2m

!k!& !#$

T (d, k) (14)

Phase time

k20 = 2mV0

! , k2 = 2mE

! , !2 = k20 ! k2 (4)

b = 0 (5)

eikx+i!t Barrier="!"#

"$

Reflection:#

Rei"(k)eikx+i!t

Transmission:#

Tei#(k)eikx+i!t(6)

%T (k) exp

&

'i"(k) + ikx ! iE(k)t!

(

) (7)d

dk (7)=" d

dk"(k) + xpeak ! E(k)t

!!= 0 (8)

v(k) = "$

v(k) = !k

m= const. (9)

#$T (x1, x2, k) = 1

v(k) · (x2 ! x1 + "$(k)) (10)

!#$T (b, a, k) = 1

v(k) · (a ! b + "$(k)) = 1v(k) · (a ! "$(k)) (11)

#$R(x1, k) = 1

v(k) · (!2x1 + $$(k)) (12)

!#$R(b, k) = 1

v(k) · (!2b + $$(k)) == $$(k)v(k) (13)

!d % 1 =" !#$R(d, k) & 2m

!k!& !#$

T (d, k) (14)

The phase time is defined by v(k) and the distance between the two points at each side of the barrier (x ) plus a third term representing the delay caused by the barrier.

Searching for an expression for the time in the barrier, you can build the limes for x and x to b and a, once again assuming a constant velocity. This is called the extrapolated phase time:

1                    2 

1/2 

Page 14: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

According to the proceedings with the times for the transmission, the phase time and the extrapolated phase time for the reflection can be defined:

Assuming a high potential with a not infinitesimal small width and a particle with a low energy, the extrapolated phase times can be approximated with:

Derivation of the phase time

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 14

3. Phase time

Phase time

k20 = 2mV0

! , k2 = 2mE

! , !2 = k20 ! k2 (4)

b = 0 (5)

eikx+i!t Barrier="!"#

"$

Reflection:#

Rei"(k)eikx+i!t

Transmission:#

Tei#(k)eikx+i!t(6)

%T (k) exp

&

'i"(k) + ikx ! iE(k)t!

(

) (7)d

dk (7)=" d

dk"(k) + xpeak ! E(k)t

!!= 0 (8)

v(k) = "$

v(k) = !k

m= const. (9)

#$T (x1, x2, k) = 1

v(k) · (x2 ! x1 + "$(k)) (10)

!#$T (b, a, k) = 1

v(k) · (a ! b + "$(k)) = 1v(k) · (a ! "$(k)) (11)

#$R(x1, k) = 1

v(k) · (!2x1 + $$(k)) (12)

!#$R(b, k) = 1

v(k) · (!2b + $$(k)) == $$(k)v(k) (13)

!d % 1 =" !#$R(d, k) & 2m

!k!& !#$

T (d, k) (14)

Phase time

k20 = 2mV0

! , k2 = 2mE

! , !2 = k20 ! k2 (4)

b = 0 (5)

eikx+i!t Barrier="!"#

"$

Reflection:#

Rei"(k)e!ikx

Transmission:#

Tei#(k)eikx(6)

%T (k) exp

&

'i"(k) + ikx ! iE(k)t!

(

) (7)d

i!dk (7)=" d

dk"(k) + xpeak ! dE(k)

dk

t

!!= 0 (8)

=" v(k) = !k

m= const., #T = "$

v(k) (9)

$$T (x1, x2, k) = 1

v(k) · (x2 ! x1 + "$(k)) (10)

!$$T (b, a, k) = 1

v(k) · (a ! b + "$(k)) = 1v(k) · (a ! "$(k)) (11)

$$R(x1, k) = 1

v(k) · (!2x1 + %$(k)) (12)

!$$R(b, k) = 1

v(k) · (!2b + %$(k)) = %$(k)v(k) (13)

!d % 1 =" !$$R(d, k) & 2m

!k!& !$$

T (d, k) (14)

Page 15: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Problems of the phase time

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 15

3. Phase time

Check with the dwell time:

• Interference at the barrier is not considered •  v(k) is in general not constant •  measurement in relation to the peak of the wave package

Problem of phase time

limk!0

!D(x1, x2, k) (3)= 0 "= limk!0

2m

!"k= # (15)

Page 16: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Agenda

1. Definitions and background

2. Dwell time

5. Further concepts

3. Phase times

4. Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 16

Agenda

7. Conclusions

6. Results of some experiments

Page 17: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Semiclassical background of Larmor time

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 17

4. Larmor time

b a

V

x y z

Magnetic Field

Larmor time

!L = gqB02m

(16)

"LyT (x1, x2, k) = lim

!L!0"sy#T

$12!!L

(17)

"LzT (x1, x2, k) = lim

!L!0"sz#T

$12!!L

% md

!#(18)

(19)

Larmor time

!L = gqB02m

(16)

"LyT (x1, x2, k) = lim

!L!0"sy#T

$12!!L

(17)

"LzT (x1, x2, k) = lim

!L!0"sz#T

$12!!L

% md

!#(18)

(19)

spin

Page 18: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Definition of the Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 18

4. Larmor time

For the local Larmor times both components are used to define tunneling times. Therefore you always consider the average of the spins. First Rybachenko took the y-component to define the first Larmor time:

He came to the result, that this time is equal to the dwell time.

In the same approach, Büttiker defined the Larmor time for the z-component of the spin. He had the opinion, that under special circumstances the transmitted particles prefer the spin up component.

Larmor time

!L = gqB02m

(16)

"LyT (x1, x2, k) = lim

!L!0"sy#T

$12!!L

(17)

"LzT (x1, x2, k) = lim

!L!0"sz#T

$12!!L

% md

!#(18)

Larmor time

!L = gqB02m

(16)

"LyT (x1, x2, k) = lim

!L!0"sy#T

$12!!L

(17)

"LzT (x1, x2, k) = lim

!L!0"sz#T

$12!!L

% md

!#(18)

Page 19: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

•  Impossibility to create a magnetic field with a sharp border •  Reflections at the beginning and the end of the magnetic field are possible (the potential is here changing!)

•  Both, Rybachenko and Büttiker, adjusted the x-component in the positive direction in front of the potential. Afterwards, they cannot measure the y- or z-component exactly, because the commutator is not zero.

Problem of this definitions

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 19

4. Larmor time

([1], p. 931)

Page 20: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Agenda

1. Definitions and background

2. Dwell time

5. Further concepts

3. Phase times

4. Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 20

Agenda

7. Conclusions

6. Results of some experiments

Page 21: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

The approach of Büttiker-Landauer

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 21

5. Further concepts

x b a x     1                                                                                                                                                                               2 

V

x

Büttiker-Landauer

V (t) = V0 + V1 cos(!t) (19)

IT±1(!) !

!!!!!!

A±1(!)A0

!!!!!!

2=

"V1

2!!

#2 "

exp"

±!md

!"

#

" 1#2

(20)

#BLT = md

!"(21)

E E + !! E " !!

Büttiker-Landauer

V (t) = V0 + V1 cos(!t) (19)

IT±1(!) !

!!!!!!

A±1(!)A0

!!!!!!

2=

"V1

2!!

#2 "

exp"

±!md

!"

#

" 1#2

(20)

#BLT = md

!"(21)

E E + !! E " !!

Büttiker-Landauer

V (t) = V0 + V1 cos(!t) (19)

IT±1(!) !

!!!!!!

A±1(!)A0

!!!!!!

2=

"V1

2!!

#2 "

exp"

±!md

!"

#

" 1#2

(20)

#BLT = md

!"(21)

E E + !! E " !!

Büttiker-Landauer

V (t) = V0 + V1 cos(!t) (19)

IT±1(!) !

!!!!!!

A±1(!)A0

!!!!!!

2=

"V1

2!!

#2 "

exp"

±!md

!"

#

" 1#2

(20)

#BLT = md

!"(21)

E E + !! E " !!

Büttiker-Landauer

V (t) = V0 + V1 cos(!t) (19)

IT±1(!) !

!!!!!!

A±1(!)A0

!!!!!!

2=

"V1

2!!

#2 "

exp"

±!md

!"

#

" 1#2

(20)

#BLT = md

!"(21)

E E + !! E " !!

Particles with a higher or lower energy are measured for a wide barrier and a high frequency. They can absorb energy while the potential is increasing or emit energy while the potential is decreasing.

Page 22: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

The approach of Büttiker-Landauer

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 22

5. Further concepts

This expression is equal to the Büttiker‘s Larmor time. But it should be discussed, why this should be the tunneling time in this “experiment“.

#

Energy

t

Büttiker-Landauer

V (t) = V0 + V1 cos(!t) (19)

IT±1(!) !

!!!!!!

A±1(!)A0

!!!!!!

2=

"V1

2!!

#2 "

exp"

±!md

!"

#

" 1#2

(20)

#BLT = md

!"(21)

E E + !! E " !!

Page 23: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Are tunneling times real?

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 23

5. Further concepts

So far, all considered tunneling times are real. If you assume, that the wave inside the barriere is still a plain wave (with a complex exponent), you can sketch a reason for a complex tunneling time.

In example, Sokolovski and Baskin proposed such a complex time defined over a path integral.

Complex time

!II = exp!

"i · x

#2m

!2 (E ! V0)$

% = exp!

"(i · x)!

"i

#2m

!2 (V0 ! E)$

%

& '( )=:!

$

% (22)

" = i · p

! = i · m · v

! = i · m · s

! · t

!" R (23)

m, s, ! " R =# t = i#, # " R (24)

Page 24: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Agenda

1. Definitions and background

2. Dwell time

5. Further concepts

3. Phase times

4. Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 24

Agenda

7. Conclusions

6. Results of some experiments

Page 25: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Nimtz – Scheme of his experiment

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 25

6. Experiments

x b a x     1                                                                                                                                                                               2 

V

x

x b a x     1                                                                                                                                                                               2 

V

x

Page 26: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Nimtz – A critical view

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 26

6. Experiments

•  He used microwaves for the both potentials. •  The first potential is higher than the energy of the incoming wave. For that reason the wave packet has to tunnel through the barrier. •  In contrast the second potential is below the energy of the wave. If you assume a classical case, the barrier does not matter. •  The information of the wave in the first case arrives earlier at the detector. Therefore Nimtz suggested, that the tunneling waves are faster.

Criticism: • Taking a classical perspective to explain a problem in quantum mechanics •  Measurement of the wave in relation to the peak (peak is not at a constant k for the tunneling wave)

Page 27: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Agenda

1. Definitions and background

2. Dwell time

5. Further concepts

3. Phase times

4. Larmor times

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 27

Agenda

7. Conclusions

6. Results of some experiments

Page 28: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Conclusion

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 28

7. Conclusions

•  As the mathematical and the experimental calculated real times seem to be false, the definition of an imaginary tunneling time is almost the only possibility left.

•  Based on the different approaches, it is clear, that each concept is trying to avoid the absence of a time-operator in quantum mechanics by defining an expression with the unity of a time.

•  The main problem of all concepts is, that these theories are based either on classical quantities (i.e. the definition of a time as the quotient of a distance over a velocity) or on a classical concept.

Page 29: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Questions?

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 29

7. Conclusions

Thank you for listening.

Bibliography: •  [1]: Reviews of Modern Physics, Vol. 61, No. 4, 1989: E.H. Hauge and J.A. Støvneng, “Tunneling times: a critical review” •  [2]: http://www.ethlife.ethz.ch/archive_articles/081205_keller_tunneling_sch/index •  [3]: http://theory.gsi.de/~vanhees/faq/nimtz/node7.html

Page 30: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Appendix

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 30

Appendix

•  Dwell time: The definition of the probability in (25) is well-known. The dwell time is defined by the integration of this probabilty over dt.

•  Unity check for the approximation of the dwell time in (2):

•  The relation between Büttiker‘s Larmor time and the Büttiker-Landauer time:

Appendix

P (t, x1, x2) =! x2

x1dx | !(x, t) |2 (25)

"̄D(x1, x2) =! !

0dtP (t, x1, x2) (26)

[m] · [k][!] · [#] · [k0]2

= [m][!] · [k0]2

= kg

Js · 1m2

= kg · m2

kg·m2

s2 s= s (27)

"sz#T $ "sy#T =% "BLT =

"#"L

yT

$2 +#"L

zT

$2 & "LzT (28)

Appendix

P (t, x1, x2) =! x2

x1dx | !(x, t) |2 (25)

"̄D(x1, x2) =! !

0dtP (t, x1, x2) (26)

[m] · [k][!] · [#] · [k0]2

= [m][!] · [k0]2

= kg

Js · 1m2

= kg · m2

kg·m2

s2 s= s (27)

"sz#T $ "sy#T =% "BLT =

"#"L

yT

$2 +#"L

zT

$2 & "LzT (28)

Appendix

P (t, x1, x2) =! x2

x1dx | !(x, t) |2 (25)

"̄D(x1, x2) =! !

0dtP (t, x1, x2) (26)

[m] · [k][!] · [#] · [k0]2

= [m][!] · [k0]2

= kg

Js · 1m2

= kg · m2

kg·m2

s2 s= s (27)

"sz#T $ "sy#T =% "BLT =

"#"L

yT

$2 +#"L

zT

$2 & "LzT (28)

Page 31: Hauptseminar Quantenmechanisches Tunneln Tunnelzeit · 1. Definitions and background 2. Dwell time 5. Further concepts 3. Phase times 4. Larmor times ... For any other case, consider

Appendix

Tobias Pusch - Daniel Jaschke

Hauptseminar Quantenmechanisches Tunneln: Tunnelzeit page 31

Appendix

Keller‘s way to measure tunneling times

•  Some theoretical physics are of the opinion that an electron needs only between 500 and 600 attoseconds for tunneling through a laser barriere. There was no way to measure such a short time until now.

•  Prof. Dr. Ursula Keller and her team are the first who can measure such a short time with a femtosecond laser puls. This puls is circular polarised and it needs for a 360 ° turn only 2,4 femtoseconds. For that reason it is possible to measure time with a fault of twelve attoseconds.

•  But also with this circular polarised laser it was not possible to measure the tunneling time of a particle. The explanation of this result by Prof. Dr. Keller was the idea that the tunneling time is not a time in classical case.