123
8/22/2019 TECHSTUFF4.11 http://slidepdf.com/reader/full/techstuff411 1/123 Compile January 14, 1997 Contents Data Printout 12/18/2013 WELCOME TO TECHSTUFF!! Month Year Date of Rev.  © 1997 David C. Farthing Revision 4.11 11 4.28.11  A Compilation of technical formula, solutions, and manufacturer's application notes. Compiled by David C. Farthing  as a service to those who need to know. Use Mouse to Click on Button to GO TO desired formulas. Instructions Fill in new data in yellow boxes. General Calculations Fluid Volumes in Cylindrical and Square Sided Tanks Water Content in an Air Stream Temperature Conversions Pressure Conversions Energy Conversions BTU/KW KW/BTU Financial Analysis of a Project Heating Loads Calculating BTU Load of liquid in Square & Cylindrical tanks Steam Load Across Fan Coils Flowing Fluid Heating Loads Flowing Gas Heating Loads Building + Equipment Heating Load Combination Solid Materials & Equipment Heating Loads Refrigeration Loads Refrigeration loads of flowing liquids Volume BTU Refrig. FFHL AIR Fan Coil TEMP General Calculations Heating Loads Refrigeration Loads Boiler Burner Calculations Valve Sizing Pumps and Hydronics Controls - Transmitters & VFD Steam Stuff Flow & Piping Data Revision Notes Electric Motor Data Product Selection Guide Financial B&E Equip Ht PRESSURE Warranty Accuracy Contact Info Back To Contents ENERGY Burner Management FGHL

TECHSTUFF4.11

Embed Size (px)

Citation preview

Page 1: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 1/123

Compile January 14, 1997 ContentsData Printout 12/18/2013

WELCOME TO TECHSTUFF!! Month Year Date of Rev.

 © 1997 David C. Farthing Revision 4.11 11 4.28.11

 A Compilation of technical formula, solutions, and manufacturer's application notes.

Compiled by David C. Farthing as a service to those who need to know.

Use Mouse to Click on Button to GO TO desired formulas.Instructions   Fill in new data in yellow boxes.

General Calculations

Fluid Volumes in Cylindrical and Square Sided Tanks

Water Content in an Air Stream

Temperature Conversions

Pressure Conversions

Energy Conversions BTU/KW KW/BTU

Financial Analysis of a Project

Heating Loads

Calculating BTU Load of liquid in Square & Cylindrical tanks

Steam Load Across Fan Coils

Flowing Fluid Heating Loads

Flowing Gas Heating Loads

Building + Equipment Heating Load Combination

Solid Materials & Equipment Heating Loads

Refrigeration Loads

Refrigeration loads of flowing liquids

Volume

BTU

Refrig.

FFHL

AIR

Fan Coil

TEMP

GeneralCalculations

Heating LoadsRefrigeration

Loads

BoilerBurner

CalculationsValve Sizing

Pumpsand

Hydronics

Controls -Transmitters &

VFD

SteamStuff

Flow &PipingData

RevisionNotes

Electric MotorData

ProductSelection

Guide

Financial

B&E

Equip Ht

PRESSURE

WarrantyAccuracy

Contact Info

Back ToContents

ENERGY

BurnerManagement

FGHL

Page 2: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 2/123

Revision Notes

Rev # Date Notes1.102 1/31/2002 Correct nomenclature in 02 trim calcs and add Revision Notes page.2.103 2/12/2003 Add VFD Drive Calcs and Motor Data.6.103 6/30/2003 Add Fan Laws for Burners data.8.0603 8/6/2003 Enhanced Steam Flow Calculations with updated AGA material.12.1.03 12/1/2003 Add Dr. Mac Brochway's Boiler Water Charts02.7.04 2/7/2004 Enhanced Fan Laws for Burner data based on infor from Oneok evaluations.04.30.04 4/30/2004 Added Pitot Tube Flow Calculator 09.14.04 9/14/2004 Added Effect of Co on OxyTrim Efficiency Calculations.11.09.04 11/09/04 Cleaned up Motor Torque data in VFD calculations.12.16.04 12/16/04 Added ABMA Boiler Water Chemcal Guidelines and Dr. Mac's pH Correction Table for TDS

6.5.5 6/5/2005 National Standards Institue Heat Loss Due to Scale Deposits6.21.06 6/21/2005 BTU to #2 Diesel Conversion for Halliburton Turbine Meters3.12.07 3.12.07 Add Oxygen Trim Calculator to O2 Trim Worksheet4.10.07 4.10.07 Add VPS Volume & Time Calculator 7.8.7 7.8.7 Add Density Calculator to Gas Flow Meassurement calcs.8.7 8.22.07 Unlock Pump VFD Cells and Add Pump Process Data Inputs.8.7 8.28.07 Add Powerhouse Efficeincy Calculations10.7 10.15.07 Add Conductivity Conversions to Dr. Mac's page.

10.7 11.28.07 Correct Expansion tank factor.12.07 12.13.07 Changed Therms to Dekatherms on Economizer Calcs to ease reading of data.4.08 4.30.08 Add Pipe Insulation Losses8.08 8.19.08 Add Flash Steam Calculator 3.09 3.11.09 Finish Flash Steam Calculator 3.09 3.18.09 Add Exhaust Stack Velocitiy Calculations3.09 3.31.09 Correct Piping Insulation Losses Calculator.6.09 6.10.09 Update Benchmarking a Boiler with Temp Compensation on Utility Meter Clock8.09 8.03.09 Add Rex Warr's Loop Tuning data to Instrument Page.8.09 8.26.09 Modify STACK Effect ot include EVO Stack Approach calculations.11.09 11.10.09 Clean up Effects of Operating Pressure 'Water Temp' charts.11.09 11.20.09 Change cost of electricty from $$$ to $0.00 in VFD calculator.3.10 3.25.10 Add Total Btu Required Calculator to Flowing Heating Load Calc.6.10 6.15.10 Add Maxon Kinedizer and other burner models Combustion Calculator Data from Conrad Baker Maxon Corp.7.10 7.12.10 Add EPA Nox calculation to correct Nox readings to 3.0% O2 to Maxon Kinedizer and Oxygen Trim worksheets.8.10 8.09.10 Add Spirax Sarco 'Napier Formulas' for finding PPH Steam Loss in a Pipe Leak.

9.22.10 Remove Sarco Steam Cost Calculator due to data link corrucption error.3.11 3.14.11 Add SIL Level Calculator 3.11 3.14.11 Add NFPA-87 Check List

Page 3: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 3/123

Warranty of Accuracy Statement

 © 1997 David C. FarthingTECHSTUFF© 1997

TechStuff© is provided as a free service by the compilers. While the compilers have exercised great carein compiling this data there is NO warranty of any kind on the accuracy of the calculations.

The user is warned that to use this service is at their own risk.When in doubt it is always advisable to seek the services of a Professional Engineer.

The compilers assume no responsibility of liability for the use of this service.

Should you find an error in this application you are encouraged to notify the compilers at the following address.

David Farthing24/7 VOICE - 405.249.9324 Alternate 800-239-7301

 Alternate Fax [email protected]

[email protected]

TECHSTUFF©  is a Microsoft Excel 5.0 application and may be ran on Windows 95 or newer versions.It is recommended that the application be saved as a 95/5.0 application so that the user may readilytransfer the free upgrades from www.federalcorp.com. The application is saved as a 95 version toallow the greatest number of users to use the service.

Page 4: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 4/123

Compiled January 14, 1997 Tank Fluid VolumesData Printout 12/18/2013

Data Compiled byDavid C. Farthing

Voice 405-239-7301CAPACITY OF LIQUID IN CYLINDRICAL TANKS IN U.S. GALLONSCAPACITY of CYLINDRICAL TANKS = D^2 * L * .0043

WHERE D = DIAMETER IN INCHESL = LENGTH IN INCHES.0043 = CONSTANT

INPUT DATA MAY BE IN EITHER INCHES OR FEET. NOTE APPROPRIATE DATA TABLEDimensions INCHES FEETD = 12 1L = 12 1

VOLUME = 5.88 5.88 Gallons U.S.

CAPACITY OF LIQUID IN SQUARE SIDED TANKS IN U.S. GALLONSCAPACITY of SQUARE TANKS = (D-FB) * W * L * 7.5Dimensions Depth Width Length Freeboard, inches Fluid VolumeINCHES 12 12 12 0 7.43 Gallons U.S.FEET 1 1 1 0 7.43 Gallons U.S.

Page 5: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 5/123

Customer  Johns Manville NOTE: CUSTOMERS TANKS MUST BE INSULATEDContact Greg MINIMUM 2.0" FIBERGLASS BAT RECOMMENDED.Tank Name: Mixer In Open Top Tank application. 0.5 F/Sec Air Velocity over top of tank.Load CalculationsNo. of Tanks Tank Configuration Type Letter S or C in box Tank Designations

12 Square/Cylinder  C Mixer, 60% Powdered Lime 40% Asphalt 50 Degree Lime Temp

IS TANK OPEN or CLOSED TOP?(O/C) C Enclosed Mixer, Maintenance and Re-heat load.

Square Sided Tank DataDepth Width Length Freeboard, inches Fluid Volume Total Fluid Volume

1 1 1 0 7.482 89.784Total Tank Surface Area Surface Square Feet 1.00

Cylindrical Tank DataDimensions FEETD = 6 Total Fluid VolumeL = 9 All Cylindrical Tanks Open Top Area Sq./Ft.FLUID VOLUME = 1903.58 22842.94 0

Fluid Data: Product: Water  Final Temperature Sp./Gr. Sp./Ht

216 1 1 NOTE: PAGE DOWN FOR COMMON LIQUID DATAQ=W X Sp./Ht. X (T2-T1) Based on 80% Efficient Boiler  Cost to Operate Rise 8Hr. Cost to Maintain/Hr 

Where Q= Quantity of Heat in BTU Energy Cost Gas/MMBTU 12.00$ 72.17$ 9.97$W= Weight of Product to Be Heated Energy Cost Electric/KW 0.0780$ 109.96$ 15.18$

Sp./Ht = Specific Heat of ProductT2= Ending Temperature T2 216 Caution Above Boiling Point!

 Ambient Losses T1= Beginning Temperature T1 212.5 Calculated Base Maintenance Loss.Ambient Shop Temperature TA 70

Solution for boiler loadingPer Tank Load 55,366 Maintenance Load ONLY 218 55,366

Open Top Loss -  Tank radiance and surface losses. 6200 Open Top RTotal Tankage Load 664,387 Total Maintenance Load Btu per hour for all tanks combined.Cold Start 30,793,799 Cold Heat-up Btu Required for all tanks from Cold Start of: (TA) w/ 10% Loss. 121,035 ########

Note: 10% tank and process loss included.Boiler BTU Required 1 Hr Rise 4Hr Rise 6 Hr Rise 8 Hr Rise 12 Hr. RiseAssumed 80% Eff. 38,492,249 9,623,062 6,415,375 4,811,531 3,207,687Boiler Horsepower 80% Eff. 1150 288 192 144 96Common Specific Gravity's & Specific Heats for Various Liquids. First Number Sp.Gr. Second Number Sp.Ht.Water 1/1 Castor Oil 1.2/.43 Kerosene .86/.48Acetone .79/.51 Citron Oil 1.2/.44 Naphthalene 1.14/.41Alcohol's .79/.60 Diphenylamine 1.16/.46 Olive Oil .93/.47

Ammonia .62/1.16 Ethyl Ether 1.16/.53 Propane .50/.59Aniline 1.02/.52 Ethylene Glycol 1.16/.53 Pentane .63/.54Benzol 1.02/.42 Fuel Oils 2-6 .90/.45 Seawater 1.02/.94Calcium Chloride 1.2/.43 Gasoline .81/.53 Soybean Oil .93/.47

Page 6: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 6/123

Data Compiled January 14, 1997 Refrigeration Loads

Data Printout 12/18/2013

Data Compiled by

David C. FarthingVoice 405-728-6709

Refrigeration of Liquids

Customer NameContactPhone Number 

Refrigeration Load = Mass expressed as G/Hr.;((Flow in Gallons / Hr. *8.31)*Specific Gravity* Specific Heat * (T1-T2))/12000

Flow = 1119 GPM

Flow = 67140 Gallons / Hour 

Sp. Gr. 1Sp. Ht. 1

T1 = 95T2 = 85

Tons Refrigeration Required = 466.06

Common Specific Gravity's & Specific Heats for Various Liquids. First Number Sp.Gr. Second Number Sp.Ht.

Water 1/1 Castor Oil 1.2/.43 Kerosene .86/.48 Acetone .79/.51 Citron Oil 1.2/.44 Naphthalene 1.14/.41

 Alcohols .79/.60 Diphenylamine 1.16/.46 Olive Oil .93/.47 Ammonia .62/1.16 Ethyl Ether 1.16/.53 Propane .50/.59

 Aniline 1.02/.52 Ethylene Glycol 1.16/.53 Pentane .63/.54Benzol 1.02/.42 Fuel Oils 2-6 .90/.45 Seawater 1.02/.94

Calcium Chloride 1.2/.43 Gasoline .81/.53 Soybean Oil .93/.47

Page 6

Page 7: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 7/123

Data Compiled January 14, 1997  Rite Boiler Chimney EffectData Printout 12/18/2013

Data CDavid

Voice 40

Exhaust Gas Volumes for Typical Boiler/Burner Operating ConditionsResult is Approximate Actual Cubic Feet/Minute Per 100 Hp.

NOTES: Gas fuel based on 9% CO2, #2 Oil fuel based on 13% CO2 emissions. 80% Thermal Efficient Boiler 85+% Efficient Combustion Excess Air Volume=15%

Fuel Gas=1/Oil=0 1 Enter 1 or 0Flue Gas Temperature 325Boiler Horsepower  1200Exhaust Volume 126,949.14  Actual Cubic Feet/Min. At Stack TemperatureEmissions Make-Up Percent of Flue GasesExcess Air = 15% Mol Wt. by Volume SCF/10^6 BTU Lbs./10^6 BTU PPM

CO2 = 44 10.10 1095.44 126.84O2 = 32 3.00 306.12 25.78CO = 28 0.0020 0.2 0.015 20N2 = 28 86.900 8876.40 654.05Nox=NO2 46 0.0025 0.25 0.03 25Hydrocarbons 16 0.001 0.100 0.004 10Sox=SO2 64 0.000 0 0.00H2O = 18 2237 105.96Particulates 0.00Total 100 12515.52 912.68

Total Emissions this application = 94,841.27 4,581.45

Exhaust Stack Velocitiy for Typical Boiler Operating ConditionsV = (2.4Q x Vs)/A Where ...V = Velocity in Feet per MinuteQ = Flow in Lbs/Hr.Vs = Spicific Volume of Gas at the Flowing Pressure A = Internal Area of the StackNote: Q and Vs are calculated from the above "Exhaust Gas Volumes" Calculations and automatically placed in the following equation.

Stack Internal Diameter (Inches) = 60.00 Calculated Internal Area of the Stack (Sq In)= 2,826.90 

Stack Velosity Ft/Min = 80.52 

NOTE: Always consult a Professional Engineer when Life Safety or Federal Standards are involved. These equations are for representitive values only.

Page 8: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 8/123

Compiled January 14, 1997 Boiler Horsepower Data Printout 12/18/2013

Data Compiled byDavid C. Farthing

Voice 405-728-6709

Boiler Horsepower 

When Pounds Per Hour Steam Flow are known.BHP = #/Hr Steam Flow / 34.5

Steam Flow = 60000Boiler Hp = 1739  At and From 212 deg. "F"

When BTU of Burner is Known. Boiler HP from BTU OutputUseful BHP = Fuel BTU Input/ 33,465 * Rated Efficiency BTU Output= 12500000

Fuel Input = 14,500,000 Boiler HP = 374Boiler Hp = 351  at 81% Eff. At and From 212 deg. "F"

Boiler Hp = 325  at 75% Eff. At and From 212 deg. "F" KW/Hr. 6000BTU/Hr. 20,491,200 

When Boiler Rated Horsepower is Known. Boiler Hp 612

Steam Flow #/Hr = Boiler Rated Hp * 34.7 Meg.W 6Boiler Hp = 250 Notes

Steam Flow = 8626  At and From 212 deg. "F" 1KW = 1,000 Watts1 MW = 1,000,000 Watts

When BTU Required by the Process is Known. 1 MW = 1,000 KW

Process Input = 60,000,000

Boiler Hp = 2213  Fire Tube at 81% Eff. At and From 212 deg. "F"   Eletric Motor Hp 16000Boiler Hp = 2391  Water Tube at 75% Eff. At and From 212 deg. "F" KW/Hr. 11931.2Boiler Input = 74,074,074  Fire Tube at 81% Eff. At and From 212 deg. "F" MegW/Hr 11.9312Boiler Input = 80,000,000  Water Tube at 75% Eff. At and From 212 deg. "F" Boiler Hp 1216.352

When Heating Surface area is Known.Heating Surface = 10,750 5.28

Fire Tube BHP = 2150  Fire Tube at 81% Eff. At and From 212 deg. "F" 5.33

Fire Box BHP = 2087  Fire Box at 80% Eff. At and From 212 deg. "F" 5.35

Water Tube BHP = 2028  Water Tube at 75% Eff. At and From 212 deg. "F" 5.38

Boiler BTU Output = 71,949,750  Fire Tube at 81% Eff. At and From 212 deg. "F" 5.51

Boiler BTU Output = 67,877,123  Water Tube at 75% Eff. At and From 212 deg. "F" 5.325.174.92

TURBINE to BOILER Horsepower Requirements

KW/Hr. 2200Meg.W 2.2BTU/Hr. 7,513,440 Efficiency 22.18%

Boiler Hp 1012.25Steam Flow PPH 34,923 UNDER CONSTRUCTION DO NOT USE THIS CALCULATION

Page 8

Page 9: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 9/123

12/18/2013 THEORETICAL THERMAL EFFICIENCY OF A STEAM PLANT Data Compiled by

David Farthing

From Manufacturer's Data

POWERHOUSE EFFICIENCY CALCULATIONS

SITE LiDestri Foods, Fresno CA Plant at optimum performance. (NOT AS FOUND)

BOILER TYPE (F/W) F

STEAM RATE PPH 16000

BTU INPUT @212 "f" 19,950,000  (As rated by manufacturer.)

BOILER HORSEPOWER 463.7681159RATED EFFICIENCY 80.20%

STEAM OPERATING PRESSURE 110

STEAM TEMP AT OP PSIG 344 (From Steam Tables in TechStuff.)

BTU CONTENT OF STEAM 1191 (From Steam Tables in TechStuf f.)

BLOWDOWN RATE % 1% (See BLDOWN Tab in Techstuff for calculating this number.)

PPH WATER FLOW @ BD% 160 (Not to Exceed Rated PPH of Manufacture)

MAKE-UP WATER TEMP 68

BTU AVAILABLE FOR HEAT RECOVERY 21,179  Based on MADDEN BDHR Data for Recoverable Btu in Water Side)

HEAT RECOVERY MAKE-UP FLOW RATE 1600

EXIT WATER TEMP 80  (Based on 10 Degree Approach.)BTU RECOVERED WATER SIDE 19,061 

PERCENT MAKE-UP REQUIRED 15%

MAKE-UP FLOW REQUIRED 2400TOTAL FLOW REQUIRED 2560 Includes Blowdown

MAKE-UP WATER TEMP TO SECONDARY RECOVERY 69 

ECONOMIZER INLET TEMP 227

ECONOMIZER BTU RECOVERY 238000 (See ECONO Tab in Techstuff for calculating this number.)

ECONOMIZER EXITING TEMP 320

NUMBER OF ECONOMIZERS IN SYSTEM 1

DEAERATOR INLET TEMP 109

DEAERATOR OUTLET TEMP 227

BTU REQUIRED FOR DEAERATOR 302,080 BTU RECOVERED AS FLASH FROM BDHR UNIT 26,981  Based on MADDEN BDHR Data for Recoverable Btu in Flash Steam Side)

 ADDITIONAL BTU REQUIRED FROM BOILER 275,099 

TOTAL PLANT HEAT OUTPUT 16,000,000 GROSS PLANT HEAT INPUT 19,950,000 TOTAL HEAT RECOVERED (284,042) 

NET PLANT HEAT INPUT 19,665,958 

TOTAL PLANT EFFICIENCY 81.36%

Page 10: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 10/123

Data Source Sterling Radiator 12/18/2013 2:54 AM

Building Machinery Heating/Coolin

BUILDING HEAT LOSS CALCULATION Changeable data  WALLS

CONSTRUCTIONCLIENT St. Greg Unv.  METAL

LOCATION Shawnee DATE 29:Sep:04 ROCKBUILDING NAME  MaBee Buldg EXPED

 WOOD OR PLYWOOD

 BUILDING LENGTH 250 SLAB U FACTOR 0.81  

BUILDING WIDTH 276  WALL U FACTOR 0.38 CONCRETE BLOCK (NBUILDING HEIGHT EVE 16 PERCENT GLASS 10%  BUILDING HEIGHT RIDGE 18 GLASS U FACTOR 0.69  

ROOF U FACTOR 0.067  DOOR AREA (FT SQ.) 75 DOOR U FACTOR 1.22

OUTSIDE AIR TEMPERATURE 15 BUILDING VOLUME 1173000 INSIDE AIR TEMPERATURE 73 DELTA TEMP 58

 AIR CHANGES PER HR  4

BRICK - COMMONVOLUME REQUIREMENT 4,898,448.00 BTU  WALL HEAT LOSS 413,407.30 BTU

ROOF HEAT LOSS 268,162.16 BTU  DOOR HEAT LOSSES 5,307.00 BTU

SLAB LOSS 49,422.96 BTU

TOTAL BUILDING LOAD 5,634,747 BTU METAL AND TRANSIT

BOILER HORSE POWER  168.2014153 HP

HEATER CALC.S   ROOFS

CONSTRUCTIONBTU CAP @ 20 DEG DROP 250000 HEATERS REQ 37.56498276  METAL W/O BUILDUP

CONVERSION FACTORS (1=Steam)(.6=Water) 0.6 GPM REQ   ROCKHEATER GPM REQ 40 HEAD REQ 12 EXPED

PRESSURE PROP FT. WATER 2    METAL W/ PREFORME

HEATER PIPE LENGTH 600  PIPE SIZE 4

FRICTION /100FT 2  WOOD W/ PREFORMED

SC " "

Page 11: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 11/123

TechStuf 'C' 1997 David Farthing Tech Stuff Heating Solid Materials

12/18/2013 2:54 AM

Data Compiled byDavid Farthing

Voice 405-728-6709

Heating Solid Materials and Equipment

Formula = Lbs/Hr = W*Cp*Delta T/(L*t)Where W= Weight of Material

Cp= Specific Heat of MaterialL= Latent Heat of Steam (Btu/Lb)t= Time in Hours

Material = Saturated Limestone Cement Plant (Winter Conditions)

W= 220000 Lbs.Cp= 0.35 From ChartsL= 1 From Steam Charts

Start Temp 32Final Temp 211Delta T= 179

t= 1Lbs/hr= 13783000 BTU/Hr = 13,783,000.00

Boiler Hp 411.86

Common Specific Heats of Solid Materials Water Cp = 1.0

Steel 0.12 Carbon-Coke 0.203 Glass, normal 0.2 Nickel Steel 0.109Iron 0.12 Chalk 0.215 Gneiss 0.18 Paraffin Wax 0.69

Aluminum 0.22 Charcoal 0.2 Granite 0.2 Porcelain 0.22Alumina 0.35 Cinders 0.18 Graphite 0.2 Quartz 0.23

Asbestos 0.2 Coal 0.3 Gypsum 0.26 Quicklime 0.217

Ashes 0.2 Concrete, Dry 0.156 Hornblend 0.2 Rose Metal 0.05

Bakelite 0.35 Constantine 0.098 Humus soil 0.44 Salt, rock 0.21

Basalt 0.2 Cork 0.485 India Rubber 0.37 Sand 0.195

Bell Metal 0.086 Corundum 0.198 Kaolin 0.224 Sandstone 0.22

Bismuth-tin 0.043 D'Arcet metal 0.05 Lead Oxide 0.055 Serpentine 0.25Borax 0.229 Dolomite 0.222 Limestone 0.217 Silica 0.191

Brass, Y 0.088 Ebonite 0.33 Lipowitz Metal 0.04 Soda 0.231Brass, R 0.09 German Silver 0.095 Magnesia 0.222 Sulfur 0.18

Bronze 0.104 Glass, Crown 0.16 Magnesite 0.168 Talc 0.209

Brick 0.22 Glass, flint 0.12 Marble 0.21 Tufa 0.33

Vulcanite 0.331 Wood (AVG) 0.63 Wood's metal 0.04 Type metal 0.039

Page 12: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 12/123

Compiled January 15, 1997 Flowing Fluid HeatingData Printout 12/18/2013

Data Compiled byDavid C. Farthing

Voice 405-728-6709

Flowing Fluid Heating Loads

You may use either GPH or GPM for your problem. Be sure to use the correct data box.Heating Load = Flow #/hr * Sp.Gr.*Sp.Ht. * Delta "T" in deg. "F"

INPUT DATA INPUT DATA Heater Eff = 28.15%Gal/Hour Gal/Minute Total Btu Input Required = 5,072,745.47 

Flow = 2424 GPH 333 GPM

Sp. Gr. 1 0.8183Sp.Ht. 0.6 0.5825T1 = 60 427T2 = 600 Boiler Hp Steam Flow 445 Boiler Hp Steam Flow

Load BTU/Hr. = 6,542,182.08 195.49 6,744.52 1,427,977.85 42.67 1,472.14

Common Specific Gravity's & Specific Heats for Various Liquids. First Number Sp.Gr. Second Number Sp.Ht.Water 1/1 Castor Oil 1.2/.43 Kerosene .86/.48

 Acetone .79/.51 Citron Oil 1.2/.44 Naphthalene 1.14/.41 Alcohols .79/.60 Diphenylamine 1.16/.46 Olive Oil .93/.47 Ammonia .62/1.16 Ethyl Ether 1.16/.53 Propane .50/.59 Anilin 1.02/.52 Ethylene Glycol 1.16/.53 Pentane .63/.54Benzol 1.02/.42 Fuel Oils 2-6 .90/.45 Seawater 1.02/.94Calcium Chloride 1.2/.43 Gasoline .81/.53 Soybean Oil .93/.47

Therminol .8183/.5825

Page 12

Page 13: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 13/123

Water Content In Air Stream

Water Content in Air Streams

1# of Air at 62 "F"=13.65 CFDatum 1CFt of Air holds .0225# Water at 65"F" and 40% RH

CFM = 2500Total Water / Min. = 56.25 in Lbs.Lb./Hr Water = 3375Gallons/Hr. Water = 406.1372

Page 13

Page 14: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 14/123

David Farthing'sTechStuff Valves

Gas ValveOrifice -Regulated Pilot Train

12/18/2013

Thanks to Honeywell for the basic CV calculator 

Courtesy of HONEYWELL, INC. - Modified by David Farthing GAS

DCP Carthage-Pilot Pilot-1 Pilot-2 Pilot-3 Pilot-4

CONDITIONS CONDITIONS CONDITIONS CONDITIONS

BASE FLOW SCFH 1,250.00  1,000.00  875.00  750.00 SAFETY FACTOR X 1.00 1.00 1.00 1.00

FLOW SCFH 1,250.00 1,000.00 875.00 750.00

INLET PRESS PSIG 3.00 3.50 4.00 5.00

OUTLET PRESSURE PSIG 0.21 0.21 0.21 0.21

PRESS DROP PSI 2.79 3.29 3.79 4.79

TEMPERATURE DG.F 68 68 68 68

SPEC GRAV 0.63 0.63 0.63 0.63

  REQUIRED Cv 2.472 1.807 1.462 1.099V-Cut Degrees Open Degrees Open Degrees Open Degrees Open

V-Bal 900Rotation 60 2.47 1.81 1.46 1.10

Percent Open Percent Open Percent Open Percent Open

CV of Installed Val 96 2.575% 1.883% 1.523% 1.145%

Page 14

Page 15: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 15/123

David Farthing'sTechStuff Valves

Liquid Valve Thanks to Honeywell for the basic CV Calculator  

Courtesy of HONEYWELL, INC. - Modified by David Farthing LIQUID

Solae CB700 Level 100% 75% 50% 25%

CONDITIONS CONDITIONS CONDITIONS CONDITIONS

 BASE FLOW GPM 48.50 36.38 24.25 12.13

SAFETY FACTOR X 1.15 1.00 1.00 1.00

ACTUAL FLOW GPM 55.78 36.38 24.25 12.13

INLET PRESS PSIG 155.00 155.00 155.00 155.00

OUTLET PRESSURE PSIG 125.00 125.00 125.00 125.00

PRESS DROP PSID 30.00 30.00 30.00 30.00

SPECIFIC GRAV 0.97 0.97 0.97 0.97

VISCOSITY CS 0.96 0.96 0.96 0.96

TEMP(WATER) DG.F 227 227 227 227

MAX ALLOW

 ̧ P (WATER) PSI 119.464 119.464 119.464 119.464

  REQUIRED Cv 10.029 6.541 4.361 2.180

Linear V-Ball V-Cut Degrees Open Degrees Open Degrees Open Degrees Open

V-Bal Rotation 30 19.44 12.68 8.45 4.23

Percent Open Percent Open Percent Open Percent Open

CV of Installed Val 15.48 64.788% 42.253% 28.169% 14.084%

Actuator Type Yes ELECTRIC Body Materials Stainless

120 Vac VOLTAGE End Connections THREADED

4/20mA SIGNAL Stem & Seat Tekfil (600F)

Yes MANUAL OVERRIDE POSITIONER Bray 70 w/Manual

n/a PNEUMATIC

n/a AIR SUPPLY PSIG

n/a DOUBLE ACTING

n/a SPRING RETURN

Page 15

Page 16: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 16/123

David Farthing'sTechStuff Valves

Steam Valve Thanks to Honeywell for the basic CV Calculator  

Courtesy HONEYWELL, INC. - Modified by David Farthing STEAM

TAG # Original Design Reduction #1 Reduction #2 (ENTER TAG #)

CONDITIONS CONDITIONS CONDITIONS CONDITIONS

BASE FLOW #/HR 7,300.00  5,800.00  16,000.00  12,000.00 SAFETY FACTOR X 1.00 1.00 1.00 1.00

DESIGN FLOW #/HR   7,300.00 5,800.00 16,000.00 12,000.00

INLET PRESS PSIG 125.00 100.00 75.00 75.00

OUTLET PRESSURE PSIG 25.00 25.00 50.00 50.00

PRESS DROP PSI 100.00 75.00 25.00 25.00

TEMPERATURE DG.F 266 266 250 240

  REQUIRED Cv 26.670 26.097 115.864 86.260

V-Cut Degrees Open Degrees Open Degrees Open Degrees Open

V-Bal 900Rotation 60 0.00 0.00 0.00 0.00

Percent Open Percent Open Percent Open Percent Open

CV of Installed Val 400 6.667% 6.524% 28.966% 21.565%

Page 16

Page 17: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 17/123

VPS Calculations

12/18/2013Complied by David Farthing

VALVE PROVING SEQUENCING TEST CALCULATIONS

V1= Upstream Valve Volume

V2= Downstream Valve VolumeD= Pipe Diameter (Inches Nominal-Schd. 40)

L= Pipe Length Between V1 & V2 (Feet)

P= Inlet Gas Pressure to V1

C= Burner Maximum Firing Capacity (CFH)

X= Calculated Test Valve Train VolumeT= Minimum Test Time in Seconds

Calculation of Valve Train VolumeX= V1+V2+((A x L)/144)

Calculation of Valve Proving Test Time

Test Time (Sec) = 187,000 X (P x X)/C

Is Inlet Gas Pressure in InWc or PSI (I or P) pInlet Gas Pressure 10

P= 10

D= 4

Area Sq/In = 12.9940945L= 2

V1= 0.08

V2= 0.08Total Volume Cft (X)= 0.34047353

C= 52000Min.Test Time Seconds (T) = 12.24

GAS

V2V1

vps

L

Page 18: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 18/123

Fan Coils

Steam Demand in a Fan Coil

Formula used for calculations Q=( CFM X 1.08 X TD ) / 1000

Where Q = Air flow across fan coil in cfmTD = Temperature Differential across fan coil1000 = Latent heat of 15 PSI Steam

1.08 = Correction factor for fouling of coils

INPUT DATACFM = 6,000Inlet Air Temp = 60

Exhaust Air Temp = 180

Lbs/ Hr. Steam Load 777.6BTU Load 777,600

Page 18

Page 19: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 19/123

Calculating NPSHa (Available) for Centrifugal Pump ApplicationsENTER "X" to Select Formula

Suction Lift Open Tank NPSHa = Pb - (Vp + Ls + Hf)Suction Lift Closed Tank NPSHa = p - (Ls + Vp + Hf)

Suction Head Open Tank NPSHa = Pb + Lh - (Vp + Hf)

X Suction Head Closed Tank NPSHa = p + Lh - (Vp + Hf)

Suction Head and Lift are meassured from the liquid surface to the pump centerline.Where Pb = Barometric pressure in feet absolute (Fa)

Vp = Vapor Pressure of the liquid at maximum pumping temperature, in feet absolute (Fa)p = Pressure on surface of liquid in closed suction tank in feet absolute (Fa)

Ls = Maximum stactic suction lift in feet.Lh = Maximum stactic suction head in feet

Hf = Friction loss in feet in suction pipe at required capacity. (Go to Calculator)

Feet Absolute Calculator - Enter Data in Guage Readings to get Feet Absolute

Guage Reading FaPb = 29 32.79

Vp = 10 57.03

p = 10 57.03

Input DataPb = 32.79

Vp = 57.03

p = 57.03Ls = 0.00

Lh = 5.50

Hf = 1.39NPSHa = 4.11 Pump must require an NPSHr less than or equal to this value.

Friction

Page 20: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 20/123

Producers COOPPeerless F21250AM11.0" Impeller 

12/18/2013 Pump Affinity Laws

Pump Horsepower Requirements

Q= 1340

H = 158

PSIG = 77.73

Sp.Gr.= 0.88

Pump Eff. 65.00%

Minimum Motor Hp BHP= 72.38290598

Cost to Operate Pump

$/KW/Hr = 0.044

Hours/Day = 24

Days/Month = 15Cost Per Month = 855.32$

Page 20

Page 21: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 21/123

Burner Fan Lawsby David Farthing

12/18/2013 David FarthingTechSt

Fan Laws for ESTIMATING Boiler Burner Fan PerformanceCFM Estimates based on 950 But/ft^

3 fuel, 9.67 ft^

3 Air per 1 ft^

3 Fuel at Sea Level and 100 deg "F" Combustion Air.

Q = Fan Volume Flow Rate CFM or ft^3/Min Assumed Data

D = Fan Diameter in Inches Air Density = 0.0584N = Fan Shaft RPM Air Temp = 100

H = Static Pressure of Fan at Design Point, Inch/WC Elevation = <1700 Ft/ASLEnter known data in Yellow Boxes Bhp = Fan Horsepower = Q X H / (6356* Eff)

BuzziUnicem Diff P = Differential Pressure Across Windbox at Firing Rate

Todd Heater -1 Eff = (ft^3/min X H) / (5263 X Motor Hp)

Pryor OK Plant Burner Input 15,000,000.00  BTU/Hr from Burner Data Plate

21MM Btu Input Max Gas Flow 15,000.00  Ft̂ /Hr 

Min Gas Flow 1,500.00  Ft^3/Hr 

Max Air Flow @15% EA. 2,844.12  CFM base on 9.67 Ft^3 Air/1Ft^3 Gas at Sea Level & 80 deg "F". 15% Excess Air.

Min Air Flow 284.41  CFM at LOW (10%) FIRE.Fan Motor HP 60.00  Taken from Fan Motor Data Plate

Fan Static Pressure H 18.00  *At Stall 0 Flow Fan Damper CLOSED taken at fan discharge ahead of dampers.Calculated Fan Eff. 16.212%  As a check this number should be above 72-75% w/80% Average)Calculated Fan HP 49.68 Check against actual Fan Motor Data Plate

Expected Fan Eff Performance? Within expected performance

Original Fan Speed 1770 RPM at Shaft FAN LAWS FUEL CONVERSIONS & ENERGY CNew Fan Speed 1150 RPM at Shaft Q1/Q2 = N1/N2 (N) NATURAL GAS (C/Ft) Averaged

New Fan Flow 1848 CFM H1/H2 = (N1/N2)^2 (2) #2 DIESEL (RED) (1-Gallon) APINew Fan Max SP 7.60 Inch WC Bhp1/Bhp2 = (N1/N2)^3 (1) #1 DIESEL(AUTO) (1-Gallon) API

New Fan Bhp 3.33 Bhp at the shaft. Q1/Q2 = D1/D2 (BV) BIO-GAS VEGATABLE (C/Ft) AOriginal Boiler Output PPH 12,371.13  Saturated H1/H2 = (D1/D2)^2 (BL) BIO-GAS LANDFILL (C/Ft) AverOriginal Boiler Output PPH 10,391.75  Superheated <700 Deg F Bhp1/Bhp2 = (D1/D2)^3 BTU Inpu

New Boiler Output PPH 8,037.65  SaturatedNew Boiler Output PPH 6,751.62  Superheated <700 Deg F EQUEVELENT Fuel Flo

EQUEVELENT Fuel Flow

Note1 Data marked with an asterisk * may also be taken from manufacturer's data sheets. NOTE: 1 D/Therm =

Page 22: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 22/123

TechStuff C1997 Combustion Efficiency CalculationsPrintout 12/18/2013 2:54 AM

Data Compiled byDavid Farthing

Combustion Efficiency Calculations

Boiler Type & Data CIBO PROJECT BOILERMinimum O2 Allowed This Fuel Type

Fuel (Gas =1, Oil =2) 1 2.00%Rated Boiler Hp 30 Steaming Rate PPHName Plate Efficiency 60.00% 828Current O2 % as found 12.00%Current Co2 % as found 6.25% Air Diluted CO ppm as found 50.00CO in Flue Gas ppm Corrected 117.42 Approximate Fuel Loss out stack 0.03% Cu/Ft Gas/Hr.@NFR@ As Found Eff.

NOx Reading from analyzer  60.00EPA Corrected to 3% O2 Nox 120.674Normal Firing Rate NFR (0-100) 80% 1,341Recommended O2% @ NFR 6.00% Data from Ideal O2 Table or 'as Targeted' Average Hours/Day Run Time 24 Average Days/Month Run Time 30Fuel Cost/Dk-Therm from billings 4.85$ Equivalent Cost / 1000 Cu/Ft = 4.85$ Average Combustion Air Temp 80Stack Temp at Firing Rate 640

Net Flue Gas Temp Rise 560   Performance DataNet Efficiency Loss to Wasted Fuel as Co 0.1174% 56% Present Excess Air Mass.

As Found Combustion Efficiency 59.9% 28% New Excess Air Mass.New Calculated Combustion Efficiency 75.1% $7.86 OLD Fuel Cost per 1,000 Lb/Steam.New Stack Temp 498 $6.26 NEW Fuel Cost Per 1,000 Lb/Steam.New Net Flue Gas Temp Rise 418 20.59% Percent Fuel Cost Savings.

Net Combustion Efficiency Gain 20.26%Current Cost to Operate Per Month 4,683.56$ Controller Output= 45New Cost to Operate Per Month 3,734.53$ Raw Air Flow= 100Current Fuel Dollars Wasted as Excess CO 15.34$ O2 Reading= 3Savings Per Month 964.37$ O2 Corrected Air Flow= 102.5

Savings Per Year  11,572.39$NOTES

Page 23: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 23/123

Voltage

#DIV/0!

CONTROLLER IMPEDANCE VS. VOL

Impedance of Device Controller is Controlling 250 OHMSMa output of controlling Device 4

Out Put Voltage You Should Read at Controller Output 1When Controller Out Put = Ma in Cell 'F6'.

Common Control Device Impedance and their associated VoltageImpedance Control Voltage

250 Ohms 5 VDC120 Ohms 2.4 VDC100 Ohms 2.0 VDC

TRANSMITTER TROUBLESHOOTER

HIGH SIDE 0.00

LOWSIDE -22.004/20 MA READING 12.00 (NOTE: Max Value = 19.99 otherwise DIV/0 Error)

RATIO 1.00 This is any RATIO applied by the display device.BIAS 20.00 This is any BIAS applied by the display device.

DISPLAY READS 9.00

NOTES:1] IF TRANSMITTER IS 'DP' AND DISPLAY IS READING HIGH AND PROCESS IS LOW THEN CHECK LOW (2] IF TRANSMITTER IS 'DP' AND DISPLAY IS READING LOW AND PROCESS IS HIGH THEN CHECK HIGH3] ATTACH A 'Ma' METER IN SERIES TO THE TRANSMIITER NEGITIVE SIGNAL LEG AND READ Ma. INCE

Page 24: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 24/123

Voltage

  AGE

  EFERENCE) SIDE FOR PLUGGED LEG.  IDE FOR PLUGGED LEG.

  T IN 4/20 MA CELL IN FORMULA

Pipe Expansion

Page 25: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 25/123

Pipe Expansion

PIPE THERMAL EXPANSION CALCULATIONSCalculations good for Carbon Steel and Carbon Molybdeum Steel Pipe.

Pipe SizePipe Run Length 361

Operating Temperature = 347 Expansion CoefficientsThermal Expansion per 100 ft = 9.99 Coeff. 212-250 251-359 360+ Temp.TOTAL Thermal Expansion = 36.08 2.88 1.61 2.02 2.88 Coeff. Factor  

This calculation gives good practical results. It is not intended to provide exact data.If exact data is required contact a registered professional engineer.

Page 25

Compiled October 10 1997 Condensate Tank Sizing Data Compiled by

Page 26: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 26/123

Compiled October 10, 1997

Source: Skidmore/ASME

Condensate Tank Sizing

Data Printout 12/18/2013

Data Compiled by

David C. Farthing

Voice 405-728-6709

Condensate & Feedwater Tank Sizing

Boiler Hp. 1740

Evaporation Rate from and at 212 deg. F. 7223.827 Gallons Per Hour GPM Flow Rate Start/Stop Feedwater System 300.9928 Gallons Per Minute 2.5 Safety Factor 

GPM Flow Rate Modulated Feedwater System 180.5957 Gallons Per Minute 1.5 Safety Factor 

Storage Holding Time Desired, Minutes 7 Minutes Holding TimeTank Size for Start/Stop Feedwater System 3009.928

Tank Size for Modulated Feedwater System 1805.957

Page 27: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 27/123

Compiler November 3, 1997Source: Spirax Sarco

Steam Mains Trap SizingData Printout 12/18/2013

Steam Mains Trap Sizing

Steam Main Data Assumes 2.0" of Fiberglass InsulationPipe Diameter 6Steam Header Pressure(PSIG) 150

Ambient Air Temperature 70Warm-up Load / #Steam(Condensate) per 100 Ft. of Pipe 75 From Spirax Sarco Look-up Tables below.

Running Load / #Steam (Condensate) per 100 ft. of Pipe. 31Feet Between Trap Points 100Total Trap Warm-up Load Per Trap Point 75 #/Hr Condensate LoadTotal Trap Running Load Per Trap Point 30.75 #/Hr Condensate Load

Pressure vs. Pipe Size Look-up Table

Steam Pressure (psi) 2.00 2.50 3.00 4.00 5.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 24

0.00 6.2 9.7 12.8 18.2 24.6 31.9 48 68 90 107 140 176 207

5.00 6.9 11 14.4 20.4 27.7 35.9 48 77 101 120 157 198 23310.00 7.5 11.8 15.5 22 29.9 38.8 58 83 109 130 169 213 251

20.00 8.4 13.4 17.5 24.9 33.8 44 66 93 124 146 191 241 28440.00 9.9 15.8 20.6 29.3 39.7 52 78 110 145 172 225 284 33460.00 11 17.5 22.9 32.6 44 57 86 122 162 192 250 316 372

80.00 12 19 24.9 35.3 48 62 93 132 175 208 271 342 403

100.00 12.8 20.3 26.6 37.8 51 67 100 142 188 222 290 366 431

125.00 13.7 21.7 28.4 40 55 71 107 152 200 238 310 391 461

150.00 14.5 23 30 43 58 75 113 160 212 251 328 414 487

175.00 15.3 24.2 31.7 45 61 79 119 169 224 265 347 437 514200.00 16 25.3 33.1 47 64 83 125 177 234 277 362 456 537

250.00 17.2 27.3 35.8 51 69 89 134 191 252 299 390 492 579

300.00 25 38.3 51 75 104 143 217 322 443 531 682 854 1045

400.00 27.8 43 57 83 116 159 241 358 493 590 759 971 1163500.00 30.2 46 62 91 126 173 262 389 535 642 825 1033 1263

600.00 32.7 50 67 98 136 187 284 421 579 694 893 1118 1367800.00 38 58 77 113 203 274 455 670 943 1132 1445 1835 2227

1000.00 45 64 86 126 227 305 508 748 1052 1263 1612 2047 2485

1200.00 52 72 96 140 253 340 566 833 1172 1407 1796 2280 27671400.00 62 79 106 155 280 376 626 922 1297 1558 1988 2524 3064

1600.00 71 87 117 171 309 415 692 1018 1432 1720 2194 2786 3382

1750.00 78 94 126 184 333 448 746 1098 1544 1855 2367 3006 3648

1800.00 80 97 129 189 341 459 764 1125 1584 1902 2427 3082 3741

S M k h Ed

Page 28: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 28/123

Compiled by David Farthing 12/18/2013 2:54 AM Sources Marks 7th Ed.GPSA 9th Ed.

Apllication Name REGEN-2 PROCESS GAS FLOW DCP CARTHAGEStatic taken Up/Dn U SolutionsAtmospheric PSIA= 14.6959 Pf1 = 764.6959

Sp/Gr = 0.57 Pf2= 763.9383 Factors for establishing FbTemp of Gas Flow 68 Fb= 1842.1052  AGA3.6.5.1#61 Ko= 0.6052  AGA3.5.2.1#11hw = 21 Fpb= 1.0023  AGA3.6.9#66 E= -5163.6485 AGA3.5.2.1#12Static Psig = 750 Ftb = 1.0154  AGA3.6.10#67 Ke= 0.5896  AGA3.5.2.1#9Pipe ID 4.026 Fg = 1.3245  AGA3.6.12#69Orifice ID = 3.000 Ftf = 0.9924  AGA3.6.11#68Compressibility = 0.998 (Default =1) Fr = 1.0006 GPSA 9th

Qh = 312,659 SCFt/Hr Y1= 0.99961  AGA3.5.2.6.2#20Qh = 0.312659376 MSCFH Fpv = 1.0010  AGA3.6.9#66Qm = 5210.99 SCFt/min. Fa = 1.0000 GPSA 9th Bibliography

QMMD = 7.503825013 MM/SCFD C'= 2467.2743Flowing Density = 2.438086706 Beta Ratio = 0.7452

(hwPf)^.5= 126.7226Where hw/pf Ratio = 0.0010 Flowing Density = MP/((10.73*(TZ)))

hw = differential pressure across orifice in inches of water M. Molecular Wt 18.023 Typical M.Wt at 60 Degrees "F"

Pf =  Static (gauge) pressure corrected to Absolute static pressure in PSIA T. Temperature Absolute 527.67 Methane = 16.043Fb = Calculated or See Orifice Factor from GPSA Rev. 1979 Basic Orifice Factors Table Z. Compressability Factor 0.9984 Natural Gas = 18.023Fpb = Pressure base factor from GPSA Rev. 1979, = 14.73 / Atmospheric Pressure of Location. R. Fixed for all Gases 10.73 Propane = 44.097Ftb = Calculated Temperature base factor P. Flowing PSIA 764.6959Ftf = Calculated Flowing Temperature base factor Df = Flowing Density 2.438087 (lb/cu ft)Fg = Specific Gravity Factor = ((1/Sg)^.5) M. Molecular Wt of Natural Gas based on 95% Methane content

Fr = Reynolds Number Factor for this calculation. For this calculation = (((Beta Ratio/ )(hwpf)^.5)) **Source - American Gas Association Rev 1974 Section 16.1 Y = Expansion Factor for this calculation. Static Pressure Taken Up-Stream of orifice. FLOW CAL SETUP BASED ON FLOW TRANSMITTER MAX DPFpv = Supercompressability Factor = (1/Z)^.5 Sqr/Rt of Max DP = 15.81139 250 Max hwZb = Compressibility Factor of Gas = .9984 for Natural gas at Standardized Conditions. Flow Coefficient Cf'= 0.474584 for readings displayed in MMCFD

Flow Coefficient Cf'= 0.019774 for readings displayed in MCFH

Page 29: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 29/123

Fan Laws for ESTIMATING Boiler Burner Fan Pressures/FlowsQ = Volume Flow RateD = Fan Diameter 

N = RPMP = PressureDiff P = Differential Pressure Across Fan at Firing RateH = Fan Horsepower  Eff = ft^3/min X P (in H20)/(6356 X Motor Hp)Burner Input 29,400,000.00 MMBTUMax Gas Flow 29,400.00  Ft^3/Hr Min Gas Flow 2,940.00  Ft^3/Hr 

Max Air Flow 4,738.30  CFM base on 9.67 Ft^3 Air/1FMin Air Flow 473.83  CFM at LOW (10%) FIRE.Fan Motor HP 30.00  Taken from Fan Motor Data P

Fan Stall Pressure 29.00  At Stall 0 Flow Fan Damper CCalculated Fan Eff. 72.064% As a check this number shoulCalculated Fan HP 30.03 Check against actual Fan MotFan Performance OK

Q = C' * (P .̂5) Air Flow at varying pressures measured down stream of damper vanes

C' = 2940 Arbitrary C' to reach necessary air flow shown in Max Air Flow in above cell.Diff P = 100 Differential Inches H20 Across Fan At Maximum Flow High Fire Position of FanQ = 29400.000 Must Equal MAX AIR FLOW!! Adjust C' as needed to correct.% Flow 100%

DP = 99 88 77 66 55Q = 29252.631 27579.645 25798.395 23884.673 21803.624% Flow 99.499% 93.808% 87.750% 81.240% 74.162%DP = 98 87 76 65 54Q = 29104.515 27422.494 25630.326 23703.038 21604.500

% Flow 98.995% 93.274% 87.178% 80.623% 73.485%DP = 97 86 75 64 53Q = 28955.642 27264.438 25461.147 23520.000 21403.523% Flow 98.489% 92.736% 86.603% 80.000% 72.801%DP = 96 85 74 63 52Q = 28805.999 27105.461 25290.836 23335.527 21200.641

% Flow 97.980% 92.195% 86.023% 79.373% 72.111%DP = 95 84 73 62 51Q = 28655.575 26945.545 25119.371 23149.583 20995.800

% Flow 97.468% 91.652% 85.440% 78.740% 71.414%DP = 94 83 72 61 49

Page 30: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 30/123

Q = 27891.289 26131.292 24243.861 22196.513 2940.000% Flow 94.868% 88.882% 82.462% 75.498% 10.000%DP = 89 78 67 56 0.025

Q = 27735.905 25965.377 24064.937 22000.945 464.855% Flow 94.340% 88.318% 81.854% 74.833% 1.581%

Page 31: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 31/123

  t^3 Gas.

  late

  LOSED  be 72-75% w/72% Average)

  or Data Plate

  amper 

Page 32: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 32/123

Page 33: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 33/123

Compiled November 4, 1997 Revenue Loss

Page 34: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 34/123

p ,Source: Simple Math Context Data Printout 12/18/2013

Voice

Cost of Leaking Steam Traps in Lost Steam and RevenueCustomer 

Site COST OF PIPE LEAKS TO ATMOSPHERE

INPUT DATA Based on a variant of the Napier formulaTotal Number of Traps Surveyed 60 PPH Leak = 24.24 X Pa X D^2Number of Traps Leaking 24 Pa = Line Pressure AbsoluteNumber of Traps Plugged 0 Trap Type Surveyed D = Diameter of leak in inches expressed as a decimalCapacity of Traps in #/Hr. 550 1/2" TD NOTE: EXCELL WILL AUTOMATICALLY CORRECT TO DECISteam Line Pressure 100 Diamerter of Leak (Inches) 0.125Condensate Return Line PSI 12 Pressure in Pipe (PSIG) 150Temperature of Condensate at Traps 245 PPH Steam Leaking 62.38Temperature of Condensate in Tank 190 Cost per 1KP Steam 6.00$Hours per Day of Production 24 Hours Per Year Operation 8400Days per Year of Production 340 Total Cost of Leak Annually 3,143.96$

Rated Boiler Horsepower 700Cost of Fuel/Therm 6.36$Cost of Steam Production / 1,000# 7.62$Results of SurveyPercent Traps Leaking 40.00%Percent Traps Plugged 0.00%Percent of Traps Operational 60.00%# Lost Steam To Leaking Traps 7,417,440 AnnuallyBTU Lost to Flash Steam Venting 407,959,200 AnnuallyLost Revenue to Wasted Steam 59,088.04$ Annually

Page 35: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 35/123

Steam Trap Survey Form

Customer NameLocationPlant Contact

Contacts PhoneContacts e-mail

Location Trap # Trap Style Temp IN Temp OUT Status Test Means Comments and Notes

Back toCost of

Page 36: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 36/123

Page 37: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 37/123

Page 38: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 38/123

Page 39: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 39/123

Page 40: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 40/123

Compiled January 16, 1998 Ohms LawData Printout 12/18/2013

Data Compiled byDavid C Farthing

Page 41: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 41/123

Data Printout 12/18/2013 David C. FarthingVoice 405-728-6709

OHMS Laws of ElectricityFill in any TWO (2) known pieces of data under the factor you are

E = Voltage I = Current/Amps R = Ohms Resistance W = Watts

Input the known data from your application.To Find AMPS = 0.0417 To Find WATTS = 11.560 Kw=

Voltage 24 Voltage 110OHMS 330 OHMS 100Watts 1 Amps 0.34

To Find VOLTS = 1.000 To Find OHMS = 1.000Watts 1 Voltage 1OHMS 1 Amps 1 Amps 1 Watts 1

To Find KVA = 0.001# of Phases 1 Amps 1

Voltage 1

Compiled January 16, 1998 Ohms LawData Printout 12/18/2013

Data Compiled byDavid C. Farthing

Page 42: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 42/123

ata tout / 8/ 0 3 a d C a t gVoice 405-728-6709

  looking for.

0.01156

Page 43: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 43/123

Temperature ConversionsEnter Known Temperature in 'F' or 'C' for results.

Degree F Degree C

INPUT DATA 60 15.56Degrees C = 15.56Degrees K = 288.71Degrees R = 519.69Degrees F= 60.01

Page 44: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 44/123

Page 45: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 45/123

Page 46: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 46/123

Page 47: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 47/123

Calculating Flash Steam for Secondary Use

Formula = ((SH1 - SH2)/LH2) X 100 = % Flash SteamSH1 = Temperature of High Pressure Steam from Steam TablesSH2 = Temperature of Steam at Flash Pressure from Steam TablLH2 = Latent Heat of Flash Steam at Flash Pressure From Steam

SH1 = 338SH2 = 227LH2 = 960

Flash % 11.56%

Boiler Blowdown going to Flash Tank in PPH = 828Total PPH Flash Available for Work = 95.74

Btu/Hr Available for Work = 91,908 

Example: A 800 Bhp (27,600 PPH) operating at 100 PSIG has a surface blowdown rate of 3%. CalculSH1 = 338SH2 = 227LH2 = 960Blow Down = 27,600 * 3% = 828 PPH

Page 48: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 48/123

  s  Tables

  late the Flash Steam available to the DA at 5 PSIG.

Page 49: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 49/123

Calculated Total Cost to Produce Steam-Natural Gas Fired Plant w/ Po

Rated Boiler Output in Kpph 18

Thermal Efficiency of Boiler 82MMBTU/Hr Input 21.95 at StatedTotal Operating Electric Horsepower 45 Fan and F

Hours Per Year Operation 8000Cost of Fuel per MMBTU 12.00$

Fuel Cost per Kpph 14.63$Contribution of Secondary Waste Fuel Stream 30%Fuel Cost per Kpph w/ Contributed Waste Fuel $10.24

Cost of Electricity per KWH 0.14$

Electrical Cost per Kpph 0.26$Cost of Water per 10,000 Gal 2.33$

Percent Make-up to Boiler 3%Calculated Water Treatment Cost per 1000 Pounds 0.01$

Operators Annual Salary 40,000.00$Overhead and Benefits of Operator  14,400.00$

Percentage of Operator Cost to Operation of Boiler 6% Annual Maintenance & Inspection 1,165.00$

Cost to Produce 1Kpph 11.07$

Depreciation on Equipment as % 5.00%Cost to Produce 1Kpph w/ Depreciation 11.62$

Cost of Purchased Steam from Outside source 9.56$

Saving(+)/Cost(-) to Operate Owners On-Site Plant ($296,481.36)

Page 50: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 50/123

  ssible Secondary Waste Fuel Stream

  oiler Thermal Efficiency  edwater Pumps

PROPERTIES OF SATURATED STEAM

Page 51: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 51/123

Specific

Temp- Volume Gauge Temp-

erature Cu. ft. Pressure erature

Deg F Sensible Latent Total per lb. PSIG Deg F Sensible Latent Total25 134 102 1017 1119 142 185 382 355 843 1198

20 162 129 1001 1130 73.90 190 384 358 841 1199

15 179 147 990 1137 51.30 195 386 360 839 1199

10 192 160 982 1142 39.40 200 388 362 837 1199

5 203 171 976 1147 31.80 205 390 364 836 1200

0 212 180 970 1150 26.80 210 392 366 834 1200

1 215 183 968 1151 25.20 215 394 368 832 1200

2 219 187 966 1153 23.50 220 396 370 830 1200

3 222 190 964 1154 22.30 225 397 372 828 12004 224 192 962 1154 21.40 230 399 374 827 1201

5 227 195 960 1155 20.10 235 401 376 825 1201

6 230 198 959 1157 19.40 240 403 378 823 1201

7 232 200 957 1157 18.70 245 404 380 822 1202

8 233 201 956 1157 18.40 250 406 382 820 1202

9 237 205 954 1159 17.10 255 408 383 819 1202

10 239 207 953 1160 16.50 260 409 385 817 1202

12 244 212 949 1161 15.30 265 411 387 815 1202

14 248 216 947 1163 14.30 270 413 389 814 120316 252 220 944 1164 13.40 275 414 391 812 1203

18 256 224 941 1165 12.60 280 416 392 811 1203

20 259 227 939 1166 11.90 285 417 394 809 1203

22 262 230 937 1167 11.30 290 418 395 808 1203

24 265 233 934 1167 10.80 295 420 397 806 1203

26 268 236 933 1169 10.30 300 421 398 805 1203

Heat in Btu/lb. Heat in Btu/lb.

PSIG

   I   N   V   A   C

Gauge

Pressure

Specific

Temp Volume Gauge TempGauge

Page 52: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 52/123

Temp- Volume Gauge Temp-

erature Cu. ft. Pressure erature

Deg F Sensible Latent Total per lb. PSIG Deg F Sensible Latent Total

Heat in Btu/lb. Heat in Btu/lb.

PSIG

 

Gauge

Pressure

28 271 239 930 1169 9.85 305 423 400 803 1203

30 274 243 929 1172 9.46 310 425 402 802 120432 277 246 927 1173 9.10 315 426 404 800 1204

34 279 248 925 1173 8.75 320 427 405 799 1204

36 282 251 923 1174 8.42 325 429 407 797 1204

38 284 253 922 1175 8.08 330 430 408 796 1204

40 286 256 920 1176 7.82 335 432 410 794 1204

42 289 258 918 1176 7.57 340 433 411 793 1204

44 291 260 917 1177 7.31 345 434 413 791 1204

46 293 262 915 1177 7.14 350 435 414 790 1204

48 295 264 914 1178 6.94 355 437 416 789 120550 298 267 912 1179 6.68 360 438 417 788 1205

55 300 271 909 1180 6.27 365 440 419 786 1205

60 307 277 906 1183 5.84 370 441 420 785 1205

65 312 282 901 1183 5.49 375 442 421 784 1205

70 316 286 898 1184 5.18 380 443 422 783 1205

75 320 290 895 1185 4.91 385 445 424 781 1205

80 324 294 891 1185 4.67 390 446 425 780 1205

85 328 298 889 1187 4.44 395 447 427 778 1205

90 331 302 886 1188 4.24 400 448 428 777 120595 335 305 883 1188 4.05 450 460 439 766 1205

100 338 309 880 1189 3.89 500 470 453 751 1204

105 341 312 878 1190 3.74 550 479 464 740 1204

110 344 316 875 1191 3.59 600 489 473 730 1203

115 347 319 873 1192 3.46 650 497 483 719 1202

120 350 322 871 1193 3.34 700 505 491 710 1201

Specific

Temp Volume Gauge TempGauge

Page 53: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 53/123

Temp- Volume Gauge Temp-

erature Cu. ft. Pressure erature

Deg F Sensible Latent Total per lb. PSIG Deg F Sensible Latent Total

Heat in Btu/lb. Heat in Btu/lb.

PSIG

 

Gauge

Pressure

125 353 325 868 1193 3.23 750 513 504 696 1200

130 356 328 866 1194 3.12 800 520 512 686 1198135 358 330 864 1194 3.02 900 534 529 666 1195

140 361 333 861 1194 2.92 1000 546 544 647 1191

145 363 336 859 1195 2.84 1250 574 580 600 1180

150 366 339 857 1196 2.74 1500 597 610 557 1167

155 368 341 855 1196 2.68 1750 618 642 509 1151

160 371 344 853 1197 2.60 2000 636 672 462 1134

165 373 346 851 1197 2.54 2250 654 701 413 1114

170 375 348 849 1197 2.47 2500 669 733 358 1091

175 377 351 847 1198 2.41 2750 683 764 295 1059180 380 353 845 1198 2.34 3000 696 804 213 1017

Total per lb.

Calculating Superheat in Pressure Reducing Stations

High Pressure Point 250

Reduced Pressure 14

High Pressure Volume/CuFt 1.75 From Tabels above

Reduced Pressure Volume/CuFt 14.3 From Tabels above

High Pressure Temperature 406 From Tabels aboveReduce Pressure Normal Temperature 248 From Tabels above

Resultant Superheat 19.3357

Temperature of Reduced Pressure Steam 267.336

Page 54: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 54/123

Specific

Volume

Cu. ft.

per lb.2.29

2.24

2.19

2.14

2.09

2.05

2.00

1.96

1.921.89

1.85

1.81

1.78

1.75

1.72

1.69

1.66

1.631.60

1.57

1.55

1.53

1.49

1.47

Specific

Volume

Page 55: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 55/123

Volume

Cu. ft.

per lb.

1.45

1.431.41

1.38

1.36

1.34

1.33

1.31

1.29

1.28

1.261.24

1.22

1.20

1.19

1.18

1.16

1.14

1.13

1.121.00

0.89

0.82

0.75

0.69

0.64

Specific

Volume

Page 56: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 56/123

Cu. ft.

per lb.

0.60

0.560.49

0.44

0.34

0.23

0.22

0.19

0.16

0.13

0.110.08

Technical Source

National Hydraulic Inst.Piping Friction Loss Analysis Compiled by:

David C. Farthing

Voice 405-728-6709

68 Degree Water Data!! Piping Friction Loss and Velocity Analysis

Page 57: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 57/123

Single pipe system. For multiple pipe sizes in a single run calculate each section and add

all section total losses together to get Total Head Loss for system.

Lookup Tables are available from most any pump/pipe manufacturer.

IS this calculation for Suction or Discharge Pipe S or D ? SSystem Size 2.064 It is helpful to input actual pipe ID.Linear Feet Pipe 6.00

Number of 90 Ells 1.00

Number of 45 Ells 0.00

Number of Valves 1.00Flow Rate Required 35.00 GPMPipe Schd 40.00

Lookup Table > Friction Loss/100 Ft 1.00 Head Friction Loss/100 Feet of Pipe

Federal Catalog Velocity 3.33 Feet Per Second

Pages 265-266 Effective Reynolds Number 53027.89 Flow is no longer laminar!

K Factor 90 Ells Short 0.98 Averaged for pipe size rangeK Factor 45 Ells Short 0.31 Averaged for pipe size rangeK Factor Valves Globe 6.75 Averaged for pipe size range

Head Velocity V2/2G 0.17

Total Loss Line Pipe 0.06 Feet Head Formula

Total Loss from 90 Ells 0.17 Feet Head h=K*(V2/2G)

Total Loss from 45 Ells 0.00 Feet Head h=K*(V2/2G)

Total Loss from Valves 1.16 Feet Head h=K*(V2/2G)

Back Pressure Valve Setting 0 0.00 Feet Head

Total Head Loss 1.39 Feet of Head Loss

Pump

Financial Analysis12/18/2013

Compiled byDavid C. Farthing

Voice 405-728-6709

Page 58: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 58/123

Financial Analysis of a Project

Project Name ABC ProcessorsOXYGEN TRIM TO CROSS LIMITED F/A

Initial Cost of Investment Materials 5,000.00$Initial Cost of Investment Installation 3,850.00$ Annual Pay Back Expected from this investment 19,429.00$Base Line Years to Payout 0.46Fixed Cost of Money in percent to be used for this exercise 6.85%How many Years will the Project be Amortized over? 0

First Year Cost of Money -$Second Year Cost of Money -$Third Year Cost of Money -$Fourth Year Cost of Money -$Fifth Year Cost of Money -$Estimated Cost of Perishables during first five years of ownership -$NET Years to Payout 0.46Expected Life Span of Investment 15.00*Total Dollars Returned Over Life of Investment 282,585.00$

*Note: Return on investment includes paying off original equipment investment.Original Investment 8,850.00$ Interest Rate 6.85% Interest Paid -$

Hydronic Load Calculations

Page 59: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 59/123

yd o c oad Ca cu at o sProcess Recovery v Tank Size

Heater Size Selected 1825 Tank Size 3000Usage Recovery Percent

Time Load In-Temp Out-Temp Time Rate Heat Heater Recovery of Tank Vol.0.00 300 50 165 0.083 3,454,157 1,460,000 10%0.25 255 50 165 243,691 1,460,000 9%0.50 365 50 165 348,812 1,460,000 12%0.75 255 50 165 243,691 1,460,000 9%1.00 365 50 165 348,812 1,460,000 12%

Page 60: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 60/123

Recovery TimeMinutes

874,518.3710.0114.3310.0114.33

874,567.07

Page 61: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 61/123

Instrument Application Selection Guide and A guide to help you select the equipment needed to acco

What is the Application? 1

Heating = 1Level = 2

Pressure = 3Flow = 4

Vaccum = 5Cooling = 6

Equipment Needed Controller Reverse Action - Thermal element RTD or Thermocouple - Cont

Controller  Reverse Action

Transmitter  Use a Thermocouple or RTD for Temperature Measurement

Control Valve

Special Equipment

The following is courtiousy of Rex Warr, Technical Operations Automation Team, DCP Midstrea

Typical Tunning for Specific Loop ApplicationsFLOW PRESS TEMP LEVEL

Gain 0.6-0.8 5 1 to 2 0.8-1.2Reset 20-30 0.5-1.0 0.5-2.0 0.1-0.2

Rate 0 0 0.1-0.2 .01-.02

Reset Units in Repeats/Minutes

Rate Units in MinutesThese numbers are starting points for single phase (homogenous) materials.They do not hold up when the process is multi-phased such as Steam Boiler Lewhich is two-phase, i.e. Water/Vapor.

Gain represented as Proportional Band (PB)Gain = 0.250 0.500 1.000 2.000 4.000 10.000PB = 400.000 200.000 100.000 50.000 25.000 10.000

If Gain is 5.000 5.000If PB is 20 000 20 000

Page 62: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 62/123

  Application Tuning Suggestions  plish an instrument application.

  ol Valve and thermal extionsion wire

 

el

Water Flow Through an Orifice

Page 63: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 63/123

Qh=C' X (Hw*Pf)^.5

Qh= Lbs/Hr Mass Flow UNDER CONSTRUCTION

C' = Flow Constant DO NOT USE FOR DEFINITIVEHw = Differential in Inches Water Pf = Static Gauge Pressure in PSIA Assumed Factors for Water Fb Orifice Factor Fr Reynolds Number Y Expansion Factor 

CV = GPM

Inlet Pressure, PSIG 60 74.65 Calculated Pf GPM

Discharge Pressure 10 24.65 Corrected to PSIA Pressure DCalculated HW 1386 Inches Water Differential Specific Gr  ID of Orifice 1.55 CV=ID of Pipe 4 Orifice SizeGPM= 299.82

 Average Orifice Size 1.80

These Values are ONLY Approximate and are not to be used for custody transf

Page 64: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 64/123

  ATA!!

  / DP^.5 x SG.

300

  rop 50  avity 1

42.43  2.05

  r calculations.

David Farthing's TechStuff 12/18/2013 Helpful Boiler Burner Calculations

Page 65: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 65/123

Combustion Air Requirements in Sq./Ft for Atmospheric and Power Burners

IN PUT DATABoiler Horsepower 800Boiler Eff. 80%Boiler Input BTUH 33,476,923

Combustion Air Area Requirements 27.9 Square Feet Free Air Flow Area

Authority Oklahoma Boiler and Pressure Vessel Safety Act 1982, Edition 1993Table 380:25-7-18(b)

Combustion Analysis This section under construction DO NOT USE THIS FUNCTION!

Stack Temperature 525

Ambient Temperature 90Net Temperature Rise 435

Excess O2 Reading 4%

Calculated Efficiency 79.1 Examples Only!

Calculated Excess Air  21.1 Examples Only!Gas Analysis for Natural Gas

%O2 0.0 0.5 1.0 1.5 2.0 2.5 3.0% Excess Air  0.0 2.1 4.5 7.1 9.8 12.2 15.1

% Co2 11.9 11.6 11.3 11.0 10.7 10.5 10.2

%O2 3.5 4.0 4.5 5.0 5.5 6.0 6.5% Excess Air  18.1 21.2 24.5 28.2 32.0 36.1 40.4

% Co2 9.9 9.6 9.3 9.0 8.7 8.5 8.2

%O2 7.0 7.5 8.0 8.5 9.0 9.5 10.0% Excess Air  45.0 50.2 55.5 61.2 67.8 74.6 82.0

% Co2 7.9 7.6 7.3 7.0 6.8 6.5 6.2

%O2 10.5 11.0 11.5 12.0 12.5 13.0 13.5% Excess Air  90.4 100.4 109.2 120.6 133.0 146.8 163.1

% Co2 5.9 5.6 5.3 5.1 4.8 4.5 4.2

General NotesHigh "C" Carbon (soot) need more air.High "CO" Carbon Monoxide, need more air.High "CO2" Carbon Dioxide, need LESS air.Typical Safe Oxygen StandardsHigh Fire 2.0-4.5% Excess O2Mid Fire 3.5-5.0% Excess O2Low Fire 6.0-8.0% Excess O2

Ideal Excess Oxygen Curve for Natural Gas

Condensing Economizer for Deaerators Energy Calculations

Page 66: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 66/123

Customer Cargill Feed MillsFiretube Dryback

Boiler Type Watertube/Firetube F

Fuel Type Gas or Oil GBoiler Rated Horsepower 700

Boiler Rated Efficiency 82.00%Normal Firing Rate (NFR) 50.0%

Boiler Operating Pressure PSIG 110Combustion Make-up Air Temperature 70

Entering Feedwater Temperature 240 Equivalent Fuel Cost/1000 CFFuel Cost per D/Therm 9.500$ 9.50$ Per 1000 CF

Hours/Day Operation 22Days/Month Operation 28  Acid Dewpoint Tables

Operating Steam Temperature (Saturated) 344.00 Fuel Dewpoint Minimum MinimumFiring Boiler Horsepower @ NFR 350 Stack Temp Feedwater 

Boiler Fuel Input @ NFR 14,283,841.46  Inlet Temp.BTU Output @ NFR 11,712,750  Natural Gas 150 250 210

Net Operating Efficiencies as found 84.37%Theoretical Entering Stack Temperature 399.00 Default #2 Diesel Fuel 180 275 210

Actual Observed Stack Temperature 341.00 Low Sulfur Oil 200 300 220Entering Make-Up Water Temperature 68.00

Temperature Rise Across Econ. 273.00Water Flow #/Hr  12,075.00

Gross BTU to Feedwater/Hr 921,315.96Exiting Make-Up Water Temperature "F" 144.30

Exiting Stack Temperature 182.83 Caution Stack Temp Below Dew Point!Gain in Efficiency 3.23% Condensing Economizer Required

New Net Calculated Thermal Efficiency 87.59%Fuel Savings/Hr 4.38$

Annual Current Cost of Operation 1,003,068.48$Total Annual Savings w/ Economizer 32,349.25$ Based on Gain in Efficiency

Annual Cost of Operation w/ Economizer 970,719.24$Economizer Equipment Cost 23,000.00$

Economizer Estimated Installation 11,500.00$Actual Economizer Installation Quote 13,785.00$

Simple Pay-Back in Years 1.14

Economizer Heat Recovery Calculations 12/18/2013 2:54 AM Data Compiled byDavid Farthing

Federal Corporation

Economizer Energy Calculations

Page 67: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 67/123

Economizer Energy CalculationsCustomer Solae repaired Heatmizer Economizers

Feeding Econ with DA Water 

Boiler Type Watertube/Firetube FFuel Type Gas or Oil G

Boiler Rated Horsepower 1169Boiler Rated Efficiency 82.00%

Normal Firing Rate (NFR) 80.0%

Boiler Operating Pressure PSIG 155Combustion Make-up Air Temperature 80

As Found Entering Feedwater Temperature 227 Equivalent Fuel Cost/1000 CFFuel Cost per D/Therm 6.300$ 6.30$ Per 1000 CF

Hours/Day Operation 22

Days/Month Operation 28  Acid Dewpoint TablesOperating Steam Temperature (Saturated) 368.00 Fuel Dewpoint Minimum Minimum

Firing Boiler Horsepower @ NFR 935.2 Stack Temp Feedwater 

Boiler Fuel Input @ NFR 38,166,424  Inlet Temp.BTU Output @ NFR 31,296,468  Natural Gas 150 250 210

Net Operating Efficiencies as found 83.27%Actual BTU Input 37,585,210 

Theoretical Entering Stack Temperature 456.00 Default #2 Diesel Fuel 180 275 210

Actual Observed Stack Temperature 456.00 Low Sulfur Oil 200 300 220

Entering Feedwater to Economizer  227.00Temperature Rise Across Econ. 229.00

Water Flow #/Hr  32,264.40Gross BTU to Feedwater/Hr 1,518,374.75

Exiting Feedwater Temperature "F" 274.06Exiting Stack Temperature 358.45 Application OK, Stack Temp Above Dew Point.

Gain in Efficiency 3.18% .New Net Calculated Thermal Efficiency 86.45%

Fuel Savings/Hr 7.65$Annual Current Cost of Operation 1,777,395.12$

Total Annual Savings w/ Economizer 56,568.08$ Based on Gain in EfficiencyAnnual Cost of Operation w/ Economizer 1,720,827.03$

Economizer Equipment Cost 57,600.00$

Economizer Estimated Installation 46,080.00$Actual Economizer Installation Quote 13,785.00$

Simple Pay-Back in Years 1.26

David Farthing's TechStuff orksheet by Stephen Youngblood, P.E.

Piping Insulation Losses Data Compiled by David Farthing

PIPING INSULATION LOSSESNOTE-1: Emistivity based on Steel Pipe between 130 and 530 Deg 'C' = .78

See Mark's Engineering Handbook 9th Edition McGraw-HillE i ti it L C l l t (((T1 460) (T2 460))/ 78)/ I Eff% X S f A

Page 68: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 68/123

Emistivity Loss Calculates as (((T1+460)-(T2+460))/.78)/ Ins. Eff% X Surface AreaNOTE-2 This Calculator returns a relatively LOW result in order to not over state the loss in the pipe work.

One should always contact a Professional Engineer expert in Thermodynamics when considering insulated piping losses.

Pipe Run Data Main Condensate Line Outside of BuildingDiameter Inches 84

Length Feet 12

Total Surface Area Sq Ft 461.8152

Insulation Eff % 54%

Ambient Temp 'F' 72

Fluid Temp 'F' 160

Emisitivity 208.93  Btu/Sq Ft

Pipe Loss = 96,485.61  Btu/Hr 

Annual Operating Hours 8,760 Annualized BTU Loss 845,213,916 

Total DkTherms 845

Cost/DkTherm 6.36$

Cost of Inadequate Insulation 5,375.56$

Water Flow Characteristics - Water Hammer 

Page 69: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 69/123

PVC and CPVC Pipe Calculation 

Pressure Surge = aV/ 2.31g = Shock Pressure pipe is exposed to.a= 4660/ (((1+ (Kdi/Et))^.5)Where a= wave velocity, ft/Sec Calculated factor see results below.

p= pressure surge caused by the sudden change in velocityV= maximum velocity change, ft/Sec (V= Q/A) Pipe Area =0.785398 * d 2̂g= acceleration of gravity, 32.2 ft/Sec ̂ 2k= fluid bulk modulus, 300,000 psi for water di= inside pipe diameter in inchesE= modulus of elasticity of the pipe,

420,000 psi PVC, 360,000 psi CPVC,t= pipe wall thickness, inches

Q= Flow Through Pipe, GPMINPUT DATA

Q= 450di= 4.025 Results for "a" a= 1021.10

V= 11.26 Results for Pressure Surge 155 PSIG

K= 300000 NOTE: Maximum safe Pressure Surge for PVC pipe = 98 PSIG.E= 420000t= 0.145

Steel Pipe Water Hammer Calculations Source Tube-Turn

Pressure Surge = P + (60V)Where P= Flowing Pressure in PSIG

V= Flowing Velocity in ft/Sec.INPUT DATA

Q= 450

P= 100 Results for Pressure Surge 775.4471 PSIG

di= 4.025V= 11.26

ASCO Solenoid Valve Application GuideTOMSPAVE

Application 25 degree f chiller service

Page 70: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 70/123

T Type of Valve 22-Way, 3-Way, 4-Way

O Operation of Valve NCUniversal, NC, NO

M Media LLiquid. Gas, Steam Go to Liquid Valve Sizing Guide

S Size of Flowing Pipe 1 CV From Valve Sizing Guide 10.03

P Pressure Minimum Maximum Drop Across Valve

10 15 5A Atmosphere Valve will Operate In. Clean

V Voltage Requirements 115

24 VDC, 115 VACE Extras for this application.

Fluid Temperature 25 http://www.ascovalve.com/products/html/valve_selector.htmAmbient Temperature 90

STEAM TRAP SELECTION GUIDE

Page 71: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 71/123

The chart below lists various steam trapping applications and enables the correc

A = First choice

B = Alternate choice Spirax Sarco Spirax SarcoF & T Range FT/TV/SLR

 (Float/ (Float/Thermo-Thermostatic) static with

Steam Lock Application Release)CANTEEN EQUIPMENT F & T Range FT/TV/SLR

Boiling Pans-Fixed A B

Boiling Pens-Tilting A

Boiling Pans-Pedestal B B

Steaming Ovens

Hot Plates B B

FUEL OIL HEATING

Bulk Oil Storage Tanks

Line Heaters A

Outtlom Heaters A

LAUNDRY EQUIPMENT F & T Range FT/TV/SLR

Garment Presses B

Page 72: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 72/123

Ironers and Calendars B A

Solvent Recovery Units ATumbler Dryers A B

PRESSES F & T Range FT/TV/SLR

Multi Platan Presses

 (parallel connections) B

Multi Platen Presses

 (series connections)

Tire Molds BPROCESS EQUIPMENT F & T Range FT/TV/SLR

Boiling Pans-Fixed A B

Boiling Pan-Tilted A

Brewing Coppers A B

Digesters A

Evaporators A B

Hot TablesRetorts A

Bulk Storage Tanks

Vulcanizers B

SPACE HEATING EQUIPM F & T Range FT/TV/SLR

Shell & tube Heat Exchange A B

Heating Coils & Unit Heater  A B

Radiant Panels & Strips A BRadiators & Convection Cab B

Overhead Pipe Coils B

STEAM MAINS F & T Range FT/TV/SLR

Horizontal Runs B

Separators A

Terminal Ends B

Shut Down Drain(Frost Protection)

1. With air vent in parallel 2. At end cooling leg Minimum length 3 ft (1m)

3. Use special traps which offer fixed temperature discharge option.

Page 73: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 73/123

Page 74: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 74/123

  choice of trap to be made.

Spirax Sarco Spirax Sarco Spirax Sarco Spirax Sarco Spirax Sarco FT/SLR TD Range BPT SM Thermoton

(Float/Steam (Thermo- (Balanced (Bimetallic) (LiquidLock Release) dynamic) Pressure Expansion)

Thermostatic)

 FT/SLR TD Range BPT SM Thermoton

B1 B1 B

B B

B1 A2

A2

B1 A2

A

 FT/SLR TD Range BPT SM Thermoton

A

Page 75: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 75/123

B1 B1 B

BB1

 FT/SLR TD Range BPT SM Thermoton

A

  A1

A B FT/SLR TD Range BPT SM Thermoton

B1 B1 B

B

B1

B1

B1

B A

  A1

A

 FT/SLR TD Range BPT SM Thermoton

B1

B1

B1 B1A B

A

 FT/SLR TD Range BPT SM Thermoton

A B2

B B2

  A1 B2

B3 A

Page 76: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 76/123

Page 77: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 77/123

Spirax SarcolB Range

(InvertedBucket)

lB Range

B1

B1

B1

lB Range

B

B1

Page 78: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 78/123

B1

BB1

lB Range

B

B1

BlB Range

B1

B1

B1

B1

B1

B1

lB Range

B1

B1

B1

B1

lB Range

B

B

B1

Courtesy of Spirax Sarco

Page 79: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 79/123

Courtesy of Spirax-Sarco

Boiler Application GuideThis application helps you select the vender and type of boiler you might use.

Do you need Steam = S or Water = W s Steam Boiler Application 0Operating Pressure 12 Low Pressure System 1 0

Page 80: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 80/123

Is the load Continuous or Cyclic? Cont./ Cyc. Cont.

How Much Steam or Hot Water is needed?Water Applications BTU 0 NO ENTRY REQUIRED Water applications only

Operating Temperature (Water) 210 0 0Steam Flow #/Hr. 10,000 Please enter Steam Load 1 1Burner Type Power or Atmospheric p Power Burner Selected 1 1Fuel Oil/Gas or Oil & Gas g Gas 2What pressure is the Primary fuel 1 I Inches/PSI 2 0Feed Water System desired? m Start/Stop or Modulating 1 1Boiler Hp Required 6Steam 289.86

Water  0.00

Net BTU Output 9,700,000

Special Note 1 None

Boiler Types To Look At Steam Boilers Kewanee Rite or Peerless

Application Note 1 Steam Application

Application Note 2 Low Pressure Steam Application

Application Note 3 none

Application Note 4 Modulating Feedwater System Selected, Price Boiler Accordingly

Application Note 5 IRI Fuel Train Required

Application Note 6 Gas Fired Burner 

Application Note 7 Low Pressure Gas Train Required, Check Pressure Drops in Gas TrainSelect a boiler shell with a minimum working pressure of  15 PSIG

Flame Safety Selection GuideThis application helps you answer the questions that need to be answered to select F

Page 81: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 81/123

Application BBoiler, Oven, Furnace

BTU Input 3,465,000 IRI Codes RequiredOperation A  You have selected Automatic OperationAutomatic, Semi-Automatic, Manual

Pre-Purge Required Y Yes / No

Purge Time Specified By Manufacturer This Application guide uses gas flow to dePurge Time Recommended if not specified. 2.31 MinutesPilot Style IInterrupted, InTermittent, Standing

Results of your questions.Use Programming Controller such as a RM7800 or RM7840Use RM 7800 or 7840 series Programmers on Automatic Boiler Applications

Purging Relay required, RM7800 / 7840 on automatcis, and RM7895 on Semi-AutomaticsUse Interupted Amplifier & Relay Combinations

  G.

Page 82: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 82/123

1

  termine purge time.

Suction Piping Calculations68 Degree Water Data!! Piping Friction Loss and Velocity Analysis

Single pipe system. For multiple pipe sizes in a single run calculate each section and add

Page 83: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 83/123

all section total losses together to get Total Head Loss for system.

Lookup Tables are available from most any pump/pipe manufacturer.System Size 3.068 It is helpful to input actual pipe ID.

Specific Gravity for other than 68 deg Water 1.000 1.0 is default for 68 degree water.

Linear Feet Suction Pipe 6.00Number of 90 Ells 1.00Number of 45 Ells 0.00Number of Valves 0.00Flow Rate Required GPM 330.00 From Pump work sheet

Pipe Schd 40.00Lookup Table Friction Loss/100 Ft from look-up tables 26.30 Head Friction Loss/100 Feet of Pipe

Federal Catalog Velocity 14.32 Feet Per SecondPages 265-266 Effective Reynolds Number 339025.26 Flow is no longer laminar!

K Factor 90 Ells Short 0.8 Averaged for pipe size range

K Factor 45 Ells Short 0.25 Averaged for pipe size range

K Factor Valves Globe 5.25 Averaged for pipe size range

Head Velocity V2/2G 3.19

Total Loss Line Pipe 1.58 Feet Head FormulaTotal Loss from 90 Ells 2.55 Feet Head h=K*(V2/2G)Total Loss from 45 Ells 0.00 Feet Head h=K*(V2/2G)Total Loss from Valves 0.00 Feet Head h=K*(V2/2G)Total Head Loss 4.13 Feet of Head Loss

Total Head loss corrected for Specific Gravity 4.13

Discharge Piping Calculations68 Degree Water Data!! Piping Friction Loss and Velocity Analysis

Single pipe system. For multiple pipe sizes in a single run calculate each section and addall section total losses together to get Total Head Loss for system.Lookup Tables are available from most any pump/pipe manufacturer.

System Size 3.068 It is helpful to input actual pipe ID.

Linear Feet Discharge Pipe 100.00Number of 90 Ells 4.00

Number of 45 Ells 0.00Number of Valves 1.00Flow Rate Required 330.00 GPM

Pipe Schd 40.00Lookup Table Friction Loss/100 Ft 26.30 Head Friction Loss/100 Feet of Pipe

Federal Catalog Velocity 14.32 Feet Per Second

Pages 265-266 Effective Reynolds Number 339025.26 Flow is no longer laminar!

K Factor 90 Ells Short 0.8 Averaged for pipe size range

K Factor 45 Ells Short 0.25 Averaged for pipe size range

K Factor Valves Globe 5.25 Averaged for pipe size range

Head Velocity V2/2G 3.19

Total Loss Line Pipe 26.30 Feet Head FormulaTotal Loss from 90 Ells 10 20 Feet Head h=K*(V2/2G)

Halliburton Turbin Gas Flow Meter Calculations

Flowing Pressure 15

Page 84: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 84/123

Flowing Pressure 15

Flowing Temperature 60Observed Flow Rate 19250 Actual Cubic FeetCorrected SCF Flow 38852.851 Standard Cubic Feet

Totalizer Divisor Factory Calibration Factor 123.42 ActualSet Totalizer Read Out Divisor to = 61.147 Registers in Standard Cubic FeetSet Totalizer Read Out Divisor to = 611.472128 Registers in TENTHS of a Standard Cubic Foot

Flow Rate Indicator Full Sacle Frequency Factor Full Scale Flow Rate 38800 SCF/ Time BaseFactory Calibration Factor 123.42Time Base Conversion Factor 3600 Seconds Per Time Base (86400/day, 3600/Hr, 60/Min)Full Scale Frequency = 659.056

K-Factor Factory Calibration Factor 123.42K-Factor = 61.147

Temperature EffectsPlus or Minus Temperature Change 22 Degree FCalculation for Plus 37274.838Percent Effect 4.062Calculation for Minus 40570.380Percent Effect -4.421

Presure EffectsPlus or Minus Presure Change 5 PSIGCalculation for Plus 45387.135Percent Effect 16.818Calculation for Minus 32318.568

Percent Effect -16.818

Halliburton Oil Meter Calculator for known Btu Input#2 Diesel Oil

BTU Input 72000000

Page 85: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 85/123

p

Btu/Gal/Oil 139000Total Gal/Oil 517.9856

Total Lbs./Oil 74.02967GPM FLOW 8.633094

 ASME formula

Ref: Marks9th, p12-69/12.4.212/18/2013 2:54 AM

Hot Water Boiler Expansion Tank Sizing Non-Bladder Air Charged Steel TankInternational Mechanical Code 1009.2 and ASMEAll Calculations based on 14.73 PSIA Sea Level 40 degree make-up water.

Vt=((0.00041T-0.0466) X Vs) / (Pa/Pf)-(Pa/Po)Vt= Minimum volume of expansion tank, gallons

Page 86: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 86/123

p , g

Vs= Volume of water in system less expansion tank, gallonsT= Maximum Average Operating Temperature of system, degrees 'F'Pa= Atmospheric pressure fixed at 14.73 in this calculation.

Pf= Filling pressure (psig).Po= Maximum operating pressure (psig).

NOTE Calculations correct Pa,Pf, and Po to Feet Absolute for you.System Temperatures between 160 to 280 degrees 'F'.

T=  Average System Operating Temperature, Degrees F 160

Vs= Volume of Water in System, Gallons 265

Pf= Make-up Fill Water Pressure PSIG 45

Po= Maximum Operating Pressure of System PSIG 50Vt= Minimum Volume Expansion Tank Required 26.43 Plain Steel Tank

Boyle's Law Acceptance Factor  1.08 This is a Safety Factor used by many EngineersMinimum Tank Volume using Boyle's Factor  28

Measurement, Controllers & Recorders

UNDER CONSTRUCTION - APPLICATION NOT YET A

Page 87: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 87/123

UNDER CONSTRUCTION APPLICATION NOT YET A

Measurement

Level, Pressure, Temperature or Flow? F L,P,T,FFlow Measurement uses either a Differential Pressure Transmitter or Flow Meter 

Areyou using a Differential Transmitter or a Meter? Selece DT or M in the yellow box belowDT

Differential Transmitters meassure flow in inches water pressure across an orifice plate

AILABLE

Page 88: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 88/123

  AILABLE

VFD Pump Affiniity Laws and Curve Effect

Variable Speed Pump Curves

Page 89: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 89/123

Process RequirementsNormal Maximum

Speed 1 60 RPM 3550 Speed 2 55 RPM 3254 Flow 50 96

Speed 3 50 RPM 2958.333 Speed 4 45 RPM 2663 Head 427 485

Speed 5 40 RPM 2367 Speed 6 35 RPM 2071

Speed 1 60 Hz. Original Pump Curve Data Speed 2 55 Hz.

Flow Head HP Eff Flow Head HP EffPoint 1 50 555 13 40 Point 1 45.83333 466.3542 10.01331 40Point 2 70 540 14.4 58 Point 2 64.16667 453.75 11.09167 58Point 3 90 520 20.4 65 Point 3 82.5 436.9444 15.71319 65Point 4 110 500 21.6 75 Point 4 100.8333 420.1389 16.6375 75

Point 5 BEP 130 475 23 76 Point 5 BEP 119.1667 399.1319 17.71586 76Point 6 150 450 24 75 Point 6 137.5 378.125 18.48611 75

Point 7 EOC 170 410 25 76 Point 7 EOC 155.8333 344.5139 19.25637 76 

Speed 3 50 Hz. Speed 4 45 Hz.

Flow Head HP Eff Flow Head HP EffPoint 1 41.66667 385.4167 7.523148 40 Point 1 37.5 312.1875 5.484375 40

Point 2 58.33333 375 8.333333 58 Point 2 52.5 303.75 6.075 58Point 3 75 361.1111 11.80556 65 Point 3 67.5 292.5 8.60625 65Point 4 91.66667 347.2222 12.5 75 Point 4 82.5 281.25 9.1125 75

Point 5 BEP 108.3333 329.8611 13.31019 76 Point 5 BEP 97.5 267.1875 9.703125 76Point 6 125 312.5 13.88889 75 Point 6 112.5 253.125 10.125 75

Point 7 EOC 141.6667 284.7222 14.46759 76 Point 7 EOC 127.5 230.625 10.54688 76

Speed 5 40 Hz. Speed 6 35 Hz.

Flow Head HP Eff Flow Head HP EffPoint 1 33.33333 246.6667 2.229081 40 Point 1 29.16667 188.8542 2.58044 40

Point 2 46.66667 240 2.469136 58 Point 2 40.83333 183.75 2.858333 58Point 3 60 231.1111 3.497942 65 Point 3 52.5 176.9444 4.049306 65Point 4 73.33333 222.2222 3.703704 75 Point 4 64.16667 170.1389 4.2875 75

Point 5 BEP 86.66667 211.1111 3.943759 76 Point 5 BEP 75.83333 161.6319 4.565394 76Point 6 100 200 4.115226 75 Point 6 87.5 153.125 4.763889 75

Point 7 EOC 113.3333 182.2222 4.286694 76 Point 7 EOC 99.16667 139.5139 4.962384 76 

Grunfos CR32.6Enter Pump Speeds Desired (HZ)

Larrs Hydronic Zone Loads CalculationSource: Laars Technical Data

All data based on 20 degree 'F' temperature drop across coil.

Page 90: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 90/123

Minimum 140 degree supply.Calculating Required Flow Rate in GPM through the Zone.

NET BTU Load of Zone = 27,000Total Flow Rate to Zone in GPM 2.7

Calculating Pump Head Required to Circulate Loop. (Closed Loop ApplicatioLongest pipe run in Feet = 250Total Estimated pumping head required = 15

Calculated Copper Pipe Size Required for Heating CapacityCopper Pipe Size Required for Zone 0.75

Page 91: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 91/123

  )

Boiler Heat Recovery Calculations

Printout 12/18/2013 2:54 AM

Data Compiled by

David Farthingvoice 405-728-6709

Blowdown Heat Recovery

Using waste heat from surface blowdown to pre-heat make-up water to DA or boiler.

Page 92: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 92/123

Boiler Type FT or WT FT FT=Fire Tube, WT=Water TubeSteam Boiler Flow PPH at Capacity 41400 1200 Calculated Boiler Hp.TDS of Make-up Water  350Desired TDS in Boiler Water  4000

Operating Pressure 150

Operating Temperature 366

Boiler Rated Efficiency 82%

Normal Firing Rate 100%

Hours/Day Run Time 24

Days/Month Run 30Make-up as % of Steaming Rate 100%

Blowdown as % of Steaming Rate 9.59% Blowdown within normal limitsMake-up + Blowdown as % of Steaming Rate 109.59%Fuel Cost per Therm include transport cost 0.67$ Equivalent Fuel Cost per 1000 CF 6.66$

Deaerator Operating Temperature 227

Calculated Boiler Horsepower 1,200 At Operating Firing RateFuel Input at rated efficiency & firing rate 48,973.17 Cubic Feet/Hr  

Therms per hour at efficiency & firing rate 489.73Calculated Cost to Operate per 30 day billing 234,836.15$Blowdown in PPH 3,969.86Equivalent Boiler Horsepower Loss 115.07

Total Heat Available for Recovery 1,307,673 BTU/Hr.Equivalent Boiler Horsepower Recovered 39.08

31,384,149 BTU/Day

941,524,471 BTU/Billing Period11,298,293,655 BTU/Year 

Total Annual Cost for Blowdown & Make-up 75,246.64$BTU Heat for Recovery to Make-Up 477,336,329 Per Billing Period

Total Monthly Savings for Recovery 3,179.06$ Per Billing Period

Total Annual Savings for Recovery 38,148.72$Cost for Recovery Equipment 23,000.00$ Estimates Only Actual Cost must be quoted.

Cost for Installation L&M 12,000.00$ Estimates Only Actual Cost must be quoted.Months to Payback 11.01 Project Payback within normal limits.

David Farthing's Tech Stuff 12/18/2013 2:54 AM Relief Valve Data

Relief Valve Sizing and Selection

User Data ABC Company

Page 93: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 93/123

1234 Powerhouse LaneSmokin, PA 123456Boiler Data

Steam (S) or Hot Water (W)? SMAWP 200

Operating Pressure 150Btu Input 48,000,000 

Steam PPH Output 41,400 

USE STEAM DATA ONLY - 

How Many Safety Valves 2Safety Valve Port Size

Port 1 2Port 2 2Port 3 2

Steam Recommendations PPH Set PressureSafety Valve #1 13,662  190

Safety Valve #2 27,738  200

Safety Valve #3 -  0

Hot Water Recommendations Btu/Hr Set PressureRelief Valve #1 -  190Relief Valve #2 -  200Relief Valve #3 -  0

NOTES:1] Use only water or steam input data.

2] MAWP is the Maximum Allowable Vessel Pressure NOT the Operating Pressure3] Recommended "Set Pressure " is 20% Above Operating Pressure.

4] Always use a Drip-Pan Ell on Steam Safety Valve discharge piping.

David Farthing's TechStuff  Printout

12/18/2013 / 2:54 AM

Data Compiled by

David FarthingVoice 405-728-6709

The effect of Boiler Operating Pressure on System Performance

Firetube Boiers - Saturated Steam

Designed Velocity Across the Boiler Outlet Design Velocity in the distribution line

Page 94: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 94/123

Rated Boiler Horsepower  476 Distribution line Diameter  8

Boiler Outlet Diameter  6 Distribution Velocity Ft./Min. 2619.3639

Current Operating Pressure 120 Distribution Velosity OK

Feedwater Temperature 227

Steam Volume Cft/# 3.34

Boiler Outlet Velocity 4656.6469 Ft./Min.

Nozzle Velocity OK

New Velocity Across the Boiler Outlet New Velocity in the distribution line

New Operating Pressure 90 Distribution line Diameter  8

Steam Volume Cft/# 4.24 Distribution Velocity Ft./Min. 3325.1805

New Boiler Outlet Velocity 5911.4320 Ft./Min. Distribution Velosity OK

Danger Outlet Nozzle Velocity Above Safety Limits - Priming and Carry Over Will Occur!

 Additional or Reduction Btu/Bhp Required to Raise Pressure above 0 PSIG Theoretical Savings from Lowering Operating Pressure

3,899 BTU @ Current Pressure Btu Differential 621

3,278 BTU @ New Pressure Boiler Horsepower   476

621 Btu @ Horsepower/Hr Differential Cost of Fuel (Decatherm) 6.36$

Hrs/Day Operation 20Days/Month/Operation 22

$$ Saved or Expended/Mth. Misapplication

Feedwater Pump vs. Relief Valve Performance Requirements $$ Saved or Expended/Yr. Misapplication

Design At New

Boiler Horsepower 476

Maximum Allowable Working Pressure 350

Normal Operating Pressure 120 90

Minimum Safety Relief Valve Setting 138 104

Minimum Pump Head Requirements

Feet Head 338 253

Pressure Drop Across Feed Valve 50 See Liquid Valve Calcs.

Feedwater Piping Losses - PSI 12 See Friction Losses in Piping.

David Farthing's TechStuff  Printout12/18/2013 / 2:54 AM

Data Compiled byDavid Farthing

Voice 405-728-6709

Economizer Losses-PSI 5 See Manufacturer's Data sheet.

Pump Discharge Pressure PSI 213 177

Minimum Pump Flow Capacity GPM 41.17

Danger Outlet Nozzle Velocity Above Safety Limits - Priming and Carry Over Will Occur!

Minimum Pump Head Requirements are based on Minimum Safety Relief Valve Setting

Page 95: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 95/123

ADD SYSTEM LOSSES TO MINIMUM HEAD TO GET TOAL DYNAMIC HEAD PUMP MUST PRODUCE.

  Additional BTU Required to Develop 1 Boiler Horsepower vs. Feedwater Temperature

Feedwater Boiler Operating PressureTemperature 0 25 50 75 100 125 150 175 200 225 250

  Additional BTU Input Required to Bring Feedwater to Steaming Temperature

50 5,589 7,487 8,556 9,315 9,936 10,454 10,902 11,282 11,661 11,972 12,282

100 3,864 5,762 6,831 7,590 8,211 8,729 9,177 9,557 9,936 10,247 10,557

125 3,002 4,899 5,969 6,728 7,349 7,866 8,315 8,694 9,074 9,384 9,695

150 2,139 4,037 5,106 5,865 6,486 7,004 7,452 7,832 8,211 8,522 8,832

175 1,277 3,174 4,244 5,003 5,624 6,141 6,590 6,969 7,349 7,659 7,970

200 414 2,312 3,381 4,140 4,761 5,279 5,727 6,107 6,486 6,797 7,107

212 0 1,898 2,967 3,726 4,347 4,865 5,313 5,693 6,072 6,383 6,693225 1,449 2,519 3,278 3,899 4,416 4,865 5,244 5,624 5,934 6,245

230 1,277 2,346 3,105 3,726 4,244 4,692 5,072 5,451 5,762 6,072

240 932 2,001 2,760 3,381 3,899 4,347 4,727 5,106 5,417 5,727

250 587 1,656 2,415 3,036 3,554 4,002 4,382 4,761 5,072 5,382

260 242 1,311 2,070 2,691 3,209 3,657 4,037 4,416 4,727 5,037

270 0 966 1,725 2,346 2,864 3,312 3,692 4,071 4,382 4,692

275 794 1,553 2,174 2,691 3,140 3,519 3,899 4,209 4,520

280 621 1,380 2,001 2,519 2,967 3,347 3,726 4,037 4,347

TechStuff Computer Aided Boiler Room Solutions

12/18/2013 SourceDavid Farthing's

TechStuff Rev. 11.09

The effect of Boiler Operating Pressure on System Performance

Watertube Boiler - Saturated Steam

Designed Velocity Across the Boiler Outlet Design Velocity in the distribution line

Pounds/Hr Steam Flow 32000

Page 96: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 96/123

Pounds/Hr Steam Flow 32000

Rated Boiler Horsepower  928 Distribution line Diameter  10

Boiler Outlet Diameter  8 Distribution Velocity Ft./Min. 3383.9924

Current Operating Pressure 115 Distribution Velosity OK

Feedwater Temperature 227

Steam Volume Cft/# 3.46

Boiler Outlet Velocity 5287.4881 Ft./Min.

Nozzle Velocity OK

New Velocity Across the Boiler Outlet New Velocity in the distribution line

New Operating Pressure 70 Distribution line Diameter  10

Steam Volume Cft/# 5.18 Distribution Velocity Ft./Min. 5066.2082

New Boiler Outlet Velocity 7915.9503 Ft./Min. Distribution Velosity OK

Nozzle Velocity OK

 Additional or Reduction Btu/Bhp Required to Raise Pressure above 0 PSIG Theoretical Savings from Lowering Operating Pressure

3,899 BTU @ Current Pressure Btu Differential 1,380

2,519 BTU @ New Pressure Boiler Horsepower   927.5362319

1,380 Btu @ Horsepower/Hr Differential Cost of Fuel (Decatherm) 5.29$Hrs/Day Operation 20

Days/Month/Operation 22

$$ Saved or Expended/Mth. 2,979.33$

$$ Saved or Expended/Yr. 35,751.94$

12/18/2013 / 2:54 AM 'c' Federal Corporation

The effect of Feedwater Temperature on Boiler Horsepower    Additional BTU Required to Develop 1 Boiler

Feedwater Boiler Op

Customer Typical Application Temperature 0 25 50 75 100C t t Additi l BTU I t R i

Page 97: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 97/123

Customer Typical Application Temperature 0 25 50 75 100Contact Additional BTU Input RequirePlant Location 50 5,589 7,487 8,556 9,315 9,936Boiler Mfg 100 3,864 5,762 6,831 7,590 8,211

Boiler Type 125 3,002 4,899 5,969 6,728 7,349150 2,139 4,037 5,106 5,865 6,486

Factory Design 175 1,277 3,174 4,244 5,003 5,624Boiler Type Watertube/Firetube F. 200 414 2,312 3,381 4,140 4,761Name Plate Rated Boiler BHP 475 212 0 1,898 2,967 3,726 4,347Normal Operating Pressure 150 FW Temp Deaerator or Typical 225 1,449 2,519 3,278 3,899Calculated BTU Input for boiler type 20,060,498.80 As Observed First Recovery Economizer 230 1,277 2,346 3,105 3,726

Observed Feedwater Temp 212 160 227 242 240 932 2,001 2,760 3,381Hours Day Operated 20 20 20 20 250 587 1,656 2,415 3,036Days per Month 22 22 22 22 260 242 1,311 2,070 2,691

Calculated Bhp BTU Output Bhp 15,895,875.00 270 -104 966 1,725 2,346Calculated Efficiency (Input/Output) 79.24 275 794 1,553 2,174Calculated Bhp 475.00 280 621 1,380 2,001

Rated Steam PPH at 100% Firing 16387.5BTU addition for Operating Pressure 2,523,675  3,539,700  2,310,638  2,064,825 BTU Lost/Gained Per Hour 0.00 -852,150.00 245,812.50 491,625.00Boiler HP Lost or Gained/ Hr. 0.00 (25.46) 7.35 14.69

Net Boiler Horsepower  475 450 482 490

Net Steam Output 16387.5 15509.0 16640.9 16894.3Net Efficiency 79.24 74.99 80.47 81.69Percent Increase/Decrease Energy Use 0.00 4.25% -1.23% -2.45%Percent Increase/Decrease BHP 0.000% -5.361% 1.546% 3.093%

Practical Effect of Feedwater Temperature NOTES:

Enter typical Normal Firing Rate % 100%

# Water Displacement Per Cycle 16387.5Enter Feed Water Temp 175BTU Required to reach 212 606337.5Total BTU Lost/Day 12,126,750 

Enter Cost of Fuel/Dtherm 3.33$Cost of Lost Btu/Month 888.41$Cost of Lost Btu/Year due to SubCooled Feedwater 10,660.87$

12/18/2013 2:54 AM Scale vs. Heat Transfer   Data Compiled byDavid Farthing

Voice 405-728-6709

The effect of Scale on Heat Transfer in Boilers

0.60

Additional Heat Input Required Due to Calcium Salt ScaleWatertube Boiler Full Circumferance Tube Contact

Page 98: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 98/123

0.00

0.10

0.20

0.30

0.40

0.50

5% 10% 15% 30% 66% 150%  a   l  c   i  u  m   S  c

  a   l  e   T   h   i  c   k  n  e  s  s  =   I  n  c   h

 

Page 99: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 99/123

Dr. Mac Brockway's Boiler W(Contact Dr Mac at 405-737-3740 for the Companion Whit

(Dr. Brockway is a Phd Chemical Engineer spec

1 Grain = 17 PPM of soluable hardness Steam Boiler (<300 PSI) Wate

Principle Benefit Pre- Internal TestingTreatment Treatment What You Want

Eliminate No Water Phosphate (PO4)Hardness Scale Softner Precipitation Hardness = 0

Removes Calcium or PO4 =30-60 ppm Grea

and Magnesium Chelant orsalts only Solubilizer Chelant = 10-30 ppm

Hardness Test Treat at the Feedwater TankSOAP TEST HACH 5B REAGENT

1 Drop = Soft (<1 Grain) Pink = Hard2 Drops = Hard (1-2 Grains) Blue = Soft <1 Grain3 Drops = Hard (2-3 Grains) Each drop of reagent = 1 Grain

Run Sample COLD

Eliminate No Deareate Sulfite Oxygen = 0Oxygen Corrosion or SO3 = 30-60 ppm Grea

Hot Feedwater Sulfite Residual Test Treat at the Feedwater Tank

1 Drop = 10 ppm May be injected directly into the boiler Desired 30-60 ppm but don't forget the feedwater tankRun Sample HOT

Run this TEST FIRST!

Add Soft N/A NaOH OH = 300-600 ppmAlkalinity Solids Sodium pH = 11.0 - 12.0

Hydroxide pH = 11.56 Perfect

Add Soft N/A Polymer NormalPolymer Solids Poly = 10-50 ppm

Control TDS Pure Steam Reverse Osmosis Blowdown TDS = 3,000 - 5,000pp"Total or Manual TDS <= 3,000 Great

Disolved Solids" De-Ionizer and/or uMhos = 4,000 - 6,000AutomaticNutralizing

Boost Eliminate De-Alkalizer Amine CondensateC d t H St Li d V l til Ch i l H 8 9 0 G t!

 ABMA Water Chemistry Guidelines 12/18/2013

American Boiler Manufacturers Association **

Boiler Water Chemistry Guidelines** As adopted from the American Society of Mechanical Engineers

Boiler Water Chemical Limits Boiler Water Chem

Go Back ToDR.MAC

Page 100: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 100/123

Includes SUPERHEATER, Turbine Drives, or Process Restriction on Steam Quality NO Superheater, Turbine Drives, or ProcBoiler Operating Pressure (psig) Boiler Operating P

15 150 300 600 900 1200 1500 15 150 300 600Parameter Chemical Concentration (mg/liter) PPM Parameter Chemical Concentration (mg/TDS (Unnutralized) 700-2800 700-3500 700-3500 500-2500 150-750 150-500 150-300 TDS (Unnutralized) 700-5595 700-5505 700-4545 500-454Phosphate (PO4) 30-60 30-60 30-60 20-40 15-20 10-15 5-10 Phosphate (PO4) 30-60 30-60 30-60 20-40Hydroxide (CaCO3) 300-400 300-400 250-300 150-200 120-150 100-120 80-100 Hydroxide (CaCO3) 300-400 300-400 250-300 150-200

Sulfite 30-60 30-60 30-40 20-30 15-20 10-15 5-10 Sulfite 30-60 30-60 30-40 20-30

Silica (SiO2) 150 100 50 30 10 5 3 Silica (SiO2) 150 <150 <150 <90Total Iron (Fe) mg/l <0.1 <0.1 <0.05 <0.03 <0.02 <0.02 <0.01 Total Iron (Fe) <0.1 <0.1 <0.05 <0.03

Organics 70-100 70-100 70-100 70-100 50-70 50-70 50-70 Organics 70-100 70-100 70-100 70-100

NOTES:TDS - Unnutralized TDS readings are affected by pH. Use the pH Correction table below to correct TDS to sample pH.

The Higher number in the TDS column represents the maximum limits for safe boiler operation at the indicated operating pressure.Depending on publication some authorities allow for upto 4000 TDS in Water Tube boilers operating from 0-150 psig.

ASME for Saturated Steam Boilers allows for upto 5595 TDS (8000 Conductivity) up to 300 PSI and 4545 TDS (6500 Conductivity) above 300 but at or below 600 PSIGTDS Error due to High pH

If Nutralizing Agents are not available then Subtract the 'Error' number from the TDS reading to arrive at 'Neutralized TDS' number.

pH Error (High)9.0 0 CONDUCTIVITY to mMHO or TDS Converstions

9.5 1010.0 25 CONDUCTIVITY (KNOWN) 6500 4545.5 TDS Resulting (Non-Neutralized)

10.5 60 TDS (KNOWN) 5000 7150 Conductivity (mMHO) Resulting

11.0 150 mMHO (KNOWN) 2000 1398.6 TDS Resulting (Non-Neutralized)

11.2 220 mS(Siemans) (KNOWN) 20 13986 TDS Resulting (Non-Neutralized)

11.4 310 Note the Honeywell DL423-10 Graphite Sensor reads 0-20 mS.11.6 460 The 4-20mA signal(PV) to the recvieing device is ranged 0-2011.8 700 This is then converted to TDS as follows12.0 1050 (PV/1.43) *1000 = TDS Reading (Non-Nutralized)12.2 1500 If you want to correct for pH (which should be 11.56 in boilers)12.4 2400 subtract 455 from your calculation as follows.

12.6 3800 ((PV/1.43) *1000) - 455 = TDS Reading (Nutralized to 11.56pH)12.8 6100

13.0 10,000

EXAMP 1] TDS Reading of 2850 and an operating pH of 11.56 (normal) would be corrected to 2390 (I.e. 2850-460=2390)2] TDS Reading of 2850 and an operating pH of 9.0* (low) would be corrected to 2850 (I.e. 2850-0=2850)

* NOTE a pH of 9.0 is considered LOW. Normal Operating pH is recommended to be at 11.56.

Print Out 12/18/2013

Boiler / Burner Data SheetToday's Date 2.24.10 Certificate Exp. Date

Company Name Chesapeak North Desoto Sweetening Plant

Location Gravel Road Insurance Carrier  FM Global

City Fireson State La Zip 71111 I t N

Page 101: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 101/123

City Fireson State La Zip 71111 Inspector No.

Boiler MFG Name NEWPOINT THERMAL Burner MFG Name Maxon Kenedi

Model No. DH-H 40/30 Model No. KDZERLE100N

Serial No. PROJECT #7114-2009 Serial No. SO-809591

Hot Water  OIL Steam Atmosperic (Natural Draft)

Operating Pressure (PSI) 80 Power/Mechanical Draft NYBDate Installed 7/1/1905 BTU/Hr. Input 24.8 MMBtu N

INSTALLED NOT INSTALLEDNOT

REQUIREDSystem Control Specifications

NA Approved Operating

Controllers Steam Boilers

(Pressure)

Required

(Note 1)

Required (Note

1)Required (Note 1)

Required

(Note 1)

Required

(Note 1)

Req

(No

Honeywell

UDC2500-CE

Hot Water Boilers

(Temp)

Required

(Note 2)

Required (Note

2)Required (Note 2)

Required

(Note 2)

Required

(Note 2)

Req

(No

NA

High Limits

Steam boiler (Pressure)(Manual Reset)

Required(Note 3)

Required (Note3)

Required (Note 3) Required(Note 3)

Required(Note 3)

Req(No

Honeywell

UDC1200L -FM

Hot Water Boilers

(Temp)

(Manual Reset)

Required

(Note 4)

Required (Note

4)Required (Note 4)

Required

(Note 4)

Required

(Note 4)

Req

(No

UE H117High Gas Pressure

(MANUAL RESET)(Note 5) Required Required

UE H117Low Gas Pressure

(Manual Reset)(Note 5) Required Required

MAXON

250CMA12

Valve Seal Overtravel

Interlocks (Note 6)

2,500,000

to

5,000,000CONTROL & SAFETY DEVICES GUIDELINES

FOR AUTOMATICALLY GAS FIRED BURNERS

5,000,000

to

250 MMBtu

Less Than

400,000

(Including

Modular Boilersw/ max. input of

400,000)

Power & Mechanical Draft Burners Atmospheric

   E  a  s   t   M  a   i  n   S   t  r  e  e   t  -  -

   P  o  s   t   O   f   f   i  c  e   B  o  x   2   6   4   0   8

   O   k   l  a   h  o  m  a   C   i   t  y ,   O

   k   l  a   h  o  m  a   7   3   1   2   6

   8   9  -   3   3   3   1

   (   4   0   5   )   2   3   9  -   7   3   0   1

   F  a  x   (   4   0   5   )   2   3   2

  -   5   4   3   8

INPUT in BTU/HOUR INPUT

ASME SAFETY STANDARDS No. CSD-1 Less Than

400,000

(Including

Modular Boilersw/ max. input of

400,000)

400,000

to

2,500,000

400

2,50

INTERLOCKS / LIMITS

Print Out 12/18/2013

10 SEC

Main Flame Establishment

Period (MFEP)

Continuous Pilot

None (Note 27)10

SecondsN

Intermittent Pilot15 S

Ma

Interrupted Pilot15 Seconds 15 Seconds 10 Seconds

10

Seconds 15 S

  r  a   l

Page 102: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 102/123

YES

Interrupted PilotMaximum Maximum Maximum (Note 31) Maximum

(Note 31)

Ma

Direct Ignition15 Seconds

Maximum

4 Seconds

Maximum

4 Seconds

Maximum (Note

32)

15 S

Ma

YESSupervised Main Flame (Note 34) Required Required Required (No

3 Sec

Flame Failure Response Time

(FFRT)

4 Seconds

Maximum

(Note 36)

4 Seconds

Maximum

4 Seconds

Maximum

4 Seconds

Maximum

4 S

Ma

(Note

Lockout Action on Flame Failure

Safety

Shutdown

(Note 37,38)

Safety

Shutdown (Note

39)

Safety ShutdownSafety

Shutdown

S

Sh

(Not

Recycle

 Action On Limit OpeningSafety

Shutdown

Safety

ShutdownSafety Shutdown

Safety

Shutdown

S

Sh

1

For modular boilers, each

module shall have a pressure

control that will shut off the fuel

supply when the steam

pressure reaches a preset

operating pressure

2

For modular boilers, each

module shall have at least one

temperature actuated control

to shut off the fuel supply when

the system water reaches a

preset operating temperature.

3

The assembled modular boiler

shall have a high steam

pressure limit control that will

prevent the generation of

steam pressure in excess of

the maximum allowable

   F  e   d  e

FOOTNOTES:

Print Out 12/18/2013

15

 An assembled modular boiler

shall be protected by a low-

water fuel cutoff located so

that it will detect a low-water

condition before the level falls

below the lowest safewaterline in any module

Page 103: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 103/123

waterline in any module.

Operation of the low-water fuel

cutoff shall shutoff the fuel to

all modules.

16

In Lieu of the requirements for

low-water fuel cutoff in a water

tube or coil-type boiler

requiring forced circulation,

they shall have an accepted

sensing device to prevent

burner operational a flow rate

inadequate to protect the

boiler from overheating.

Where there is a definitive

waterline, a low-water fuel

cutoff shall be provided in

addition to the sensing device.

Functioning of the low-water

fuel cutoff shall cause a safetyshutdown.

17 Close main valve and recycle.

18One recycle for piloted

systems.

19Two safety shutoff valves in

series. May be in single control

body.

20

Two safety shutoff valves in

series on one safety shutoff

valve with valve seal overtravel

(Proof-of-closure) interlock.

21

One safety shutoff valve to

incorporate valve seal

overtravel (Proof-of-closure)

interlock.

When two safety valves are

TechStuff - Boiler Benchmarking Date of Printout12/18/2013 / 2:54 AM

BENCHMARKING A BOILER/OVEN OR BURNER

 AMBR = American Boiler Manufac6.36$ Cost per Therm Customer St John Med Industry Medical

Utility Fuel Btu = 950 Contact Adam Gas Pressure after the Train = 3.8 InWcPf =(GP+Pc)/Pb Base Temp = 60  Address 61st & Elm, Broken Arrow Air At Burner =

Guage PSI(GP) = 5 Temp Factor (Pt) = 0.976305809 City/State/Zip Broken Arrow, OK Gas at Burner =Sit B t i (P ) 14 735 t D t 9 28 09 B D t GP S16 GO 75

Page 104: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 104/123

Site Barometric (Pc) = 14.735 notes Date 9.28.09 Burner Data GP S16-GO-75Sea Level (Pb) = 14.700 Boiler Mfg Hurst Operating PSI 0 Eco

PSI Correction Factor (Pf) = 1.343 Mfg Rated Eff. 82% BHP = 306.3Clocked Metered Fuel Flow = (((100 SCFt/Time)*60)*Pf)*(Pt) Fuels Natural Gas Gas PSI = 5 Nominal Steam

Gas Flowing Temp = 72.62 Rated BTU Input/Hr  12,500,000 Fan Voltage 480 BTU/LbAverage Rate Rated Steaming Capacity/Hr  0 Fan Amp Rating 9 Fee

High Fire Utility Meter 

Valve % Firing Rate Time/100 Cf Fuel Flow Burner InWc Steam Flow Rated Steam %/ Rated Flow Stack Temp Actual Ex O2 ABMR Ex10% 1250 6.250 1258 0.0000 1066 1064 99.78% 345 6.00% 6.00%

15% 1875 15.000 524 7.50 0 443 #DIV/0! 6.00%20% 2500 9.660 814 8.250 0 688 #DIV/0! 6.00%25% 3125 2.595 3031 0.00 0 2562 #DIV/0! 6.00%

30% 3750 1.522 5169 0 0 4369 #DIV/0! 5.50%35% 4375 1.483 5302 0.000 0 4482 #DIV/0! 5.00%

40% 5000 1.257 6255 0 0 5287 #DIV/0! 4.75%45% 5625 2.239 3513 0 0 2970 #DIV/0! 4.50%50% 6250 1.101 7145 0.00 0 6040 #DIV/0! 4.25%55% 6875 0.826 9525 0 0 8052 #DIV/0! 4.00%

60% 7500 0.800 10069 0 0 8512 #DIV/0! 3.50%65% 8125 0.750 10740 0 0 9079 #DIV/0! 3.25%

70% 8750 0.720 11188 0 0 9458 #DIV/0! 3.00%75% 9375 0.680 11846 0.000 0 10014 #DIV/0! 2.75%80% 10000 0.600 13425 0 0 11349 #DIV/0! 2.50%85% 10625 0.450 17900 0.000 0 15132 #DIV/0! 2.25%90% 11250 0.320 25172 0 0 21280 #DIV/0! 2.00%100% 12500 1.616 4985 0.00 0 4214 #DIV/0! 424 18.80% 2.00%

12/18/2013 2:54 AM Dissolved Oxygen In Make-up Water   Data Compiled byDavid Farthing

Voice 405-728-6709

Amount of Dissolved Oxygen in Make-up Feedwater vs. Temperature

15000

20000

e   d   O

  x  y  g  e  n

Page 105: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 105/123

NOTE: 227 and 242 degree 'F' water is presumed to be deaerated.

Temperature Dissolved O250 2000058 1500060 1200072 8800

125 5000

180 3000200 2000212 1000227 44242 7

0

5000

10000

50 58 60 72 125 180 200 212 227 242   P   P   B   D   i  s  s  o   l  v  e

Temperature

Pressure Coversions Date of Printout12/18/2013 2:54 AM

Enter value to be converted in column DThe converted values will then be shown in the same row

Page 106: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 106/123

PSI OzSI PASCAL kPa BAR mBARIn. H2O @

4C/39F

In. H2O @

60F

In. H2O @

20C/68F

PSI 2.885 2.89 46.2 19,891 19.89 0.199 198.91 79.9 79.9 80.0

OzSI

PASCAL

kPa

BAR

mBAR

In.H2O @ 4 C

In. H2O @ 60F 6.00 0.22 3.5 1,493 1.49 0.015 14.93 6.0 6.0 6.0

In. H2O @ 20C

mm H2O

cm H2O

ATM

In. Hg 8.00 3.93 62.9 27,091 27.09 0.271 270.91 108.8 108.9 109.0

Cm Hg @ 0 C

mm Hg @ 0 C

TORR

From Value

To Values

Required Boiler Blowdown for proper TDSNormal TDS should be between 3,000-5,000 ppmTDS= Total Dissolved Solids in boiler water.

Blowdown Rate = (F/(B-F))*S

Page 107: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 107/123

Where: F= Feedwater TDS in ppmB= Desired boiler water TDS RequirementS= Steam Generation Rate in lbs/hr  

F= 87B= 4000S= 41400

Blowdown 920.4702 Lbs/Hr Percent 2% of Production Capacity

NOTES: Blowdown within acceptable limits

Be sure to see HEAT in the contents for possible Heat Recovery Savings.

Energy Conversions

BTU = KW KW = BTU29,010.00 8.50 8.50 29,010.24

AMPS VOLTAGE 3Ph/KW43 00 480 00 35 71

Page 108: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 108/123

43.00 480.00 35.71

Cost of Energy Cost/Hr to OperateGas per MMBTU 8.95$ 0.26$

Electric per KW 0.044$ 0.37$

NOTE: Gas Cost is per Decatherm (1,000,000 BTU)

1 KW = BTU * 0.0002930 (Source NATCO  Engineering Handbook of Conversion Factors 1988)BTU = Kw/.0002930

GO TO VFD CALCULATIONS FOR MORE DETAILED INFORMATION

CALCULATING APPROXIMATE HP WHEN VOLTS AND AMPS ARE KNOWN

Voltage 480 Amps 69

NP Eff% 80%# Phases 3

61.52

VFD

Page 109: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 109/123

Replacing DC3000 Versa-Pro with

Page 110: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 110/123

OLD DC300C- use

OLD DC300K- use

OLD DC300E- use

OLD DC300A- use

OLD DC300T- use

OLD DC300L- use

Table 1 O use

E use

 A use

T use

L use

Table 2 1_ _  use

2_ _  use

4_ _  use

 _A_  use

 _B_  use

 _ _3 use

Table 3 Same on 3300

Table 4 First digit (zero) use

Second digit use

Third digit use

Forth digit use

n/a 5th digit

/ 6th Di it

DC3300 Base plus w/ 1st Digit of Table 1

Page 111: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 111/123

DC330B-CODC330B-K_ DC330B-E_ DC330B-A_ DC330B-T_ 

DC330B-E_ 

  -_O- Place as 2nd digit of table 1.

  -_E-  -_A-  -_T-  -_L-

1_ _ 2_ _ 4_ _ 

 _0_  _B_  _ _3

No change. Use DC3000 table

 Always zero (0_ _0_0)Same (0X_0_0)Same (0_X0_0)

 Always Zero (0_ _0_0)Zero or D if DIN adapter required (0_ _000)

Al (0 0 0)

Replacing DC3000 W/ Table 1   with

Page 112: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 112/123

DC3001-0-   use

DC3002-0-   use

DC3003-0-   use

DC3004-0-   use

DC3005-0-   use

DC3006-0-   use

Table 2 1st -0_ _-   use

 -1_ _-   use

 -2_ _-   use

 -3_ _-   use

 -4_ _-   use

  2n -_0_-   use

 -_1_-   use

 -_2_-   use

  3r -_ _0- use

 -_ _A-   use

 -_ _B-   use

Table 3 -1-   use

 -2-   use -3-   use

 Table 4 -00-   use

(multiple avail.) -35-   use

 -DIN-   use

 -FM-   use

UL

DC3300 W/ Table 1

Page 113: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 113/123

DC330B-C0-DC330B-KE-DC330B-EE-DC330B-EE-Also change 2nd digit of table 3 to "2"

DC330L-E0-

DC330L-E0-

 -0_ _- -1_ _- -2_ _- -0 _ 3- No misprint, it goes as 3rd digit

 -4_ _- -_0_- -_0_- Also change 2nd digit of table 3 to "1".

 -_0_- Also change 2nd digit of table 3 to "1".

 -_ _0- -_ _0- -_B_- No misprint, it goes as 2nd digit.

 -10-

 -20- -30-

 -000000- Multiple options available in this table.

 -000T00--0000D0-

 -0F0000-

0F0000

VFD Calculations12/18/2013

David Farthing'sTechStuf 

Variable Frequency Drive Applications

Customer  Baptist Medical Center 

 Application Combustion Air Fan Control

Need to know Motor Horsepower 30

Motor Speed as supplied 3450Hertz - Name Plate 60

Rated Torque Ft/Lb. 46

Page 114: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 114/123

New Hertz 37New Motor Speed 2128

New Torque Ft/Lb. 46 NOTE: Torque should remain constant but Horsepower will change.Change in Motor Speed % 38.33%

New Horsepower @ New Speed 18.50Prefer to know Original Amp Draw 32

Cost of kW of Electricity 0.0733$Total Hours of Operation/Year 8760

Is Application Pump or Fan? (P or F) FControl Methods Code - See List Below OD

Variable Frequency Drive VFD 0.28

Discharge Control Valve DV 0.94

Bypass Valve BV 1

Inlet Guide Vane IG 0.62Outlet Damper  OD 0.88

Fan Curve FC 0.88No Control NA 1

NOTE: WHEN USING KNOWN AMP DRAW MOTOR HORSEPOWER ENTRY IS IGNORED.

IF YOU WANT TO COMPARE MOTOR HORSEPOWER ENTER A "0" IN AMP DRAW TO JUST REVIEW MOTOR DATA ONLY.

ResultskWha 26.592 Kilowatt Usage Standard Motor No Control

kWhb 13.801 Kilowatt usage using VFD at New Horsepower 

kWhc 23.401 Kilowatt Usage Using Current Control Method

kWhd 9.600 Kilowatt Savings Converting from Current Control Method to VFD

Savings 6,164.21$ Annual Energy Cost Savings By Converting to VFD

Maxo 412 MFiring Rate Worksheet

Nestle Flagstaff Shreads Dryer Data

12/18/2013

Standard Capacity of Burner MMBtu/Hr. - 1,200,000.00  Btu/Hr.

Max Burner Pressure - 2.80  "wc Furnace Pressure at Standard Capacity 2.65

Max Air Pressure - 7.96  "wc Where: Q2 = Final Flow = C19 1104

Burner Model - Maxon 412 M ELEVATION 7000 FEET Q1 = Initial Flow = C10 1430

St d d R ti F B S ifi ti Sh t I iti l 2 65

BURNER CAPACITY CALCULATIONS

Data Taken From Burner Specification Sheet FURNACE PRESSURE AT %

For PRESSURE change through th

Page 115: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 115/123

Standard Ratings: From Burner Specification Sheet p1 = Initial pressure = 2.65

Input Data From Maxon Spec Sheet Capacity: 1,200,000 Btu hr  Calculated p2 = Final Furnace Pressure (FP) = 1.58

Fuel: Natural Gas Furnace Pressure at PURGE "w.c.= 2.65

Input Data From Burner Spec Sheet @ Gas Pressure: 2.80 Inches W.C. @ Burner inlet fitting

Input Data From Burner Spec Sheet Rated Combustion Air: 230 SCFM Note 1.  Plug in Capacity Btu hr values into cell C18 to

Input Data From Burner Spec Sheet @ Air Pressure: 7.3 Inches W.C. @ Air pipe inlet fitting Note 2.  Plug in %XSAIR from Specification chart for sp

On-Ratio Combustion Air: 200 SCFM Note 3. Chart air pressure may not match exactly. See

Excess Air: 15 % Note 4. Input "w.c. Gas and Air from calculations at MM

Note 5. Remember to ADD "Final Furnace PressureDesign Ratings: FUEL 1000 Btu/SCF HHV, 0.65 SG

Change this # for additional firing Rates Capacity: 924,000 Btu hr  See Note 1 Actual Btu GAS RING Gas PosOn-Ratio Combustion Air: 154 SCFM CAM MM/Btu/Hr PSIG %

Excess Air: 15.00 % See Note 2 Min 60.00  0.010Total Combustion Air: 177 SCFM 1 120.00  0.030

Total Combustion Air: 10,626 SCFH 2 240.00  0.1103 360.00  0.2504 480.00  0.450

5 600.00  0.700

HHV = 1000 Btu/ft3

6 720.00  1.000Where: Q2 = Final Flow = 924 SCFH Final Fluid = Natural gas 7 840.00  1.370

Q1 = Initial Flow = 1200 SCFH Initial Fluid = Natural gas 8 924.00  1.660 ELEVAT

p1 = Initial pressure = 2.80 Inches W.C. 9 924.00  1.660 LIMIT

g1 = Initial Specific Gravity = 0.65 Note 5: 0.65 is Default for Natural Gas 10 924.00  1.660 ELEVAT

g2 = Final Specific Gravity = 0.65 Max 924.00  1.660 LIMIT

Calculated p2 = Final Gas Pressure = 1.66 Inches W.C. 0.06 PSIG

Where: Q2 = Final Flow = C19 177 SCFM Final Fluid = Air  

Q1 = Initial Flow = C10 230 SCFM Initial Fluid = Air  

p1 = Initial pressure = 7.30 Inches W.C.

Calculated p2 = Final Air Pressure = 4.33 Inches W.C. @ SEA LEVEL See Note 3

SITE CORRECTION FACTORS FOR COMBUSTION AIR FLOW & PRESSURE At Burner Standard Capacity 1,200,000 Btu hr 

Elevation = 500 ft. AMSL Air Specific Gravity at Elevation = 0.984

Fl El i 234 SCFM

For PRESSURE change through the same nozzle: p2 = p1(Q2 /Q1)

2

EXPECTED MEASUREME

  GAS PRESSURE

For PRESSURE change through the same nozzle: p2 = p1(Q2 /Q1)2

* g2 /g1

COMBUSTION AIR PRESSURE AT % EXCESS AIR

300 00

 400.00

 500.00

 600.00

 700.00

 800.00

 900.00

 1,000.00

   M   B   t  u   /   D  a  y   I  n  p  u   t

Calculations based on the following referencesSafety Integrity Level Selection, Marszal and Scharpf,ISA 2002 

SIL Selection for BMS Systems, Mike D. Scott, P.E., Principal Safety System Specialist 

 AE Solutions, Greenville, SC 29616 

12/18/2013

SIL (Safety Integrity Level) Calculator Natural Gas Burning Equipment

Customer's Site BP America Hemphill Gas Processing Plant, Canadian, Tx, Tim PierceEquipment ID Regen Heater H740

Btu Input to Burner 7.0 MM/Btu/Hr Maxon 784 Oven-Pak

Calculate the TNT Yield Factor Combustion Chamber Length, ft: 25Combustion Chamber Height, ft: 8

Page 116: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 116/123

g

Combustion Chamber Width, ft: 8Combustion Chamber Volume, ft^3: 1600

Fuel Weight/ft^3: 0.04243 Typical for Natural Gas = 0.04243Fuel Weight, lbs: 67.9

Flammable Mass, lbs: 67.9Heat of Combustion (Btu/Cft): 11859 Typical for Natural Gas = 11859 Btu/ CFt.

Explosive Yield Factor, Yf: 10% EPA defined at 10%Equivalent Weight of TNT: 70

Calculate the radius for th e circular impact zone 

Equivalent Weight of TNT: 70

Peak Overpressure, psi: 3 Pressure for calculation of fatalitiesDistance to given overpressure, d(ft): 64.7

Calculate the Vapor Cloud Effect Zone 

VCEEffect Zone,ft^2: 13170 ft^2

Mean Effective Zone (MEFZA)  Area,ft^2: 13170 ft^2

Calculate the Probable Loss of L ife (PLL) 

Indoors(i) or Outdoors(o): OVulnerability Factor: 0.3

People Near Device: 4 This can be a fraction such as 0.25 for a site that is visited only 4 time per day and is otherwise un- Area of Effect, ft^2: 13170 This is the area in which the blast is contained. The area of a building if the blast is indoors or the M

Personnel Density, people/ft^2: 0.000303721Probable Loss of Life, PLL: 1.200024106

Calculate the Probable Loss o f Asset (PLA) 

Indoors(i) or Outdoors(o): O

Vulnerability Factor: 0.3

 Assets Near Device: 1 This can be any number from 0-N. Area of Effect, ft^2: 13170 Asset Density, assets/ft^2: 7.59301E-05

Probable Loss of Asset, PLA: 0.300006026Total Loss Exposure Human + Assets: 1.500030132

Perform a Layer of Protect ion Analysis (LOPA) 

What is the most susceptible device? Interlock 120 VAC Interposing Relay Welds ClosedMTBF of Most Susceptible Device 250000 MTBF = Mean Time Between Fai lure in Hours of Operation, Data from Manufacturer 

Probable Number of Cycles Between Failure 10000

Probability of an Initiating Event: 2.500E+01 MTBF/Number of Cycles

Calculations based on the following referencesSafety Integrity Level Selection, Marszal and Scharpf,ISA 2002 

SIL Selection for BMS Systems, Mike D. Scott, P.E., Principal Safety System Specialist 

 AE Solutions, Greenville, SC 29616 

12/18/2013

MINIMUM 'SAFETY INSTRUMENTED FUNCTIONS (SIF)' REQUIRED BY NFPA-87Deviation From Normal Operation Cause Consequence Result Recommended Safeguards1.0 Excessive High or Low Pressure

1.1 Hi Fuel Gas Pressure Burner Over Fired Over heated furnace *See High Temperature Interlock

Flame Lift-Off Explosion High Fuel PSI Sw or Transmitter  Rich Furnace Explosion

1.2 Low Fuel Gas Pressure Flame front collapse Explosion Low Fuel PSI Sw or Transmitter  Lean Furnace Explosion

1.3 Excessive Process PSI Vessel Mechanical Failure Release of process Hi Process PSI SW or Transmitter  Tube Mechanical Failure media and secondary

Page 117: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 117/123

Tube Mechanical Failure media and secondary

fire or explosion.2.0 Failure to Detect Flame or Flame Present during OFF Cycle

2.1 Flame Scanner Failure Fail to detect flame during Sudden ignition of any a] Self-Checking Scanner and

OFF cycle leaking fuel in to furnace b] Listed Burner Controller  and explosion.

2.2 Flame Scanner Failure Fail to detect flame during Sudden ignition of any a] Self-Checking Scanner and

ignition, pilot, or run cycle. leaking fuel in to furnace b] Listed Burner Controller 

and explosion.2.3 Flame Scanner Failure Flame detected when no Fuel Valves open with no a] Self-Checking Scanner and

flame is present in furnace. source of ignition resulting b] Listed Burner Controller in fuel rich furnace and

subsequent explosion.3.0 Failure to Purge Combustion Chamber prior to Ignition Trials

3.1 Draft Dampers Fuel Vapor accumulate in Explosion on Ignition a] Draft Damper PROOF OPEN SwFail Closed the furnace prior to ignition b] Combustibles Analyzer in Stack*

 *(Natural Drafted Systems)

3.2 Combustion Fan Failure Fuel Vapor accumulate in Explosion on Ignition a] Motor Run Proof Sw

Mechanically Drafted Sys. the furnace prior to ignition b] Air Flow Proof Sw

c] Air Flow Proof Trans Optional Process Combustion Interlocks 3.3 Interruption of Fuel/Air Ratio Fuel Rich Furnace Delayed Ignition and Explosion a]Combustibles or Oxygen Interloc

Control Strategy Analyzer in Stackb] Cross Limited Fuel/Air Ratio Con

c] Fuel Flow Meter 4.0 Failure to Maintain Fluid Inside Heated Tubes or Vessels

4.1 Inlet Valves CLOSED Overheating of tubes and/or Mechanical failure of tubes a] Inlet Valve PROOF OPEN Swduring burner operation vessel and vessels and release of b] Minimum Flow Sw in Media line

vessel contents4.2 Media Pump Fai ls Overheating of tubes and/or Mechanical fai lure of tubes a] Minimum Flow Sw in Media l ine

vessel and vessels and release of b] Minimum Flow Trans in Media Lvessel contents c] Pump Motor Run Ax Sw.4.3 Heating Surfaces Exposed Overheating of tubes and/or Mechanical failure of tubes a] Low Level Burner Cut-Off Sw

vessel and vessels and release of b] Low Level Burner Cut-Off Transmvessel contents c] Tube Skin Temp Interlock

Boiling Liquid Vapor Explosion5.0 Excessive or High Temperatures

5.1 Firing Rate Valve Hangs Overheating of process fluid Thermal breakdown of heat High Media Temperature Interlockin OPEN position transfer fluid.

5.2 Breach in process tube Process media f ire inside Furnace Explosion or Media High Stack Temperature Interlock

Calculations based on the following referencesSafety Integrity Level Selection, Marszal and Scharpf,ISA 2002 

SIL Selection for BMS Systems, Mike D. Scott, P.E., Principal Safety System Specialist 

 AE Solutions, Greenville, SC 29616 

12/18/2013

Page 118: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 118/123

Calculations based on the following referencesSafety Integrity Level Selection, Marszal and Scharpf,ISA 2002 

SIL Selection for BMS Systems, Mike D. Scott, P.E., Principal Safety System Specialist 

 AE Solutions, Greenville, SC 29616 

12/18/2013

Page 119: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 119/123

NFP

NFPA-87 Heater / Burner Data SheetToday's Date 4.11.2011 Certificate Exp. Date

Company Name Eagle Rock Energy

Location Pheonix Plant Regen Heaer 

City Canadian State Texas Zip

Page 120: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 120/123

y p

Heater MFG Name G.C. Broach Burner MFG NModel No. Gas Regen Model No.Serial No. 62031.C Serial No.Fluid Gas NFPA TYPE F Atmospheric (Operating Pressure (PSI) 600 Power/MechanDate Installed 10.23.2010 BTU/Hr. Input

INSTALLED P&ID FUNCTION Comments System Control Specifications

 Approved OperatingControllers

 YES E-Stop is not Hardwiredto Safety Shutoff

Valves NOT OK

Manual E-Stop Hardwired toSafety Shutoff Valves Required Required Re

Allen Bradley

CompactLogix L35E

TIC702A OK

Programmable LogicController  Optional Optional Op

See Burner

Controller  NOT INSTALLEDSafety Rated

Programmable Logic Solver Optional Optional Op

Allen Bradley

CompactLogix L35E

TT702A OK

High Media TemperatureRecycle Limit

Required Required Re

NAHigh PressureProcess MediaRecycle Limit

Required Required Re

 Allen BradleyCompactLogix L35E See Low Cutoff 

Low Media Flow Limit Required Required Re

Power & Mechanical Dra

   6   4   0   8

   O   k   l  a   h  o

  m  a   C   i   t  y ,   O   k   l  a   h  o  m  a   7   3   1   2   6

   3   9  -   7   3   0   1

   F  a  x   (   4   0   5   )   2   3   2  -   5   4   3   8

INPUT in BTU/H

NFPA-87 Recommended Practices Less Than 400,000 400,000to 2,500,000

2,5

5,0

CONTROL & SAFETY DEVICES GUIDELINES

FOR AUTOMATICALLY FIRED BURNERS

INTERLOCKS / LIMITS/CONTROLLERS

NAProven Combustion Air

InterlockRequired Req

NA Action on Loss of Combustion

 AirSafety Shutdown Safety S

Allen BradleyCompactLogix L35E FT700 From DCS System.Double Check Logic Low Media Flow Limit Required Req

NAL M di L l I t l k R i d R

Low Media Fuel Cutoffs

0   )   2   8   9  -

Page 121: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 121/123

Low Media Level Interlock Required Req

Allen Bradley

CompactLogix L35EFT700 From DCS System.

Double Check Logic Low Media Flow Interlock Required Req

NAForced Circulation(MANUAL RESET)

Required Req

 ASCO EF8215G020Shold be 1.0"

 Approved Safety ShutoffValve(s) - 2 Required

Required Req

 ASCO EF8215G020

OK

 Approved Safety Shutoff

Valve(s) - 2 Required Pilotsover 400,000 Btu ONLY

One Pilot

ClosureReq

 As Installed OK Manual Shutoff Valve(s) Required Req

Fisher  OK Gas Pressure Regulator Required Req

Flowserve w/

Open/Close Sw

NOT AN APPROVED

VALVE

Install Double Block

Maxon SSOV

 Approved Safety Shutoff

Valve(s)Required Req

NO NOT INSTALLEDValve Seal Overtravel

InterlocksReq

NO NOT INSTALLEDManually Operated Leak Test

Valve(s)(1) or (2)

ORBIT Manual Shutoff Valve(s) (2) Required (2) Re

FISHER 1098-EDR Gas Pressure Regulator Required Req

DB&BINCORRECTLY

INSTALLED Valve Proving System Optional Opt

Flowserve w/

Open/Close Sw

NOT AN APPROVED

VALVE

OK with Maxon DB

SSOV other wise

change to Maxon

 Approved Safety Shutoff

Valve at Burner 

(1) Required Plus

Main Fuel Shutoff asabove

(1) Requ

Main Fueab

YES Dual Purpose Drain & TestManually Operated Leak Test

Valve(s)(1) or (2)

ORBIT Manual Shutoff Valve(s) (1) Required (1) Re

NO Valve Proving System Optional Opt

MULTIPLE BURNER VALVE TRAIN

   2   0   E  a  s   t   M  a   i  n   S   t  r  e  e   t ,   O   k   l  a   h  o  m  a   C

   i   t  y ,   O   k   l  a   h  o  m  a   7   3   1   0   4

   (   8   0   0

   3   3   3   1  o  r   T   U   L   S   A

   (   8   0   0   )   9   5   5  -   1   9   1   8

PILOT VALVE TRAIN (Note 12)

MAIN VALVE TRAIN

NFPA87 Check List12/18/2013

Safety Instrumented Functions - NFPA87 Type-F Heater Application

Deviation From Normal Operation Tag PID Cause Consequence Result1.0 Excessive High or Low Pressure

1.1 PSHH112 GO2319.J.2 Hi Fuel Gas Pressure (Burner) Burner Over Fired Over heated furnace

PSHH112 Flame Lift-Off Delayed Ignition ExploMI761/762 GO2319.J.2 Rich Furnace Explosion

1.2 PT107 Low Fuel Gas Pressure Flame front collapse Delayed Ignition ExploLean Furnace

Page 122: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 122/123

1.3 NA Excessive Process PSI Vessel Mechanical Failure Release of processTube Mechanical Failure media and secondary

fire or explosion.2.0 Failure to Detect Flame or Flame Present during OFF Cycle

2.1 BE760 GO2319.J.2 Flame Scanner Failure Fail to detect flame during Sudden ignition of anyOFF cycle leaking fuel in to furnac

and explosion.

2.2 BE760 Flame Scanner Failure Fail to detect flame during Sudden ignition of anyignition, pilot, or run cycle. leaking fuel in to furnac

and explosion.2.3 BE760 Flame Scanner Failure Flame detected when no Fuel Valves open with

flame is present in furnace. source of ignition resu

in fuel rich furnace andsubsequent explosion.

3.0 Failure to Purge Combustion Chamber prior to Ignition Trials3.1 ZSH111 GO2319.J.2 Draft Dampers Failed Closed Fuel Vapor accumulate in Explosion on Ignition

the furnace prior to ignition

3.2 AX111 Combustion Fan Failure Fuel Vapor accumulate in Explosion on IgnitionMechanically Drafted Sys. the furnace prior to ignition

 Process Combustion Interlocks 3.3 MI762 GO2319.J.2 Interruption of Fuel/Air Ratio Fuel Rich Furnace Delayed Ignition and EControl Strategy

FT7604

4.0 Failure to Maintain Fluid Inside Heated Tubes or Vessels4.1 ZSC761 GO2319.J.2 Inlet Valves CLOSED Overheating of tubes and/or Mechanical failure of tu

Valve Proof OPEN during burner operation vessel and vessels and releas

Switch vessel contents4.2 FT761A-D GO2319.J.2 Media Pump Fails Overheating of tubes and/or Mechanical failure of tu

FT762 Media vessel and vessels and releas

vessel contents4.3 NA Heating Surfaces Exposed Overheating of tubes and/or Mechanical failure of tu

vessel and vessels and releavessel contentsBoiling Liquid Vapor Ex

5.0 Excessive or High Temperatures5.1 MI762 Firing Rate Valve Hangs Overheating of process fluid Thermal breakdown of

MI761 in OPEN position transfer fluid.

Basic Flow Gas Heat Load Calculator 

12/18/2013

FLOWING GAS HEATING LOADS AS USED IN REGEN HEATERS AND OTHER GAS PROCESSING APPLICATIONS

NOTE: This calculation gives a simple 'Basic Heat Load' only. All results based on correcting flow to Standard Cubic Feet.What is the Gas? Methane (Flow stated by Control Room)

CUTOMER DCP Midstream BURNER MFG JZSITE LOCATION Carthage Plant-1 Regen MDL/Serial No. PM7-4HC w PM10-75 Orifice Spud (20 PSI Gas PreHEATER No. H1B DRAFT TYPE Aspirated

MFG/Serial No. Loveco Inc.

Page 123: TECHSTUFF4.11

8/22/2019 TECHSTUFF4.11

http://slidepdf.com/reader/full/techstuff411 123/123

Use the GPSA Engineering Data Book for typical "Physical Properties" of the gas under consideration

FLOW = 18,000,000  IN "SCF/DAY"MOL WT = 16 (USE 16.93 AS A DEFAULT FOR NATURAL GAS AND 16.0 FOR METHANE)

0.0484  Calculated Density at Sea Level and 60 Deg "F"

36300.00  Lbs/Hr Total Flow for this applicationSp/Ht of Gas = 0.6 (USE 0.62 AS A DEFAULT FOR NATURAL GAS AND 0.60 FOR METHANE)

T1= 60 Inlet TemperatureT2= 600 Exit Temperature

11,761,200  Btu/Hr Heat absorption (Duty)

Heater Eff. = 84% This is from the Mfg Rated Heater Efficiency statement, or your best estimate based on fuel gas input readings.

14,001,429  Total Btu/Hr Heat Input (release from burner) required based on Mfg Rated Heater Efficiency statement.

 Actual Btu/Input = From Fuel Meter Readings (If Available)

 Actual Heater Eff = #DIV/0!

Fouling Factor = #DIV/0! #DIV/0!

  TYPICAL MOL WT OF COMMON GASES Calculated MOL WTSource GPSA Engineering Data Book GAS Constituents MOL WT By % MOL WT By %

MOL WT Sp/Ht CH4 16.042 0.00% 0CH4 Methane 16.042 0.52725 N2 28.01 0.00% 0CO2 Carbon Dioxide 44.01 0.19875 C3H8 44.096 0.00% 0N2 Nitrogen 28.0135 0.2489 C2H6 30.069 0.00% 0C2H6 Ethane 30.069 0.4088 C4H10 58.122 0.00% 0C3H8 Propane 44.096 0.3897 H20 18.0153 0.00% 0C4H10 Isobutane 58.122 0.38798 0C4H10 n-Butane 58.122 0.39649 0

H2O Water (Vapor) 18.0153 0.44476 000

0.00% 0.0000 = MOL WT