1
Using nitrate δ 15 N and δ 18 O values to iden6fy poten6al sources of nutrient inputs to a highly impacted inlet in South Puget Sound, Washington Yvonne Wetzig 1 , Jackie Perkins 2 , Liz Roepke 2 , Kena FoxDobbs 2 1 University of Puget Sound, Chemistry Department, Tacoma, WA USA 2 University of Puget Sound, Geology Department, Tacoma, WA USA Research QuesLons Q1: Do surface and deep inlet marine water samples have different NO 3 concentraLons, δ 15 N NO3 values, and δ 18 O NO3 values? Do NO 3 concentraLons and isotopic values change with distance into the inlet? Q2: Can we detect anthropogenic nitrogen sources in freshwater sources around the inlet? Q3: Do the δ 15 N NO3 and δ 18 O NO3 values of inlet samples provide insight into water quality issues? References CascioW KL, Sigman DM, Galanter HasLngs M, Bahlke JK, Hilkert A. 2002. Measurement of the oxygen isotopic composiLon of nitrate in seawater and freshwater using the denitrifier method. Analy’cal Chemistry 74: 49054912. DeGasperi C. 2008. EPA Grant ApplicaLon: Targeted Watershed Grants 2008 Puget Sound IniLaLve Quartermaster Harbor Nitrogen Management Study. HasLngs MG, CascioW KL, Elliod, EM. 2013. Stable isotopes as tracers of anthropogenic nitrogen sources, deposiLon, and impacts. Elements 9: 339344. Kendall C, Elliod EM, and Wankel SD. 2007. Tracing anthropogenic inputs of nitrogen to ecosystems, Chapter 12, In: R.H. Michener and K. Lajtha (Eds.), Stable Isotopes in Ecology and Environmental Science, 2nd ediLon, Blackwell Publishing, p. 375449. King County. 2014. Quartermaster Harbor Nitrogen Management Study: Final Study Report. Prepared by C. DeGasperi, Water and Land Resources Division. Seadle, Washington. Sigman DM, CascioW KL, Andreani M, Barford C, Galanter M, Bahlke JK. 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analy’cal Chemistry 73: 41454153. 1867 U.S. Coast Survey Chart or Map of Puget Sound, Washington Geographicus PugetSounduscs1867" by United States Coast Survey Report of the Superintendent of the United States Coast Survey, (Washington) Licensed under Public domain via Wikimedia Commons. Judd Creek Buoy #52 Buoy #53 Buoy #54 Buoy #55 Buoy #56 Mileta Creek Backbay Creek Well Acknowledgements Our greatest thanks must be given to: our professor, Kena FoxDobbs, for her guidance throughout our project; Anne Fetrow, for her feedback on this poster; the IsoLab at the University of Washington for all analyLcal work; Joel Elliot and the UPS Biology department for providing a boat for sample collecLon; the kind resident who allowed us to sample their well water; and the kind resident who allowed us to sample creek water on their property. This work was supported by the UPS Geology Department McMillin Fund, and UPS University Enrichment Commidee Conference Travel Grants to JW and KFD. *Note: The NO 3 concentra’ons of the two samples taken from Backbay Creek are indis’nguishable from a blank standard, so their isotopic data were omiGed. Study Area Quartermaster Harbor (QMH) is a hydrologically restricted inlet on Vashon Island in Puget Sound surrounded by residenLal, agricultural, and open spaces The inlet depth ranges from 5 meters (inner QMH) to 45 meters (outer QMH) Nutrient loading and limited circulaLon in the inlet is related to environmental issues including poor water quality and annual toxic algal blooms, which contribute to fish kills and shellfish contaminaLon. Sampling and Analysis 15 samples collected from 3 creeks, 5 buoys in the inlet, and 1 well. Creek water samples from outlets of Judd, Mileta, and Backbay Creeks. Two inlet water samples from each buoy, one at depth (just above Figure 4: CollecLng a creek sample. Study Area 0 75 150 225 300 375 450 525 600 675 750 Judd Mileta Backbay, upstream Backbay, downstream Well water (85' deep) [NO 3 ] (µM) 0.0 5.0 10.0 15.0 20.0 25.0 0 2000 4000 6000 8000 10000 [NO 3 ] (µM) Distance into Inlet (m) Buoy 52 shallow Buoy 52 deep Buoy 53 shallow Buoy 53 deep Buoy 54 shallow Buoy 54 deep Buoy 55 shallow Buoy 55 deep Buoy 56 shallow Buoy 56 deep [Deep sample trend] 0.0 2.0 4.0 6.0 8.0 10.0 0 2000 4000 6000 8000 10000 δ 15 N NO3 Distance into Inlet (m) Buoy 52 shallow Buoy 52 deep Buoy 53 shallow Buoy 53 deep Buoy 54 shallow Buoy 54 deep Buoy 55 shallow Buoy 55 deep Buoy 56 shallow Buoy 56 deep [Deep sample trend] 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 5 0 5 10 15 20 δ 18 O NO3 ‰ (VSMOW) δ 15 N NO3 ‰ (air N 2 ) Buoy 52 shallow Buoy 52 deep Buoy 53 shallow Buoy 53 deep Buoy 54 shallow Buoy 54 deep Buoy 55 shallow Buoy 55 deep Buoy 56 shallow Buoy 56 deep Well Water Mileta Creek Judd Creek PotenLal sepLc contribuLon to well water Shallow marine samples from the the innermost inlet buoys. Streams have similar NO 3 source SepLc Soil/Marine Terrestrial Marine/FerLlizer Q2: Mileta Creek, which has high [NO 3 ], is isotopically very similar to Judd Creek. Neither creek have isotopic values that suggest an anthropogenic NO 3 source. The well water has moderate [NO 3 ] and isotopic values that may reflect sepLc leakage. Q1: The larger difference in [NO 3 ] and δ 15 N NO3 values of deep and shallow samples at inner vs. outer inlet buoys reflects differences in biological use and sources of NO 3 . The consistent δ 15 N NO3 values of deep inlet samples may be due to relaLvely constant groundwater recharge or marine contribuLon. The correlaLon between between shallow [NO 3 ] and δ 15 N NO3 values and distance into the harbor suggests linear change in nutrient condiLons (vs. stepwise or threshold) Q3: All deep and some shallow marine samples have similar NO 3 source(s). The two shallow marine samples furthest into the harbor likely reflect the influence of anthropogenic source(s). EPA Maximum Contaminant Level Background Manure, ferLlizers, sepLc waste, atmosphere, and nitrogen fixing plants are all possible major sources of nitrate in this inlet and surrounding freshwater sources. Nitrogen and oxygen stable isotope analysis of nitrate can be used to idenLfy anthropogenic and natural sources, via the systems’ unique isotopic signatures. Nitrate can enter the inlet through mulLple freshwater sources, Figure 8. Nitrate concentraLons in fresh water samples (streams and well), and the EPA’s limit of water considered safe for drinking. Figure 9. Isotopic data ploded relaLve to esLmated values of possible nitrate sources. Figure 6. Nitrate concentraLon in marine samples ploded vs. distance into inlet. Figure 7. δ 15 N NO3 values of marine samples ploded vs. distance into inlet. Figure 2. Sign posted at Dockton Park on the waterfront of Quartermaster Harbor. some of which provide drinking __.water for local residents. The unique bathymetry of the inlet inhibits water circulaLon between the inner and outer regions, allowing a greater residency of pollutants. EPA has set the maximum contaminant level for nitrate in drinking water to be 10mg/L (~160µM). Figure 3. SchemaLc representaLon of nitrate inputs into Quartermaster Harbor, including groundwater seepage, surface stream runoff, sepLc system leakage, and natural and syntheLc ferLlizer runoff, and marine influx. Figure 5: Sample locaLons in the study area (inset of fig. 1 map). sediment interface) and one at the water surface. Well water from an organic farm next to Backbay Creek. Samples were frozen and analyzed at the University of Washington IsoLab for [NO 3 ], δ 15 N NO3 and δ 18 O NO3 values via the bacterial denitrifier method. Findings and InterpretaLons Figure 1 . Map of western Washington and study area.

Yvonne Wetzig_AGU Poster 2015

Embed Size (px)

Citation preview

Page 1: Yvonne Wetzig_AGU Poster 2015

Using  nitrate  δ15N  and  δ18O  values  to  iden6fy  poten6al  sources  of  nutrient  inputs  to  a  highly  impacted  inlet  in  South  Puget  Sound,  Washington    

Yvonne  Wetzig1,  Jackie  Perkins2,  Liz  Roepke2,  Kena  Fox-­‐Dobbs2  1University  of  Puget  Sound,  Chemistry  Department,  Tacoma,  WA  USA  2University  of  Puget  Sound,  Geology  Department,  Tacoma,  WA  USA  

Research  QuesLons  Q1:  Do  surface  and  deep  inlet  marine  water  samples  have  different  NO3  concentraLons,  δ15NNO3  

values,  and  δ18ONO3  values?  Do  NO3  concentraLons  and  isotopic  values  change  with  distance  into  the  inlet?  

Q2:  Can  we  detect  anthropogenic  nitrogen  sources  in  freshwater  sources  around  the  inlet?  Q3:  Do  the  δ15NNO3  and  δ18ONO3  values  of  inlet  samples  provide  insight  into  water  quality  issues?    

References  CascioW  KL,  Sigman  DM,  Galanter  HasLngs  M,  Bahlke  JK,  Hilkert  A.  2002.  Measurement  of  the  oxygen  isotopic  composiLon  of  nitrate  in  seawater  and  freshwater  using  the  denitrifier  method.  

Analy'cal  Chemistry  74:  4905-­‐4912.  DeGasperi  C.  2008.  EPA  Grant  ApplicaLon:  Targeted  Watershed  Grants  2008  Puget  Sound  IniLaLve  -­‐  Quartermaster  Harbor  Nitrogen  Management  Study.    HasLngs  MG,  CascioW  KL,  Elliod,  EM.  2013.  Stable  isotopes  as  tracers  of  anthropogenic  nitrogen  sources,  deposiLon,  and  impacts.  Elements  9:  339-­‐344.    Kendall  C,  Elliod  EM,  and  Wankel  SD.  2007.  Tracing  anthropogenic  inputs  of  nitrogen  to  ecosystems,  Chapter  12,  In:  R.H.  Michener  and  K.  Lajtha  (Eds.),  Stable  Isotopes  in  Ecology  and  

Environmental  Science,  2nd  ediLon,  Blackwell  Publishing,  p.  375-­‐449.  King  County.  2014.  Quartermaster  Harbor  Nitrogen  Management  Study:  Final  Study  Report.  Prepared  by  C.  DeGasperi,  Water  and  Land  Resources  Division.  Seadle,  Washington.  Sigman  DM,  CascioW  KL,  Andreani  M,  Barford  C,  Galanter  M,  Bahlke  JK.  2001.  A  bacterial  method  for  the  nitrogen  isotopic  analysis  of  nitrate  in  seawater  and  freshwater.  Analy'cal  Chemistry  

73:  4145-­‐4153.  1867  U.S.  Coast  Survey  Chart  or  Map  of  Puget  Sound,  Washington  -­‐  Geographicus  -­‐  PugetSound-­‐uscs-­‐1867"  by  United  States  Coast  Survey  -­‐  Report  of  the  Superintendent  of  the  United  States  

Coast  Survey,  (Washington)  Licensed  under  Public  domain  via  Wikimedia  Commons.  

Judd  Creek  

Buoy  #52  

Buoy  #53  

Buoy  #54  

Buoy  #55  

Buoy  #56  

Mileta    Creek  

Backbay  Creek   Well  

Acknowledgements  Our  greatest  thanks  must  be  given  to:  our  professor,  Kena  Fox-­‐Dobbs,  for    her  guidance  throughout  our  project;  Anne  Fetrow,  for  her  feedback  on  this  poster;  the  IsoLab  at  the  University  of  Washington  for  all  analyLcal  work;  Joel  Elliot  and  the  UPS  Biology  department  for  providing  a  boat  for  sample  collecLon;  the  kind  resident  who  allowed  us  to  sample  their  well  water;  and  the  kind  resident  who  allowed  us  to  sample  creek  water  on  their  property.  This  work  was  supported  by  the  UPS  Geology  Department  McMillin  Fund,  and  UPS  University  Enrichment  Commidee  Conference  Travel  Grants  to  JW  and  KFD.      

*Note:  The  NO3  concentra'ons  of  the  two  samples  taken  from  Backbay  Creek  are  indis'nguishable  from  a  blank  standard,  so  their  isotopic  data  were  omiGed.  

Study  Area  •  Quartermaster  Harbor  (QMH)  is  a  hydrologically  restricted  inlet  on  Vashon  Island  in  Puget  Sound  surrounded  by  residenLal,    agricultural,  and  open  spaces  

•  The  inlet  depth  ranges  from  5  meters  (inner  QMH)  to  45  meters  (outer  QMH)  

•  Nutrient  loading  and  limited  circulaLon  in  the  inlet  is  related  to  environmental  issues  including  poor  water  quality  and  annual  toxic  algal  blooms,  which  contribute  to  fish  kills  and  shellfish  contaminaLon.    

   Sampling  and  Analysis  •  15  samples  collected  from  3  creeks,  5  buoys  in  the  inlet,  and  1  well.    •  Creek  water  samples  from  outlets  of  Judd,  Mileta,  and  Backbay  Creeks.    

•  Two  inlet  water  samples  from  each  buoy,  one  at  depth  (just  above  

Figure  4:  CollecLng  a  creek  sample.  

Study    Area  

0  

75  

150  

225  

300  

375  

450  

525  

600  

675  

750  

Judd   Mileta   Backbay,  upstream   Backbay,  downstream   Well  water  (85'  deep)  

[NO

3]  (µ

M)  

0.0  

5.0  

10.0  

15.0  

20.0  

25.0  

0   2000   4000   6000   8000   10000  

[NO

3]  (µ

M)  

Distance  into  Inlet  (m)  

Buoy  52  shallow  

Buoy  52  deep  

Buoy  53  shallow  

Buoy  53  deep  

Buoy  54  shallow  

Buoy  54  deep  

Buoy  55  shallow  

Buoy  55  deep  

Buoy  56  shallow  

Buoy  56  deep  

[Deep  sample  trend]  

0.0  

2.0  

4.0  

6.0  

8.0  

10.0  

0   2000   4000   6000   8000   10000  

δ15 N

NO3  ‰

 

Distance  into  Inlet  (m)  

Buoy  52  shallow  

Buoy  52  deep  

Buoy  53  shallow  

Buoy  53  deep  

Buoy  54  shallow  

Buoy  54  deep  

Buoy  55  shallow  

Buoy  55  deep  

Buoy  56  shallow  

Buoy  56  deep  

[Deep  sample  trend]  

4  

4.5  

5  

5.5  

6  

6.5  

7  

7.5  

8  

8.5  

9  

-­‐5   0   5   10   15   20  

δ18 O

NO3    ‰

   (VS

MOW)  

δ15NNO3    ‰  (air  N2)  

Buoy  52  shallow  

Buoy  52  deep  

Buoy  53  shallow  

Buoy  53  deep  

Buoy  54  shallow  

Buoy  54  deep  

Buoy  55  shallow  

Buoy  55  deep  

Buoy  56  shallow  

Buoy  56  deep  

Well  Water  

Mileta  Creek  

Judd  Creek  

PotenLal  sepLc    contribuLon  to    well  water  

Shallow  marine  samples  from    the  the  innermost  inlet  buoys.    

Streams  have  similar    NO3

-­‐  source  

SepLc  Soil/Marine  Terrestrial  

Marine/FerLlizer  

Q2:  Mileta  Creek,  which  has  high  [NO3],  is  isotopically  very  similar  to  Judd  Creek.  Neither  creek  have  isotopic  values  that  suggest  an  anthropogenic  NO3  source.  The  well  water  has  moderate  [NO3]  and  isotopic  values  that  may  reflect  sepLc  leakage.    

Q1:    The  larger  difference  in  [NO3]  and  δ15NNO3  values  of  deep  and  shallow  samples  at  inner  vs.  outer  inlet  buoys  reflects  differences  in  biological  use  and  sources  of  NO3.  

 The  consistent  δ15NNO3  values  of  deep  inlet  samples  may  be  due  to  relaLvely  constant  groundwater  recharge  or  marine  contribuLon.  

 The  correlaLon  between  between  shallow  [NO3]  and  δ15NNO3  values  and  distance  into  the  harbor  suggests  linear  change  in  nutrient  condiLons  (vs.  stepwise  or  threshold)    

Q3:  All  deep  and  some  shallow  marine  samples  have  similar  NO3  source(s).  The  two  shallow  marine  samples  furthest  into  the  harbor  likely  reflect  the  influence  of  anthropogenic  source(s).    

EPA  Maximum  Contaminant  Level  

Background  •  Manure,  ferLlizers,  sepLc  waste,  atmosphere,  and  nitrogen  fixing  plants  are  all  possible  

major  sources  of  nitrate  in  this  inlet  and  surrounding  freshwater  sources.  •  Nitrogen  and  oxygen  stable  isotope  analysis  of  nitrate  can  be  used  to  idenLfy  

anthropogenic  and  natural  sources,  via  the  systems’  unique  isotopic  signatures.  •  Nitrate  can  enter  the  inlet  through  mulLple  freshwater  sources,     Figure  8.  Nitrate  concentraLons  in  fresh  water  samples  (streams  and  well),  and  the  EPA’s  

limit  of  water  considered  safe  for  drinking.    

Figure  9.  Isotopic  data  ploded  relaLve  to  esLmated  values  of  possible  nitrate  sources�.  

Figure  6.  Nitrate  concentraLon  in  marine  samples  ploded  vs.  distance  into  inlet.  

Figure  7.  δ15NNO3  values  of  marine  samples  ploded  vs.  distance  into  inlet.  

Figure  2.  Sign  posted  at  Dockton  Park  on  the  waterfront  of  Quartermaster  Harbor.  

         some  of  which  provide  drinking            __.water  for  local  residents.  •  The  unique  bathymetry  of  the  

inlet  inhibits  water  circulaLon  between  the  inner  and  outer  regions,  allowing  a  greater  residency  of  pollutants.  

•  EPA  has  set  the  maximum  contaminant  level  for  nitrate  in  drinking  water  to  be  10mg/L  (~160µM).  

 

Figure  3.  SchemaLc  representaLon  of  nitrate  inputs  into  Quartermaster  Harbor,  including  groundwater  seepage,  surface  stream  runoff,  sepLc  system  leakage,  and  natural  and  syntheLc  ferLlizer  runoff,  and  marine  influx.    

Figure  5:  Sample  locaLons  in  the  study  area  (inset  of  fig.  1  map).    

sediment  interface)  and  one  at  the  water  surface.  •  Well  water  from  an  organic  farm  next  to  Backbay  Creek.  

•  Samples  were  frozen  and  analyzed  at  the  University  of  Washington  IsoLab  for  [NO3],  δ15NNO3  and  δ18ONO3  values  via  the  bacterial  denitrifier  method.  

Findings  and  InterpretaLons  

Figure  1  .  Map  of  western    Washington  and  study  area.