31
DLR Institute of Aerodynamics and Flow Technology 1 Simulation of Missiles with Grid Fins using an Unstructured Navier- Stokes solver coupled to a Semi- Experimental Actuator Disc Ph. Reynier , E. Schülein & J. Longo Institut für Aerodynamik und Strömungstechnik DLR, Braunschweig & Göttingen - Germany Integrating CFD and Experiments - Glasgow, Sept. 8-9, 2003

Ph. Reynier , E. Schülein & J. Longo Institut für Aerodynamik und Strömungstechnik

  • Upload
    fauna

  • View
    48

  • Download
    0

Embed Size (px)

DESCRIPTION

Simulation of Missiles with Grid Fins using an Unstructured Navier-Stokes solver coupled to a Semi-Experimental Actuator Disc. Ph. Reynier , E. Schülein & J. Longo Institut für Aerodynamik und Strömungstechnik DLR, Braunschweig & Göttingen - Germany - PowerPoint PPT Presentation

Citation preview

Page 1: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 1

Simulation of Missiles with Grid Fins

using an Unstructured Navier-Stokes

solver coupled to a Semi-Experimental Actuator Disc

Ph. Reynier, E. Schülein & J. Longo Institut für Aerodynamik und StrömungstechnikDLR, Braunschweig & Göttingen - Germany

Integrating CFD and Experiments - Glasgow, Sept. 8-9, 2003

Page 2: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 2

Scope of the problem Lattice wing modelling Semi-empirical theory Solver Results for a missile Conclusion

Outline

Page 3: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 3

Scope of the problem (1)

“14 bis” of Santos Dumont.

Lattice wings:

• Known as stabilisers since

the beginning of the 20th century. • Used on Soyouz space

ships and Russian ground

missiles.

Page 4: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 4

Lattice wings Attractive for missile applications:

Lifting capabilities;

Small hinge moments;

Excellent supersonic control characteristics.

Scope of the problem (2)

Page 5: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 5

Isolated lattice wing. But Flow prediction around a complex geometry.

Scope of the problem (3)

Page 6: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 6

Mesh for a missile with lattice wings:

4 millions cells for a complete vehicle.

Alternative: Actuator disc

technique. Complete vehicle.

Scope of the problem (4)

Page 7: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 7

Objective:

• To predict the performances in term of forces

and moments for lattice wings,

To reduce the computational cost due to the

complex geometry of the grid fin.

Scope of the problem (5)

Page 8: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 8

Actuator disc technique:

• The lattice wing is modelled

by an actuator disc,

Artificial boundary conditions inside the flow,

Forces are accounted for in

the transport equations.

Actuator disc.

Lattice wing modelling (1)

Page 9: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 9

Forces:

• In a previous study they were interpolated

from an experimental database,

Failure when the flow conditions were out of

the database range.

Lattice wing modelling (2)

Page 10: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 10

ma2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

Mach 1.8 AoA -10degSymmetry Plane View

Lattice wing modelling (3)

Page 11: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 11

Lattice wing modelling (4)

ptot: 0.1 0.25 0.4 0.55 0.7 0.85 1

Mach 1.8 - AoA 10 degrees

Page 12: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 12

Delta on the pitching moment due to the lattice wings.

Delta on the normal force due to the lattice wings.

alpha

Cz(B+LW)-Cz(B)

0 5 10 15 20 25-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ExperimentsCFD

alpha

Cm(B+LW)-Cm(B)

0 5 10 15 20 25-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

ExperimentsCFD

Lattice wing modelling (5)

Page 13: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 13

Forces:

• Here, the forces are computed using the semi-

empirical theory for lattice wing,

The goal is to extend the tool capacities in

terms of Mach number, angle of attack and

yawing angle.

Lattice wing modelling (6)

Page 14: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 14

Methodology: • Development of a semi-empirical method for design and optimisation of isolated grid fins.

Main aspects:

•Based on the semi-empirical theory for lattice wings.

•Used three different models for subsonic, transonic and supersonic flows.

• Computation of the forces in function of flow and geometry parameters.

Semi-empirical theory (1)

Page 15: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 15

Independent tool for design and optimisation of grid fin: Geometry and flow structure.

Semi-empirical theory (2)

Page 16: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 16

a. Calculation (Grid fin theory) b. Experiments (RWG)

Comparison of theoretical and experimental flow patterns.

( = 15°, = 10°, M = 3)

Semi-empirical theory (3)

Page 17: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 17

Validation of lattice wing theory at Mach 3 with experimental data for a XX-grid fin: Comparison of the theoretical axial force coefficient against TMK– and RWG – measurements.

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

-20 0 20 40 60 80 100

c Xa [

-]

xx_Flügel, Experiment TMK

xx_Flügel, Experiment RWG

xx_Flügel, GF-Theorie

-1.00

-0.75

-0.50

-0.25

0.00

0.25

-20 0 20 40 60 80 100

c Za [

-]

xx_Flügel, Experiment TMK

xx_Flügel, Experiment RWG

xx_Flügel, GF-Theorie

Semi-empirical theory (4)

Page 18: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 18

TAU solver:

3D finite volume Navier-Stokes solver for structured and unstructured grids.

Accurate to the second order in space.

Computations performed using the AUSM-DV scheme.

Solver (1)

Page 19: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 19

Coupling with the semi-empirical module:

This module, based on lattice wing theory, computes the force coefficients using semi-empirical relations.

Called at each iteration step and each point during the calculation as a function of flow conditions and grid fin geometry (several geometries are available).

Solver (2)

Page 20: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 20

Mesh used for the body: symmetry plane along the vehicle.

Missile (1)

Mesh generation:

CENTAUR grid generator is used to create the mesh.

It can produce structured, unstructured and hybrid grids.

Page 21: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 21

Mesh generationAround 500000 prisms and 500000 tetrahedra for both body and complete vehicle,

Both grids have equivalent sizes.

Grid independence checked with the adaptation module of TAU.

Mesh used for the complete vehicle: symmetry plane along the vehicle.

Missile (2)

Page 22: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 22

Computations

Both body alone and complete vehicle with grid fins have been computed,

The body alone will be used as reference.

Computed cases:- Mach 1.8 to 4 (Reynolds from 1.8 106 to 3.3 106).- From 0 to 20 degrees angle of attack.

Missile (3)

Page 23: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 23

Turbulence modelling

At Mach 1.8 the laminar computation underestimates the drag while k- prediction overestimates it.

At Mach 4 the agreement is very good with k- .

Missile (4)

Drag predicted for the body alone and experimental data at Mach 1.8.

Ma

Cd

0 1 2 3 4 5

ExperimentsCFD-LamCFD-kwCFD-SA

Page 24: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 24

Delta on the drag due to the lattice

wings.

Results without angle of attack

Estimation of the tool capacities for a missile with grid fins and different Mach numbers.

Delta of the drags between the missile and the body alone.

Missile (5)

Ma

Cd(M

)-Cd(B)

1 2 3 4 5

ExperimentsCFD

Page 25: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 25

Mach number distribution at Mach

4.

Results without angle of attack

Discrepancies for the drag between experiments and CFD, The method predicts the variation of the drag due to the grid fins between the vehicle and the body alone

Missile (6)

mach: 0 1 1 2 3 3 4

Page 26: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 26

Effects of the grid fin geometry on the drag at Mach 4 (LW1: thick grid fin,

LW2 thin grid fin).

Results without angle of attack

Capabilities of the code to be used for system analysis.

Influence of the grid fin geometry on the drag: Quick convergence without mesh generation effort.

Missile (7)

Ma

Cd

0 1 2 3 4 5

Body aloneMissile-LW1Missile-LW2

Page 27: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 27

Evolution of the axial force coefficient with the angle of attack at Mach4

Results with angle of attack

Computations performed for different angles of attack.

Comparisons with the experiments: Very good agreement for both body and missile.

Missile (8)

alpha

Cx

-5 0 5 10 15 20 25

Cx-B-CFDCx-B-ExpCx-M-CFDCx-M-Exp

Page 28: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 28

Experimental and numerical values of the pitching moment coefficient

at Mach 4.

Experimental and numerical values of the normal force coefficient at

Mach 4.

Missile (9)

alpha

Cz

-5 0 5 10 15 20 25

Cz-B-CFDCz-B-ExpCz-M-CFDCz-M-Exp

alpha

Cm

-5 0 5 10 15 20 25

Cm-B-CFDCm-B-ExpCm-M-CFDCm-M-Exp

Page 29: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 29

Comments

Good agreement with the experiments with and without angle of attack with a discrepancy smaller than 10 %.

Savings in computational cost and mesh generation effort: a factor of 6 for the first geometry. A second geometry can be investigated for a very low additional cost.

Missile (10)Missile (10)

Page 30: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 30

The coupling with the semi-empirical theory avoids the dependency on the validity range of an experimental database.

The code is able to predict the trends of the force and moment coefficient evolution with the Mach number and the angle of attack. Comparisons with the experiments indicate that the discrepancies do not exceed 10 %.

Conclusions (1) Conclusions (1)

Page 31: Ph. Reynier , E. Schülein & J. Longo  Institut für Aerodynamik und Strömungstechnik

DLR Institute of Aerodynamics and Flow Technology 31

Using the actuator disc technique the problem of the high computational cost due to the presence of the grid fins can be avoided.

For a low additional cost another geometry can be investigated,

Usefulness of the tool which can be used for design and system analysis

Conclusions (2) Conclusions (2)